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ABSTRACT. The effects of thermal fluctuations and hydrodynamic backflows on the dielectric
relaxation of thermotropic nematic liquid crystals are studied by using a stochastic formulation
of the nematodynamic equations. We construct a stochastic amplitude equation to describe the
initial stages of the reorientational dynamics. We then use this equation to calculate analytically
the average electric dipole moment, the dipole correlation function and the dielectric relaxation
function in the direction perpendicular to the director axis, where a non-Debye response is ex-
pected. The real and imaginary parts of the transverse dielectric constant are then evaluated as
functions of the field frequency for both cases, namely, when backflows are taken into account
and when they are totally neglected. We find that for low field frequencies, the difference in
their values in these cases may be as high as 75% and 40%, respectively. This is also manifested,
though less noticeably, in the transverse Cole-Cole plot, which is no longer a semicircle indicating
a non-Debye relaxation. The magnitude of the corrections suggest that these effects should be
measurable and in this sense, our analysis indicates a tendency in the dielectric response and
suggests new experiments to be performed. The difficulties associated with the description of the
response for the whole reorientation process are briefly discussed.

RESUMEN. Se utiliza una formulacién estocéstica de las ecuaciones nematodinamicas para estudiar
los efectos producidos por las fluctuaciones térmicas y los contraflujos hidrodindmicos sobre la
relajacion dieléctrica de cristales liquidos nematicos termotropicos. Se construye una ecuacién de
amplitud estocdstica que describe las etapas iniciales de la dindmica reorientacional del nemitico.
A partir de ella se calculan analiticamente el momento dipolar eléctrico promedio, la funcién de
correlacion dipolar y la funcién de relajacién dieléetrica en la direccién transversal al eje Optico
incluyendo los efectos de los contraflujos inducidos. Las partes real e imaginaria de la constante
dieléctrica se calculan como funcién de la frecuencia del campo cléctrico aplicado, con y sin efectos
hidrodindmicos. Se muestra que para frecuencias bajas del campo, la diferencia entre estos valores
puede ser, respectivamente, hasta de un 75% y un 40%. Este efecto se manifiesta también, aunque
de manera menos notable, en el diagrama Cole-Cole el cual no es un semicirculo, indicando un
proceso de relajacion diferente al de Debye. Estos resultados sugieren que estos efectos podrian
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ser medibles v, en este sentido, el modelo propuesto indica una tendencia y sugiere la realizacion
de experimentos nuevos. Se discute brevemente la respuesta esperada para el proceso completo
de reorientacion.

PACS: 05.40.4j; 61.20.Le; 61.30.Gd; 77.40.+i

1. INTRODUCTION

The classical theory of dielectric relaxation is due to Debye and gives the time rate of
change of the macroscopic polarization in terms of the motion of the individual dipoles.
Debye introduced a model for the rotational Brownian motion of assemblies of dipoles
and assumed that the tendency of the molecular dipole moments to align parallel to the
applied field is counteracted by rotational diffusion [1,2]. He described the dynamics in
terms of the Smoluchowski equation assuming a dilute solution of polar molecules in a
non-polar (isotropic) solvent. By using the general theory of linear response for a di-
electric medium in an external field, Debye obtained the well-known dielectric relaxation
function [3]

€(0) — e(oo).

(W) - eloo) = T2

(1)
Here, €' (w) = € — i€” is the complex dielectric permittivity at the frequency w of the
applied field, and €(0), €(oc) denote, respectively, the dielectric constants under a static
and in an electric field of infinite frequency. The parameter 7p is a relaxation time that
depends on the molecular properties of the system. Note that if wrp is eliminated from
the real and imaginary parts of Eq. (1), the equation of a circle is obtained. Consequently,
if the relaxation can be described by Eq. (1), a plot of €” vs. ¢! (Cole-Cole) should give
a semicircle.

It should be pointed out that in deriving the above expression, Debye made strong
simplifications that amount to neglect the effects of inertia, memory and the interactions
between the molecules. But in spite of these simplifications, experiments have shown
that many materials are correctly described by Eq. (1). There are, however, substances
that deviate from it when high frequency values of the alternating electric field are used,
leading to nonexponential decays. Although much theoretical effort has been devoted
to explain the non-Debye behavior in polymeric and glassy systems, this has not been
the case for dipolar liquids or liquid crystals. For the latter the long-range orientational
correlations and the presence of hydrodynamic flow affect significantly the dynamics of
the dipole moments leading to experimentally well established non-Debye dielectrical
behavior [4, 5].

Recent generalizations of Debye’s theory have mainly focoused on taking into account
the effects of inertia and memory on dielectric relaxation by using stochastic formulations
based on Langevin-like equations [6-9]. The basic purpose in this paper is concerned with
a different but related aspect, namely, with how to describe the dielectric relaxation of a
nematic liquid crystal taking into account the presence of thermal fluctuations and the
effect of the hydrodynamic backflows which are inevitably induced by the orientational
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deformation. In the case of a nematic liquid crystal Eq. (1) can be applied to each of the
components of the dielectric constant, parallel, Eﬁ’ and perpendicular, €' , to the director
axis. The corresponding Cole-Cole plots have been measured and for El" a semicircle is
indeed obtained; however, for €% deviations from a semicircle are observed indicating a
distribution of relaxation times [10].

Strictly speaking, backflow effects in liquid crystals are always present. They have
been known for long time [11] and their essential effect is to reduce constraints [12,13].
In addition of taking them into account, here we shall focous on the time evolution of
the spatial orientational fluctuations associated with the orientational transition of the
nematic when the magnitude of an alternating external field is switched from an initial
value E; < E., smaller than a critical one E., to a final value Ff > E.. During this pro-
cess the system becomes unstable and the rodlike molecules of the nematic tend to align
with the applied electric field. The standard analysis of this transient dynamics is deter-
ministic and based on a mean field approach which neglects spatial inhomogeneities and
thermal fluctuations [14]. However, as is well known from the behavior of other multi-
stable nonequilibrium systems [15], a proper description of the decay of an unstable state
should include fluctuations, which are anomalously large during the transient reorienta-
tion processes as compared to those in equilibrium. Furthermore, at the transition point
where the reorientation begins, a correlation length diverges and the spatial fluctuations
associated with the orientation of the molecules are expected to be important.

Using a stochastic formulation of the nematodynamic equations we describe the be-
havior of these fluctuations and calculate the average dipole moments. In terms of them
we then derive the corresponding dielectric relaxation function for the transverse direc-
tion to the director axis where a non-Debye behavior is expected, and when backflows are
explicitly taken into account. In this sense the theory presented here gives the fluctuating
hydrodynamics corrections to the dielectric response of the nematic liquid crystals. This
response is calculated only for the initial stages of the reorientation where the lowest
order mode dominates. We show that for these nonequilibrium states the presence of
flow produces an increase as high as 75% and 40% for €', (w) and €' (w), respectively, in a
low frequency range of the external field, between 1-200 Hz. We also show that backflows
give rise to a non-Debye Cole-Cole plot, although the effect is less noticeable than for
the ¢/, and ¢” vs. w plots. Since we are not aware of any measurements of dielectric
relaxation of nematics in the presence of flow, a direct comparison with experimental
results was not carried out. However, such large effects could be measurable and in this
sense, this work suggests new experiments to be performed.

To this goal the article has been organized as follows. In the next section we define
the model and write down the basic stochastic dynamic equations for the director and
the reorientation angle for the particular geometry under consideration. Then, under
the well defined approximations of negligible inertia and minimal coupling, from these
equations we derive a stochastic amplitude equation for the Fourier’s amplitude, #(t), of
the reorientation angle and for the dominant mode just above threshold. This linear,
scalar stochastic equation simplifies the dynamic description and contains the effect of
backflows through an effective viscosity coefficient. In the next section we calculate
the first two moments of the reorientation angle probability distribution and in terms
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FIicUurE 1. Schematics of a linearly polarized electric field acting on a homeotropically aligned
nematic crystal film.

of them we calculate the equilibrium electric dipole correlation function. Then we use
these quantities to evaluate analytically the complex dielectric function £ (w) in the
transverse direction and plot its real, ¢, (w), and imaginary, £/ (w), parts as functions
of w for PAA (para-azoxyanisole). The corresponding Cole-Cole plots with and without
backflow effects are also calculated and their differences in these two cases are shown.
Finally, in the last section we summarize our results and conclude by making some further
physical remarks.

2. MODEL AND BASIC EQUATIONS

We consider a nematic liquid crystal layer of thickness d along the z axis and contained
between two parallel dielectric plates, as shown in Fig. 1. The transverse dimensions, L,
along the z and y directions are large compared to d, but the cell has a finite volume
V = L%d. Since it is well known that the hydrodynamic effects are enhanced for bend
geometries [12], we consider an initial homeotropic configuration of the director field n

where it is everywhere perpendicular to the plates, n” = (0,0,1). We assume strong
et co Py e L e e B S e T Y e wd T w et
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In the absence of an external field the nematic will retain its initial orientation n°.
However, if it is excited by an obliquely applied external field with a constant polarization
in the z—z plane, the orientation of the director inside the cell will vary with time and
position and will be described by the local director field n(r,¢). Actually, the unit vector
n is a hydrodynamic variable which characterizes the preferred direction of the long axis
of the molecules. Apart from the mass density, the specific entropy and the momentum
density, the director is the only additional hydrodynamic variable for a nematic; there
are no other degrees of freedom in the hydrodynamics of nematics. This behavior results
from the spontaneous breaking of the symmetry O(3) and from the fact that for small
wave vectors k, the director’s susceptibility diverges as k2 [16].

If the electric field always remains in the plane of incidence, it is reasonable to as-
sume that the reorientation of n also takes place in the z—2z plane, assumption that has
been confirmed by experimental measurements of optical properties of nematics under
reorientation [17]. Therefore, we also assume

n(z,z,t) = [sinb(z, z,t), 0, cos O(z, z,t)] (2)

where 6 is the reorientation angle between n and n°. Consistently, we consider the
backflow to be a shear flow of the form

v(z,z,t) = [vz(z,2,1), 0, 0] (3)

which satisfies stick boundary conditions on the plates v, (z = 0, d) = 0.
Using the stochastic formulation of the nematodynamic equations [18], the general
dynamical equations for the director and velocity fields can be written in the form

1 &F aF
1 g = = P’ e f
agng - (5’.‘1{3 k= dw(n) (S’U'Y + Q.ﬂ(r: t’)‘s (4)
OF Y
dﬂ!ﬁ = Llfi»y(n)a)-; — ng(n)m + ()Q.Qaﬁ(r,t), (5)

where d; = d/dt = 0/0t + v - V denotes the usual material derivative and F is the
Helmholtz free energy functional

1 dng \ [0
F = [dr(fu+ fon + figa) = 5 [ de Kopos (073) (5’;—;)

1 E-D
— = | dr

il ;
5
+ —/dr " 6
2/, " 8 2,7 (6)
where ir; (1 = 1,3) are the components of the position vector in the plane z-z. The first
term in Eq. (6) gives the Oseen-Frank distortion free energy in terms of Frank’s elastic
constants Ky, Ky, K3, and the tensor K,3.5 is defined as

KO-JTvﬁ = K(bas — ”nna’}(di? —MNgng) + Kzfcx.’iufﬁ'éu”y“u

+ K3(dqy — nan~)ngng, (7)
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where €44, is the totally antisymmetric Levi-Civita tensor and the kinetic operators L(n)
and I'(n) are given by

Lgy(n) = 0o Mapys(n)0s, (8)
Mans(n) = 53 (201 + 8 = 2)amar s + va(dssbon + sl

+ (13 — v2)(Nan4 068 + Nanedys + NgNydsa + NaNE0ya)), (9)

Doy () = [0+ Dtaadsy + (A= Do) (10)

In Egs. (8)(10) we have used the abbreviation dy = 9/dng and X = y1/72, 1, 72,
11, 2, 13 denote several viscosity coefficients. p(r,t) is the local mass density and r+
denotes the adjoint operator which is here defined in the sense of integration by parts
and transposing matrix indexes. The operator L is self-adjoint, L = L*.

The second term in Eq. (6) is the electromagnetic free energy given in terms of the
displacement vector D. It should be emphasized that in writing this expression we
have assumed, as is usually the case, that the magnetic susceptibility of the nematic
is much smaller than its dielectric susceptibility; that is, that the liquid crystal is non-
magnetic [19]. The relation between the nematic and the optical field is expressed through
the constitutive relation

D=¢-E, (11)
where the dielectric tensor £ is given by
Eij = €105 + €amynj. (12)

Here e, = g — €1 is the dielectric anisotropy, where &, € denote, respectively, the
nematic’s dielectric constants along the parallel and perpendicular directions to n.

The third term in Eq. (6) gives the hydrodynamic contribution to the free energy [20],
and the symbols dF/dng and 6F/dv, denote the functional derivatives of F.

The noise sources &g and 9,9, in Eqgs. (4) and (5) are Gaussian white noises with zero
mean and satisfy fluctuation-dissipation theorems such that the equilibrium distribution
associated with these equations has the canonical form Peg[n(r), v(r)] o exp[—F/kpT],
that is [18]

@ana&u»Q?fbu—ku—ﬂwm, (13)
(Qag (£, 1) (', ) = 2hpT Mapgyd(x — r')8(t — t'), (14)
(0aap(r, 1) (050, (r',1)]) = —2kgT L, 8(r —r')é(t — t'), (15)

where kg is Boltzmann’s constant and 7' the temperature. The noise sources {3 and
0aflas are uncorrelated.
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3. INITIAL STAGES

We now specialize Eqgs. (4) and (5) to the particular geometry considered in this model
and introduce a minimal coupling approximation in which the n dependence of the op-
erators I'3,(n) and Lg,(n) is approximated by substituting n by the initial orientation
n’. It should be stressed that this procedure retains only the initial coupling between
n and v, which is essential in the initial stages of the reorientation, but keeps the full
nonlinearity in the director’s dynamic which is present in the dissipative term dF/dng
in Eq. (4). Since all elastic constants have typical values of the same order of magni-
tude for thermotropic nematics, for simplicity we also make the equal elastic constants
approximation, K = K; = Ky = K3, and assume that the incident field is of the form

E(t) = E cos(wt), (16)

where E denotes a constant polarization.
Under these approximations the dynamical equations (4) and (5) become

> i ; ) gl
00(z,t) = ! (Kaje + —¢gea|E[? sin Bcos ﬂ) NS L PN £:(2,1),
8 2 (17)

- A+1
0005(2, ) = 138205 — .K%Bfnm B s B, (18)

Here 8; = %, O, = 5\% (i = z,z), @ is the incidence angle and |E|? is proportional to
the intensity of the applied field, I = (c|E|?/87), where ¢ is the speed of light in vacuum
and g9 is the permittivity of free space. Note that in writing these equations we have
also assumed spatial homogeneity in the z-direction so that the relevant component of
the shear backflow is v(2,t). If the aspect ratio of the cell is chosen in such a way that
the transverse dimension z is small as compared to z, this is a reasonable assumption.

To proceed further, we make the approximation of negligible inertia in which the
director field is considered to be a slow variable and the velocity field is assumed to
follow instantaneously the director’s dynamics (14]. It amounts to eliminate v, from the
deterministic parts of Eqs. (17)- (18) and is accomplished by setting d;v, = 0 in Eq. (18).
Integrating the resulting equation once with respect to z, substitution into Eq. (17) and
taking the approximation of small angles (6 — 0), we arrive at the following reorientation
equation with hydrodynamic effects:

24112
80(z,t) = K {71‘1 + u—)} 020 + fy;'l%EmEz
41/3 87['

+ A—ﬂflzr(z.t)+éx(z.i). (19)
21/3

This stochastic equation describes the initial stages of the reorientation process: however,
even with the simplifications made, it remains rather complicated. To simplify 1t further,
it is convenient to examine the behavior of the Fourier modes of 6(z,t) by using the
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following Fourier transforms compatible with the imposed boundary conditions:
g2 1) = Z O (t) cos[(2m + 1)wz/d], (20)

with similar transformations for the noise terms &, (z,t) and Q,,(z,t). The index m iden-
tifies the discrete modes in the z-direction and this transformation leads to the following
stochastic amplitude equation:

W,
o aE B +m(t). (21)

diOm(t) = —0m

Here 7, is an effective viscosity coefficient which contains the effect due to the hydrody-
namic coupling in the dynamics, i.e.,

1
=N 22
nENTS a3/ (vam) (22)
with oy = —%71, where ay is a Leslie coefficient. W, /7, is the amplification factor of

the fluctuations during the transient dynamics associated with the switching on of the
electric field. The explicit form of W,, is

W, =—K P4 11211} d)", (23)

It should be pointed out that the amplification factor Wy, /7, contains two well differ-
entiated contributions. On the one hand, W, comes from the form of the free energy;
it is therefore independent of the dynamics and of the hydrodynamic couplings. On the
other hand, %, contains the dynamic effects originated in the backflows.

The relaxation time of the different modes is given by 7, = —7%,/W,,; therefore the
mode m = 0 has the larger relaxation time and is the dominant mode. Actually, the
values of 7., define the time scale on which our description of the early stages of the
reorientation is valid. For instance, for CBOOA, 7, can be estimated as 0.986 s and for
PAA is approximately 1.45 s, which are times am.es&ble to experiment.

The noise source 7,,(t) is the following linear combination of the Fourier amplitudes
€m,z(t) and Qy, .. (2) of the original noise sources:

N(t) = Ema(t) — p(A +1)/200 22 (). (24)

Thus, it is still Gaussian with zero mean and is completely characterized by its correlation
{(n(t)n(t")). It can be easily shown that it obeys a fluctuation-dissipation relation similar
to Eq. (13) but with the effective viscosity 7,

2kpT . ;
(TITIL(t)7]7ri.’(t’)> = 2_—6m,m’¢(t - J"")' (25)
Ti¥
This results show that within the approximations made, the whole effect of the coupling
between the director and velocity fields is to replace v, by 7.
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Now, since the critical field can be estimated as E. = (r/d)(4nK/e,)'/? [21], to be
consistent with the minimal coupling approximation we assume that the external field
intensity is just above threshold and that only the dominant mode m = 0 is excited.
It should be stressed that the reduction of Egs. (17)-(18) to a normal-form amplitude
equation with the inclusion of noise terms is the key idea of our development. This
reduces the problem posed by a stochastic partial differential equation, [Eqs. (17)-(18)],
to an ordinary, linear stochastic differential equation for a scalar variable [Eq. (21)]. This
method is of general validity and can be applied to a variety of similar problems [22].

4. DIELECTRIC RESPONSE

The total electric dipole moment p(t) of a rodlike nematic polymeric solution consists of
two parts, namely, a permanent dipole p, and an induced dipole p;

P=pp+pi=pu+a- E), (26)

where E(t?) is the external field, p is the magnitude of the permanent dipole moment
and @ is the polarizability tensor which can be written in terms of the parallel and

perpendicular polarizabilities as
i = -1;‘((!“ + 20”_)51']' =+ /_\u(uluj — 6ij/3)1 (27)

where A = ¢ — a denotes the polarizability asymmetry. Now, according to the
molecular theory of Doi and Edwards for nematic polymeric solutions [23], the vector u
in Egs. (26) and (27) should be interpreted as a unit vector tangent to the primitive chain.
This suggests that for a rodlike nematic, u describes the director n vector field itself.
Since n is a hyarodynamic variable, this identification implies that the dipolar moment
is also a local variable described in terms of a polarizability local density of the form (27)
but replacing u with n. This has the important consequence that the reorientation of
rodlike nematic liquid crystals can now be studied in terms of the stochastic dynamics
of n. Actually, the quantity that is measured in dielectric relaxation experiments is the
average value of the total dipole moment p over the distribution of reorientation angles,

(p) = p(n) + (@) - E(2). (28)

Then, using Eq. (27) (p) can be expressed in terms of the moments (n) and (nn).
However, in the limit of small orientation and incidence angles considered in the previous
section, this general expression reduces to

(pz(2,t)) = (n + Aa Ef coswt)(0(z,t)) + Ef cos wt(Aa(@Q{z,t))u“). (29)
(p(2,t)) = p+ Ecoswt(ay + Aaf(b(z,t))). (30)

Thus, it is clear that in order to calculate (p) it is necessary to evaluate first the moments
(6(z,t)) and (6*(z.t)) from the stochastic amplitude Eq. (21) and Eq. (25). For given 6y
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and for the dominant mode m = 0, these equations yield

(0(t)) = BCz,1)) = 20e ™" (31)
and
(0%(t)) = (02(z, 1)) = AT + (6% — Ar)e /7, (32)

where 7 is the relaxation time for the dominant mode 7 = 7,d?/K7? and A = 2kgT/7,.
The overbar in Eqgs. (31) and (32) denotes an spatial average over the transverse coordi-
nate z and kg is Boltzmann’s constant. It should be remarked that the hydrodynamic
backflows produced by the reorientation do indeed affect the relaxation time 7 through
the effective viscosity 7, given by Eq. (22).

On the other hand, the dielectric function is defined by [24]

e*(w) — e(o0) ) /OG i .

——— | =6 - dt e " 1;;(t), 33

( 0 —e(x) ), "7 w j, de ) (33)
2

where ;;(t) is the normalized relaxation function. It is well known that in the high

temperature limit and for the linear response regime [25], 1;;(t) may be identified with

the electric dipole equilibrium correlation function

_ milt)ps(0)
(pi(0)p;(0))’
where p;(t) is the electric dipole moment of the system averaged over z and the angular

brackets denote an equilibrium average. The electric dipole correlation function is defined
in terms of the conditional average of the dipole moment as

pi(t)p;(0)) = i(0){(p; (t))py0)) " (35)

Now, as mentioned in Sect. 1, for the nematic cell considered and under the ap-
proximations made in the last section, it is to be expected that the dielectric function
perpendicular to the director axis, €% (w), should depend only on 1);,(t). Then, if we
first calculate (p.(t)),,(0) from Egs. (29), (31) and (32), and if the resulting expression
is then substituted into Eq. (34) we arrive at

Pij(t) (34)

Vez(t) = (A + Agcoswt)e ™ + (A3 coswt)e 2/, (36)

Here the coefficients A;, © = 1,2, 3, are well defined functions of the material parameters
and of the amplitude F of the field and their explicit expressions are given by

Al ,

4 = “ATI = By[(a) + Aabi/2)ES + (2808, /7)E + By, (37)
_ A 2 ,
A2 = I — B[JA(Y E/!J... (58)

Aj ; .
Ay = =L = ByAaEB,, (39)

A= Bo{By + E[20. 8+ (B + 02/2)8Ac + By + 46 Aa /7] }, (40)
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=1

FIGURE 2a. Normalized real part of the dielectric constant, £'(w) = £'(w)/[£(0) — £(o0)], as
defined by Eq. (46), plotted vs. w for PAA at 125°C. The material parameters for PAA were
taken from [28,29]. E = 10 % din/esu and d = 1072 cm. () corresponds to the presence of
backflows and (- - -) when they are totally neglected.

where we have identified

By = 22, (41)
vig
kT
Bi = =iy (42)
: 71V
2
B, = %0 ~ B, (43)
2kpT\ /2 d
Gy = & 44
. ( VK ) - )

From the above equations follows that in the strictly linear response regime, where
Eq. (34) is independent of the field, Eq. (36) reduces to a single relaxation exponential
Yrr(t) = Ay exp(—t/7), in agreement with Debye’s description.

On the other hand, it is important to point out that when the system relaxes towards
to a new equilibrium state through the reorientation process, vibration mechanisms in-
herent to the system may force it to oscillate harmonically with a certain characteristic
frequency [26,27]. However, since it has been suggested that this effect is significant only
for high frequencies [27] and since in this work we only consider low frequencies, in deriv-
ing Eq. (36) we have entirely neglected this possibility. It should also be emphasized that
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FIGURE 2b. The same as in Fig. 2a for the loss modulus £"(w) = " (w)/[e(0) — £(00)].

the correlation function given by Eq. (36) is essentially the product of an exponential
function times an harmonic one. This form agrees with the one assumed by Kubo [26] for
the description of the dielectric relaxation of solutions of polar molecules, although in our
case the presence of two relaxation times, 7 = ¥,d*/ K 7% and 7/2 indicates a non-Debye
offect. Furthermore, our expression (36) contains explicitly the effect of hydrodynamic
flows (backflows) in the relaxation through the presence of the effective viscosity 7;. The
real and imaginary parts of the dielectric function et (w) = €| (w) — ie"(w), can now be
calculated from Egs. (33) and (36) to the same order of approximation as Yz-(t). This
yields

A p) =8 —_ - . i w2 A_z w‘2
e’ (w) = e1(0) — [eL(0) EL(OO)]{(AI +Al~$/4)w,-z+,rsz T w2+(27)—2} 4

and

() = [e1(0) — £1.(0)] {Al“" 0 s

2

7w+ T2 BT {2

Ag g% + w? .

For typical values of the material parameters of PAA [28,29], the above expressions are
evaluated as functions of w in the low frequency range 0.7-200 Hz both, for the case when
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FIGURE 3a. The difference Ag (w) = A¢’, (w)/[e 1 (0) - £, (o0)] as a function of the frequency.

backflows are present and for a quiescent nematic. These plots are shown in Figs. 2. As
can be seen from Fig. 2a, backflows induce a slower decay of ¢’ (w). The same occurs
for the loss modulus ¢’ (w) as shown in Fig. 2b, but the maximum shifts towards higher
frequencies. However, it is porhanps more instructive to plot the differences between these
values, Ae’ (w) = ¢, "(w) - ¢, "(w) and A¢'l (w) = /M (w) - s’ie(w), which are given
in Fig. 3. The superscripts ' and ¢ denote, respectively, the values with and without
backflow effects. From these curves it can be clearly seen that the hydrodynamic flows
induced by the reorientation process produce a significant and in principle measurable
effect. The maximum difference may be as high as 75% for Ae', (w) and 40% for Ae'l (w).
This then shows that in the low frequency range 0.7-100 Hz, the presence of backflows
may induce an important change in the dielectric functions in the transverse direction of

a thermotropic nematic.

This effect induced by backflows in the dielectric constants is less noticeable in the
transverse Cole-Cole plot. Indeed, in Fig. 4 we show these plots for PAA when there
is no flow and when backflows are present. The curvature of this plot changes due to
backflows departing from a semicircle (Debye), although the difference with respect to
the case without flow is less noticeable that in Fig. 2.
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w(s=-1)

FIGURE 3b. The same as in Fig. 3a for Ae'| (w) = Ae'| (w)/[eL(0) —e1(00)].

5. CONCLUDING REMARKS

There are several aspects of the results of the previous sections that deserve further
elaboration.

First, it is important to stress once again that the identification of the unit vector
u tangent to the polymeric chain in the molecular theory of Doi and Edwards, with
the nematic’s director, allowed us to use a stochastic formulation of the nematodynamic
equations to describe the dielectric response in terms of the stochastic dynamics of reori-
entation. Within this context, we have also shown that these hydrodynamic couplings,
which are always present in the initial stages of the reorientational dynamics, induce sig-
nificant changes on the dielectric moduli £/, (w) and €' (w) of the nematic. These changes
may be as high as 75% and 40%, respectively, even for a low field frequency interval
between 0.7 Hz and 100 Hz. In principle, such a large effect should be detectable, but
whether or not it can be measured remains to be assessed.

Secondly, it is also important to stress that our dynamical description is restricted to
the initial nonstationary stages of the reorientation process. In Sect. 2 we assumed small
deviation angles which lead to the linearized equations (17) and (21) which in turn allowed
us to carry out an analytical treatment. However, strictly speaking, close to equilibrium,
this class of nonequilibrium states do not comply with the Onsager’s hypothesis on the
regression of the fluctuations. This may be seen already from Eq. (20) which implies
that the fluctuation (62(z,t)) — (8(2,t))? do not decay as the average. In spite of this,
we have used as a first approximation, several results that, admittedly, are only valid
for the linear response regime. An example of this situation is the use we have made of
the expression relating the dielectric and relaxation functions including terms linear in
the field. This lead us to a non-Debye expressions for the dielectric constant and to the
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1
FIGURE 4. Transverse Cole-Cole plot for the real and imaginary parts of £, (w) = e (w)/[eL(0) -

£, (00)], as given by Eqs. (45) and (46). (—) denotes the results with hydrodynamics effects and
(- - -) when backflows are ignored. The dots on the curves denote the frequencies given in Hz.

asymmetric Cole-Cole diagrams of the previous section. To justify the validity of this
approximation it is important to mention, on the one hand, that the predictions of our
model are in qualitative agreement with experimentally measured Cole-Cole plots [5, 6].
On the other hand, the form (36) for the correlation function, which is essentially the
product of an exponential function times an harmonic one, agrees with the one assumed
by Kubo on the basis of a linear response theory description of dielectric relaxation of
solutions of polar molecules [24,26]. It is also worth pointing out that predictions such as
an electric field dependent dielectric constant for the nonequilibrium states considered,
are in agreement with the predictions of molecular theories [23], where the birefringence
of nematics is a second order effect in the electric field [30].

Thirdly, it should be mentioned that our stochastic description in terms of a linear
Langevin type amplitude equation is fully consistent with descriptions based on equiva-
lent equations such as the Fokker-Planck equation [31]. However, a complete description
of the whole reorientation relaxation is described by highly nonlinear equations [30, 32]
of the form

[ s 2

DB P o

at 02° 8w

where * denotes complex conjugate. It is apparent that the consideration of the whole
reorientation process would substantially complicate the analysis. This is due, on the one
hand, to the nonlinear character of the equation and, on the other hand, to the fact that
the dynamics of the field is coupled with that of the nematic. Although even in this case
an analytical treatment is feasible [33], the simplicity of the model is lost. Furthermore,
to construct an amplitude equation associated with this highly nonlinear equation is
not a trivial matter due to the inconsistencies that may arise between nonlinearities
and fluctuations in this case [34]. However, the predictions of the proposed linearized
model are indicative as to what to expect for the complete process. Our results show
a tendency in the dielectric response due to backflow effects. Since to our knowledge,

[sin26(|E;|* — |E;|?) — 2E,E? cos 26] = 0, (47)



48 R.F. RopricuEz AND E. SALINAS-RODRIGUEZ

descriptions of dielectric relaxation in liquid crystals with hydrodynamic coupling are
practically inexistent, our description suggests new experiments to be performed.

Finally, it should be stressed that beyond the linearized regimes considered here, there
is no reason to expect that the lowest order mode will dominate the dynamics. In this
case all the modes should be included in the description of the reorientation dynamics
and all must contribute to the dielectric response. The analysis of this situation is a much
more complicated problem than the one considered here and should take into account
the coupling and competition among all the Fourier modes. A way to take into account
this features is to use renormalization group methods. This generalization is presently
under way [35].
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