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Duality rotations in the linearized Einstein theory
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ABSTRACT. Using the fact that the solutions of the Einstein vacuum field equations linearized
about the Minkowski space-time can be expressed in terms of two real scalar potentials, the effect
of a duality rotation on the metric perturbations is given. It is shown that, in the linearized
Einstein theory, the field of a gravitomagnetic mass and of an accelerating mass are related by
means of a duality rotation with the field of a static ordinary mass and of a rotating mass,
respectively.

RESUMEN. Usando el hecho de que las soluciones de las ecuaciones de Einstein para el vacio
lincalizadas alrededor del espacio-tiempo de Minkowski pueden ser expresadas en términos de dos
potenciales escalares reales, se da el efecto de una rotacién de dualidad sobre las perturbaciones
métricas. Se muestra que, en la teorfa de Einstein linealizada, el campo de una masa gravito-
magnética y de una masa acelerada estdn relacionadas por medio de una rotacién de dualidad
con el campo de una masa ordinaria estitica y de una masa rotante, respectivamente.

PACS: 04.20.-q; 03.50.De

1. INTRODUCTION

As is well known, the source-free Maxwell equations are invariant under the transforma-
tion

E'=B, B'=-E, (1)

in the sense that the fields E', B’ satisfy the source-free Maxwell equations if the fields
E, B do. Then, the linearity of the source-free Maxwell equations implies that they are
also invariant under the duality rotations

E - Ecosa + Bsina, B - —Esina + Bcos a. (2)

On the other hand, the invariance of the Maxwell equations with sources under the
duality rotations (2) requires the existence of electric and magnetic charges.

In Einstein’s theory of gravity, the gravitational field is represented by the curvature of
the space-time. The curvature tensor of a solution of the Einstein vacuum field equations
linearized about the Minkowski metric can be decomposed into “electric” and “magnetic”
parts

pest — 1
By = Koy, By =~zemaRKing; (3)
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where K, 3.5 denotes the curvature tensor to first order in the metric perturbation, that
satisfy the homogeneous equations (see, e.g., Refs. [1,2])

p 10
0iBij =0,  €ijx0jEy = ———= By,
cot
i 8 (4)
OiEij =0,  €)0;By = E@Eﬁ’
which are invariant under a transformation analogous to (1):
Ej;= By, B;; = —Ey. (5)

In some cases (e.g., in the interaction of a quantum system with the electromagnetic
field), it is necessary to represent the electromagnetic field by means of the potentials ¢,
A. Similarly, dealing with the gravitational field, the metric is usually considered as the
basic field, rather than the curvature which is given in terms of second derivatives of the
metric.

In this paper we give the effect of the duality rotations on the electromagnetic poten-
tials and on the metric perturbations of the Minkowski space-time. We make use of the
fact that the solution of the source-free Maxwell equations and of Eqgs. (4) can be written
in terms of two real scalar potentials (see, e.g., Refs. [1,3,4]). As we shall show below,
by contrast with Eqgs. (1) and (5), the duality rotations on the electromagnetic potentials
and on the metric perturbations are nonlocal. In the examples considered here, we find
the effect of the duality rotations on the linearized Schwarzschild and Kerr metrics. The
analysis of the metric perturbations is done by means of the so-called Taub numbers [5, 6],
which give the conserved quantities of the sources of the metric perturbations associated
with the symmetries of the background metric. Throughout this paper, lower-case Latin
indices ¢, 7, ... , run from 1 to 3 and lower-case Greek indices «v, (3, ... , run from 0 to 3.

2. DEBYE POTENTIALS AND DUALITY ROTATIONS

The solution of the source-free Maxwell equations can be written in terms of two real
scalar potentials, 1 and by, which satisfy the wave equation, according to

¢ = —%r - V(ryg),

1 )
E
A=r- s \Y
r 5 X Vi,

up to gauge transformations [3]. Hence, the electromagnetic fields are given by

10

E=——rxVyy—V x(rx Vyg),
¢ ot (7)

W
B= 7*‘21" x Vipp — V x (r x V’l‘by[).
¢ ot
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where we have used the fact that ¢p obeys the wave equation. From Eqs. (7) it follows
that the duality rotation (1) can be obtained by making

Vi = ¢M, Py = —YE. (8)

Thus, by expressing the potentials, ¢, A, of a given electromagnetic field in the form (6),
then

= *%r - V(rym),

10
Al :r—ﬂ-l—r x Vg,
c Ot

(9)

are potentials for the duality rotated electromagnetic fields E’, B’ [Eq. (1)]. Note that,
while at the level of the electromagnetic fields E and B the duality rotations are rather
trivial [Eqgs. (1) and (2)], the relation between the potentials ¢, A and ¢', A’ is nonlocal
(see the example below).

Even though expressions (6) are obtained looking for solutions of the source-free
Maxwell equations, the electromagnetic field produced by charge and current distribu-
tions can also be expressed in the form (6) by considering solutions of the wave equation
with singularities. For instance, the field produced by a static point charge g is given by
the potentials

s=1  A=o, (10)
i i

which can be represented in the form (6) assuming that

Py =0, (11)
and rpp = —qInr + f(6,). By requiring that 1 be a solution of the wave equation
one finds that L?f = ¢, where

L=—irxV. (12)
Choosing f = glnsinf we obtain
ge =122 (13)

Substituting Eqs. (11) and (13) into Eqgs. (9) we find

o =0, A=l cot

€5y 14
&, (14)
which are potentials for the field of a magnetic monopole [¢f. Egs. (10)]. (Note that the
most general solution of L?f = ¢ is given by f = ¢lInsin® + ¢(6, ), where ERg = 9,
which leads to potentials equivalent to (14) up to a gauge transformation.)



28 G.F. ToRRES DEL CASTILLO

As shown in Ref. [7], the solution of the Einstein vacuum field equations linearized
about the Minkowski metric is given by

2 1) ,
hog = -2 (w + ?@) T Qp[q,
z; 0 o10Yg 10 .
T = e S e MR .
") r or ¢ Ot T ror M o

§F 181 1 0%pg . 1 Py
!!ij = _2(5_]}: (ﬁ - (_j(‘ﬁ) T ‘L,/)].; == 4IJIkC_2W + 41I(JLK):W

modulo the gauge transformations

haﬁ = huﬁ = aﬂ&ﬁ = aﬁ&&a (16)

where v, and 1y are real solutions of the wave equation, the z; are cartesian coordinates,
L; are the cartesian components of the operator L [Eq. (12)] and the parenthesis denote
symmetrization on the indices enclosed. Then one finds that the electric and magnetic
parts of the curvature tensor to first order in the metric perturbation are

10

Eij = ;aUu(ﬁm) — Vij(¥E), -
10
Bij = _EanJWE) — Vij(¥m),

[cf. Eqs. (7)], where [1, 4]
Ujj =il X; +1L; X, Vij = €imnOmUnj,

X=:VxL-V.

(As in the case of the electromagnetic fields E and B, the symmetric traceless tensor fields
E;; and Bj; are gauge-invariant.) From Egs. (17) it is clear that the transformation

Vg = PM» P = —YE (18)

yields the duality rotation (5). (Of course, we can also consider duality rotations analo-
gous to that given in Egs. (2), for an arbitrary angle a.)

The solutions to the Einstein field equations with sources linearized about the Minkowski
metric can also be expressed in the form (15), modulo the gauge transformations (16),
by considering solutions of the wave equation with singularities. For instance, the
Schwarzschild solution linearized with respect to the mass parameter M, corresponds
to the metric perturbation

_2GM _ 2GM

hgi = 0, hij = —2,3 i)
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which, by means of a gauge transformation (16) with & = 0, § = —GMaz;/c?r, is
transformed into
2GM 2GM
hoo = ——, hoi = 0, hij = —— &;. (19)
e’y ooy

This metric perturbation can be written in the form (15) with

e DM, SUE e, (20)

clr r

[¢f. Eq. (13)]. Then, one easily finds that the metric perturbation generated by the
potentials

GM  sinf

! !
=0, = =l ; 21
"1[’]3 3 T,L‘M o n , ( )
obtained from Egs. (20) by means of the duality rotation (18), is given by
2GM ,
h”;]D =0, :JJ = __C—‘? cot 6 ZLJQ h‘_’}k =:0);

1.e.,

, : : 4GM
ds* = —c dt* + dr? + r? (d6? + sin® 0 dy?) — =

cos 6 dp dt. (22)

The metric (22) is the Taub-NUT solution, which represents the gravitational field of a
spherically symmetric source with ordinary and gravitomagnetic mass (see, e.g., Ref. (8]),
de® =<tV dr? 4+ (202U (dp 4 cos Odp)? + (r? + 1?)(d6? + sin? 0dp?),

where .
2(mr +12)
to first order in [, when m = 0, making the identifications cdt = 2l dyp and | = GM /2.
(The parameters m and [ are related to the mass and the gravitomagnetic mass, respec-
tively.)

Similarly, starting from the Kerr solution, one finds that in the case of a rotating
mass, in addition to (19), there is a contribution

9 i .
f.'()“ = I hgl = mfijkbj”kf h” =), (23)

Bl ]

3

where S; are the components of the angular momentum of the rotating mass and ny =
xy /7. The metric perturbation (23) is of the form (15) with

H(8,¢)

; : G :
Y = 0, v = —msjnj Inr + - (24)

where, in order that 4y be a solution of the wave equation, H{(#, p) must satisfy

g 3G ,
L*H —2H = ~ S,
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(the explicit form of H will not be required in what follows). Then, the metric pertur-
bation generated by

H(8,p)

G
P = —gadininr+ —5—, P =0 (25)

2G 2G
hf)o = —mSJﬂj, h’E}i =0, h;j = —6373;;?1;;51']'. (26)

In order to give an interpretation of the metric perturbation (26), in the next section we
shall make use of the Taub numbers [5, 6].

3. TAUB NUMBERS OF METRIC PERTURBATIONS

The Einstein field equations linearized about the Minkowski metric are given by

87 G

Gop = TR afis (27)

where

Gap = 3{070,has — 0a0"hyg — 030" hya + Badsh + 11a3(07 0 hys — 870 h)},
(28)

h = ha?, (29)
T,z is the energy-momentum tensor of the sources to first order in the metric perturbation
and the indices are raised and lowered by means of (1,5) = diag(—1,1,1,1) = (n°#). The

tensor field G, satisfies 9°Gpop = 0, identically (i.e., for any hag) therefore, if K is a
Killing vector of the Minkowski metric,

then the contraction G*? K satisfies
8.(G*PKg) = 0. (31)

The continuity equation (31) implies that

3 1
T(K) = :rG /‘GO“K,, dv = —F[TU“KQ dv, (32)

8
where the integral is taken over a hypersurface t = const., is a constant, which represents
the component along K% of the four-momentum of the sources of the metric perturba-
tion. The constant 7(K) is referred to as the Taub number of the metric perturbation
associated with the Killing vector K.
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A straightforward computation shows that
PP =GR, (33)
where [5, 6]
U = Kleo, b1 — klogflp — Lhao kP — K79lepfl, — b legPl K, (34)

and the square brackets denote antisymmetrization on the indices enclosed. Then, from
Egs. (32) and (33), making use of the Gauss'theorem one finds that

3

C3 & C : i ’
r(K) = g [ U v = i [ 0% de, (35)

where the last integral is taken over a sphere r = const.

For instance, substituting Eqs. (23) and K; = &;mjz;, Ko = 0 (which are the com-
ponents of a Killing vector corresponding to spatial rotations about the z,,-axis) into
Eq. (34) one obtains U%n; = 3G(Sm— Sininm)/(c*r?). Hence, Eq. (35) gives 7(K) = S,
in accordance with the meaning assigned to S;. On the other hand, the Taub numbers
for the metric perturbation (23) associated with translations and boosts turn out to be
ZEro.

In a similar manner, one finds that the Taub numbers of the metric perturbation
(26) are zero for the Killing vectors corresponding to translations and spatial rotations
and that 7(K) = —S,,, when K corresponds to boosts along the z,,-axis. Thus, we
conclude that the metric perturbation (26) is produced by an accelerated mass, with
the acceleration being parallel to S. (It may also be noticed that the components of the
curvature with spin weight +2, which correspond to ¥y and ¥4 in the Newman-Penrose
notation, of the metric perturbations (19), (22), (23) and (26) vanish, hence, according to
Wald’s results [9], these perturbations can only contain ordinary mass, gravitomagnetic
mass, rotation and acceleration parameters.)

It would be desirable to relate the metric perturbation (26) with an exact solution
of Einstein’s equations, as in the case of Eq. (22); however, although there exist exact
solutions of the Einstein field equations that represent the field of a uniformly accelerating
point mass (see, e.g., Refs. [10,11] and the references cited therein), it is rather difficult
to find the corresponding linearized solution (note that the magnitude of the vector S
appearing in Eq. (26) is related to the inverse of the acceleration).

4. CONCLUDING REMARKS

The Plebanski-Demianski solution of the Einstein-Maxwell equations [12] contains, be-
sides the cosmological constant, six parameters that group in a natural way into three
complex combinations, m + in, a + ib, e + ig, which correspond to mass, gravitomag-
netic mass, angular momentum per unit mass, acceleration, and electric and magnetic
charge. The examples considered here show that, in the linearized Einstein theory, the
real and imaginary parts of each of these complex combinations are mixed by the duality
rotations.
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It may be noticed that the potentials [Eq. (24)] for the metric perturbation (23),
which has a magnetic-dipole character, can be obtained by differentiating the potentials
(21), which generate the gravitational field of the analogue of a magnetic monopole; this
means that the linearized Kerr solution is equivalent to the field of two gravitomagnetic
masses of the same magnitude and opposite signs placed at opposite sides of an ordinary
point mass.
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