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ABSTRACT. A general procedure to calculate multicomponent, multiphase liquid equilibria in
terms of excess Gibbs energy models is described. The algorithms presented for the calculation
of multiphase equilibria, the thermodynamic stability test based on the tangent plane crite-
rion, as described by Michelsen, and for the estimation of interaction parameters of the NRTL
and UNIQUAC models, were tested on the representation of experimental two- and three-liquid
phase equilibrium data of ternary and quaternary mixtures. Agreement between calculated and
measured equilibrium data was excellent for most systems studied. Also, in order to locate liquid-
liquid critical points, i.e., concentrations corresponding to the plait point coordinates, at specified
temperature and pressure, an algorithm similar to that of Heidemann and Khalil but in terms of
the mixing Gibbs energy was developed. The predictions of the plait points obtained from the
NRTL and UNIQUAC models were satisfactory for a wide variety of systems studied.

RESUMEN. Se describe un procedimiento general para calcular los equilibrios liquidos multifisicos
de sistermnas multicomponentes en términos de modelos de energia libre de Gibbs de exceso. Los
algoritmos que se presentan para el cdlculo de los equilibrios liquidos multifasicos, la prueba de
estabilidad termodindmica basada en el criterio del plano tangente descrito por Michelsen vy la
estimacion de los parametros de interaccion de los modelos NRTL y UNIQUAC, fueron probados
en la representacion de datos experimentales de mezclas ternarias y cuaternarias con dos y tres
fases liquidas en equilibrio. La concordancia entre los datos de equilibrio medidos v los calculados
fue excelente para la mayoria de los sistemas estudiados. Ademads, con el fin de localizar los
puntos criticos liquido-liquido, i.e., coordenadas correspondientes a las concentraciones del punto
de pliegue, a presién y temperatura especificas, se desarrollé un procedimiento similar al de
Heidemann y Khalil, pero en términos de la energia de Gibbs de mezclado. Las predicciones de
los puntos de pliegue obtenidos a partir de los modelos NRTL vy UNIQUAC fueron satisfactorias
para una amplia variedad de sistemas estudiados.
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1. INTRODUCTION

Liquid-liquid equilibria are of great importance in both chemical and petroleum indus-
tries and they have been studied with varying degrees of success and many aspects of
them need further investigation. In the petroleum industry, the design of chemical flood-
ing processes and the interpretation of process performance requires an understanding
of the phase behavior of the chemical systems. Usually, systems which are effective in
improving oil recovery are characterized by three-liquid equilibrium phase which appear
and disappear as the concentration of one or more components is varied over ranges that
are encountered during displacement through porous media. Thus, understanding and
modeling this distinct phase behavior pattern known as the simultaneous phase tran-
sition from two-phase to three-phase to two-phase, is extremely important not only in
chemical flooding processes but also in analyzing the results of coreflooding experiments
and computer simulation of multicomponent, multiphase flow through porous media [1].
This phase behavior pattern, which can also been found in systems that do not con-
tain surfactants [2, 3], is considered as one of the major factors governing displacement
efficiencies of any chemical flooding process.

In the chemical industry, the solvent extraction technology relies heavily upon lim-
ited liquid miscibility and the distribution of a solute between two liquids phases. In
azeotropic distillation, the separation of the entrainer from the overhead products after
the condenser if often facilitated by the formation of two liquid phases [4]. In the design
of the equipment for such processes and simulation of industrial scale chemical processes,
it is necessary to know, either from experimental data or calculations, the equilibrium
compositions of the components of each phase [5]. In calculating liquid-liquid equilibria,
it is essential to have a knowledge of both the chemical potentials of the components in
a particular phase and the relative stabilities of various phases at equilibrium. Both of
these properties are related to the thermodynamics of the system through excess Gibbs
energy functions and should be evaluated together.

At present, there are only few studies concerning the modeling of three-liquid phase
equilibria with excess Gibbs free energy models. In particular, Negahban et al. [6] pre-
sented a reliable procedure for modeling the phase behavior of ternary systems with two-
and three-liquid phases and a pseudoternary system with three-liquid-phase progression
with increasing salinity. The representation was based in terms of the UNIQUAC [7]
equation and the calculated compositions of the different liquid phases in equilibrium
corresponding to the experimental data were obtained by using a method similar to that
of Renon ef al. [8], that is, compositions of the two and three-liquid phases were related by
the isoactivity criterion. The aim of this work is to describe a general procedure for caleu-
lating multiphase liquid equilibria of multicomponent systems. The algorithms presented
for the calculation of multiphase liquid equilibrium data, the thermodynamic stability
analysis, and the methods to estimate the interaction parameters of the NRTL [9] and
UNIQUAC [7] models, have successfully been tested on the representation of experimen-
tal tvwrne and threelicdnido-nhace oanilibrinnm data of ternarv and anaternarv evetemes
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2. SOLUTION APPROACH

The problem of the phase equilibria has largely been treated in the literature (see, e.g.,
Refs. [10-17]). In fact, the specification of the problem imposes to develop efficient
procedures of calculation which ensure to find, for any overall composition and for any
set of interaction parameters of a given thermodynamic model, the global minimum of
the Gibbs energy of the system. It is assumed that the minimization variables are the
compositions of all phases in equilibrium where the number is not known a priori because
it is dependent of the number of phases. Therefore, in order to solve this problem, we
have used, on the one hand, the tangent plane criterion, as described by Michelsen (12],
to test the stability of either a single phase or an equilibrium between phases which, in
case of unstability, it provides good initial estimates of the compositions of the extra
phase for the equilibrium calculations and, on the other hand, a method of calculation
of phase equilibria with specified number of phases ensuring the descent along the Gibbs
energy surface.

A general scheme for the calculation of multiphase equilibria at given temperature
and pressure using a single thermodynamic model for all phases in equilibrium is the
following: 1) Suppose a homogeneous system. 2) The number of phases being p, carry
out a stability test. If the system is stable, end of calculation. 3) In case of unstability or
metastability, increase the number of phases by one unit and perform a flash calculation
at p+ 1 phases. Let p = p+ 1 and go back to step (2).

2.1. Stability test

It has been recognized (see Refs. [12,18]) that a severe problem associated with phase
equilibrium calculations of a multicomponent system at specified temperature and pres-
sure, is that the number of phases is not known in advance. The conventional approach
is to fix arbitrarily this number and to predict the phase equilibrium compositions. How-
ever, this may result in a fail of convergence with numerical methods not reliables or may
require a substantial amount of calculations only to arrive at a trivial solution in cases
where the number of phases is too high. This problem is of particular importance when it
is integrated to the calculation of industrial processes such as the simulation of reservoirs
in enhanced oil recovery or in azeotropic distillation of multicomponent systems.

The problem of determining whether a homogeneous multicomponent mixture can
be divided spontaneously and irreversibly into two or more different phases, was first
addressed by Gibbs in 1876 and it has been the object of several publications. The
stability criteria, from the thermodynamic point of view, are well known and they has
been already discussed in the literature (see Refs. [19,20]). These criteria, based on the
local convexity of the Gibbs free energy are, to date, of limited application for some binary
or ternary mixtures. A rigorous extension to multicomponent mixtures was presented
by van Dongen et al. [21], however, there is still disagreement in the development of
practical applications [22], mainly due to the following reasons: firstly, the test is only
locally applicable, hence it is a qualitative one; therefore it does not allow to provide the
compositions of a new phase if an unstability is detected and, secondly, this approach
does not allow, for a given phase, to distinguish the stable zone from the metastable
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one; the function of the Gibbs free energy being convex for both zones. For overcoming
this, several authors (see Refs. [12,23,24]) have developed alternative approaches for
thermodynamic stability analysis which enables to predict the number and type of phases
in equilibrium as well as to obtain the accurate initial estimates for phase equilibrium
calculations.

In this work, the stability analysis of a homogeneous system of composition z¥),
based on the minimization of the distance separating the Gibbs free energy from the
tangent plane at 2(#), has been considered. This stability criterion was initially presented
as a theorem by Baker et al. [18] and it has given place to numerical applications by
Michelsen [12] and by Nghiem and Heidemann [25], among others. Baker et al. [18]
demonstrated that the necessary and sufficient condition for a system to be stable, at a
specified temperature and pressure, is that the tangent plane to the Gibbs energy surface
at composition z(¥), should at no other point intersect the Gibbs energy surface. The
resulting corollary would express that at a given composition, a system is unstable if
the tangent plane to the Gibbs energy surface at that point intersects the Gibbs energy
surface at some other point in the overall composition range. These authors indicate that
mathematically the solution of the phase equilibria problem can be obtained by finding
a tangent plane to the Gibbs energy surface at two or more points which leads to the
least value of the Gibbs energy. Such points of tangency correspond to the compositions
of the predicted equilibrium phases being required by the material balance restrictions,
so that the global composition of the system lies within the region bounded by theses
points. Since the slope of the tangent plane corresponds to the chemical potentials
of the components, this tangent plane criterion is equivalent to that requiring equality
of chemical potentials, i.e., preservation of the material balance and a state of lowest
possible Gibbs energy as the conditions for equilibrium at the specified temperature and
pressure.

Following the work of Baker et al., Michelsen [12] suggested a numerically efficient
method for solving the stability analysis based on the tangent plane criterion which does
not require estimates of the number of phases at equilibrium and that provides composi-
tions of the new phases for unstable systems as a preliminary step in flash calculations.
This test has its foundation on the fact that if a decrease in Gibbs energy cannot be
achieved when a homogeneous mixture is divided into two phases (formed by remov-
ing an infinitesimal amount from the original mixture), then the mixture is stable. In
terms of activity coefficients, ~y;, this criterion for stability can be written, for all trial
compositions &, as

N
F(x) =Z$i[ln:ﬂi+ln%($)—hi} >0, (1)
i=1
where
hi = llu;g“o) + Iny, (2(4)), f=elly e ¥ (2)

Therefore, expression (1) requires that the tangent plane at no point lies above the
Gibbs energy surface and this is achieved when F(z) is positive in all its minima. Con-
sequently, a minimum of F(z) should be considered in the interior of the permissible
region,
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Aﬁ
Zwi = 1. for all & > 0. (3)
1=1

In view of that to test condition (1) for all trial compositions is not physically possible,
Michelsen [12] asserts that it is sufficient to test the stability at all stationary points of
F(z) since this function is non negative at all stationary points, i.e., points where the
derivatives of F'(x) with respect to all independent variables are equal to zero. Hence, the
stability can be checked by evaluating only the left-hand side of Eq. (1) at all stationary
points; that is, by solving the following equation describing the stationary point:

Iné; + Invy;(x) — h; =0, =1 ..., (4)

the stability is verified providing that at all stationary points F (x) > 0, corresponding
to Zf\;l & < 1. Conversely, a phase is considered unstable if stationary points where
F(z) < 0or N ,& > 1 can be located. In Eq. (4), the independent variables ¢;
can be interpreted as mole number with corresponding mole fractions, z; = & Z;\’:l &j
{12 1; s 1 V)

An equivalent stability criterion to that given by Eq. (1) but based on variables &; is
formulated as

N
F*'(§) =1+ &lin& + Inyi(z) — hy] >0, (5)

i=1

where no constraints on & except that & > 0 (i = 1,....N ) are required, so that
the stationary points of F*(€) correspond to those of F*(z). Moreover, since F'*(£) is
negative in all points where F'(x) is negative, then a negative value of F* (&) indicates an
unstability of the system. Hence, solving for Eqgs. (4) or (5) and obtaining Zif\;] &; are all
the necessary calculations required to determine the stability of the system of composition
z(#) at constant temperature and pressure. The methods proposed by Michelsen [12] for
solving the stationary condition, [Eq. (4)], are direct substitution and accelerated direct
substitution. Acceleration methods such as the general dominant eigenvalue method [26]
or Broyden’s method (see Ref. [27]) are recommended while a minimization method
applied to the stability function, [Eq. (5)], is also suggested.

In this work, the quasi-Newton BFGS minimization method (see Ref. [28]) has been
applied to Eq. (5) to determine the stability of a given system of composition z¥) at
specified temperature and pressure. Since the function F (&) allows usually multiple
points, which can be minima, maxima, or saddle points, then the adoption of such a
method for solving F*(§), under the constraints & > 0, will prove to be effective in so
far as it leads to the search of local minima of F*(€); the sign of F*(£) in these minima
enables to conclude with regard to the stability of the systemn.

The iterative procedure used by the quasi-Newton BFGS method can be written as

s®) — _Hk ), (6)

C!("H_l) — a(k) + )\S{kl. (?)
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where q is the gradient of F*(£) considered as a function of the iteration variables,
a; = 2¢/;, and is given by

q=(%§:)=\/5(1n£i+hl’h(ﬂ3)hi)» = Ly gy N (8)
while the Hessian matrix is
A= ( OF ) = B+ fi(In&; + Inv; (2) — hils =1, s Ny (9)
Jda, 0
where
B={By) =&y + v/ &&; (a—l"dz]ﬂ) LT . (10)

In a stationary point, the gradient is null and the Hessian matrix A equals to matrix
B, which is very close to the identity matrix I. Also, it can be seen that the trivial
solution € = x¥) corresponding to a stationary point, is a local minimum of F*(&) if and
only if B is positive definite in that point.

Thus, the approximant H to the inverse Hessian of F*(§), A~', can be initialized by
any symmetric positive definite matrix such as the identity matrix I, and it is corrected
or updated by the double-rank BFGS formula

7(k)7‘H<k>7(k)) sRg0T (5%)7(@}1(;:) +H<k),7(k)5(k))
(11)

HKD = H®) 4 (1 -

sRTA (k) ) §RIT k) 5T (k)
with
o) = q+1) _ (k) (12)
k) = gk +1) q®, (13)

during the subsequent iterations. In addition, this method requires a line search algorithm
to compute the step length A. This is done carefully by using a rigorous method such
as the proposed by Fletcher [28]. The purpose of the line search being to ensure a
satisfactory decrease of the function F*(€), then the following two requirements have
been set to achieve this aim:

Fr(e)® — F*(&)*+D) > —pag®Ts®), (14)

q(k+l)7's(k)‘ < —oq®Tgk) (15)
starting with an inexact line (¢ = 0.9) and finishing with a fairly line search (o = 0.1);
the parameter p being fixed equal to 0.01.

Restricted, quadratic interpolations or cubic extrapolations and interpolations, de-
pending on the test of Egs. (14) and (15), are used to reach an acceptable value of A.
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Fletcher [28] has shown that this line-search algorithm takes into account the effect of
round-off errors and turns into an exact line search when the parameter o tends to zero.

In so far as the approximant H remains positive definite, the property of descent on
F*(€) is effective and the convergence is always toward a local minimum, however, it
does not guarantee the convergence to a negative one immediately after having found
any kind of minimum; the only arbitrary part in this method being the initialization of
variables &;. This method has a superlinear rate of convergence at the end of calculations
and the converged approximant to the inverse of the Hessian matrix is very close to the
real one.

When the stability of a system is studied in relation to multiphase liquid equilibria,
several minima of the function F*(£) may coexist so that different initializations should
be used to reach them. Here, the search is initialized from almost pure phases (N
different initializations) and from an equimolar mixture (see Ref. [29]). The initializations
corresponding to pure trial phases have the advantage that liquid immiscibility in highly
non-ideal systems is promptly detected and component activity coefficients are evaluated
cheaply. Nonetheless, it is certain that for a large number of cases, one of these initial
guesses involves an approach toward the trivial solution, i.e., € = £(¥). These calculations
can be avoid if after each iteration, the convergence variable

e
s (5P ore (16)
i1 (e % C')CE;'

is evaluated. Thus, the value of r will approach the unity as € approaches the trivial
solution, so the search is abandoned when

Ir—1/<0.2 and F*(¢) <1073, (17)

while the criterion of convergence used for a non-trivial solution was

N " 2
lalz =3 (ai@) <107, (18)

= day;

When the stability of a single-phase system is tested, all different initializations are ex-
plored until finding two negative minima (if they exist) of the function F*(£). Therefore.
two minima at least exist if the system is locally unstable; the compositions correspond-
ing to these minima are used to initialize the two-phase equilibrium calculation. On
the contrary, if F*(§) admits only a minimum, then the system is metastable and the
composition which corresponds this minimum together with the overall composition, are
used to initialize the equilibrium calculation. A system with several phases in equilib-
rium is always metastable (the equilibrium having been already calculated). Hence, we
search only an unstability and the phase equilibrium calculation is initialized from the
new composition and from the compositions of the initial phases in equilibrium.
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2.2. Phase equilibrium calculations

The problems that are commonly found when we search to solve a set of equations
describing the equilibrium between multiple phases, are translated by a multitude of
solutions without physical significance because of the lack of convergence with certain
numerical methods or due to the absence of a good initialization.

The number of p phases in equilibrium being a prior unknown, then two different
approaches have been developed for solving this problem. The first one consists of as-
suming a maximum number of phases which can be deduced from the phase rule, then
to remove that one which does not appear during phase equilibrium calculations. This
approach is not economical in terms of the number of calculations that it is necessary to
carry out, and may fail to find a solution or may lead to erroneous solutions. The second
approach allows to solve the problem a p phases only when an unstability is detected with
the solution at p — 1 phases. This approach, more freculently used, only is effective if it
is accompanied of a rigorous stability test for multiphase systems and of an appropriate
numerical method of calculation.

Arguably, one of the most useful methods to calculate phase equilibria reported in
the literature is based on the minimization of the total Gibbs free energy. This method
offers scope for solving a phase equilibrium at p phases immediately after a stability at
p— 1 is carried out. Basically, the formulation of the problem can be stated as the search
for the global minimum of the molar Gibbs free energy of the system, G, at specified
temperature T and pressure P,

p N .
minG = Z an"o)pgw (19)
n 2

p=1i=1

under the material balance constraints

P
Mol og A=l (20)
p=l
and the inequality constraints
a? >0, i=1...,N; p=1...,p, (21)
where z, is the mole fraction of component i in the system, and ngt’g) is the mole number of
component i in phase p per mole of the feed. If the chemical potentials ;LE"D) =1, veu 0ty
¢ = 1,...,p) are expressed in terms of activity coefficients and assuming the composition

ngm of the phase p as dependent of the variables ng'p) (=1, 0 =1Ly p—1),
then the problem reduces to the following constrained minimization:

GG\ _ <m0 () )
inAg=|—5=—1 = I s e 22
o ( RT Z] ;”‘ (=7227) ()
with the inequality constraints given by Eq. (21) and
p—1
Zn "”’gz“ i=1,...,N, (23)
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where G = TN | 2 Y is the molar Gibbs free energy of the system at the reference state,
1Y is the btandard chemical potential of component i, and n(p) Ep}, and 'y!(p) (T, P, z(P)
are considered as functions of n("o) (t=1,...,N; ¢p=1,...,p—1); the inequalities (21)

and (23) defining a convex domain of the variables ”590) in RN (-1),
The gradient g and the Hessian matrix G of Ag can then be evaluated from

NN AN 2 A : _
g‘(m)““( NONONA t=henNie=Lo,p-1; o
1 1 1

92N 8 1 dlnAy® B 1 9lny™
G:( ()g())“l%((j)_ Wt n?))*(”)‘ TR
Bni‘p c')n]{‘p ni(‘a Ny on¥ T t-p N'» on.?

i,j=1,...,N; gp,¢=1,...,p— 1. (25)

If the equilibrium ratios of each component ¢ between phase ¢ and the reference phase r
(which is generated from a stability analysis),

5
1
=,

N e=1,...,p—1, (26)

are introduced, we can then express the Hessian matrix G as the summation of two
symmetrical matrices A and Q of order N(p — 1), defined as

AHEY o e e 0 \
0 A® :
A= : : . (27)
0
0 o A1
Q' R R
R Q@
Q- : (28)
R
R R Q(pkl}

where AW Q¥ and R are all symmetrical matrices of order N such that for ¢ =
1,..., p — 1 we have

. dln K 1 1 1 1
AR — ¢ == |0 SN (NS | P ST ] = :
( ont? ) [’ W@ @ ) TN T Nm |0 W= ke N
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dln~¥ 5ia=*
(@) i Y . -
2 _( on? )+( ontP) )’ =1 Ns (30)
2 i
dij 1 91ny? o
R_LW'Nw+(awﬂ i B Dy ol (31)

Ammar [30] has shown that matrices A (p =1,...,p— 1) are all positive definite
inside the same domain of coexistence involving the p phases. Hence, the Hessian matrix
A and its inverse A~! can easily be evaluated from matrices A and A1 which are
known analytically.

In this work, the following scheme based on the minimization of the total Gibbs free
energy and using InK®) (¢ = 1,...,p — 1) as variables at specified temperature and
pressure, has been adopted to solve the multiphase liquid equilibria for multicomponent
systems, which is an extension to that presented by Ammar and Renon [17] to solve the
single-stage isothermal flash problem:

1. Initialize the equilibrium ratios nK®) (p =1,...,p — 1) from a stability test.
2. Solve the set of non-linear equations by Newton-Raphson iteration

Xz (K9 - 1)

Z_—__—-—:O, (p=1,...,p—1, (32)
g=] }L
with
p—1
Hi=1+Y N@ (kP -1), i=1,.,N, (33)
p=1

to compute the phase fractions N{®),

AF
NO =Y, o=1,..,p-1. (34)

i=1
3. Calculate the mole fractions (¥ of the different phases from,

o =2 i=1,...,N, (35)

1

20— K-(")a-(-”),

1 ak 1 1

i=1,....,N;p=1,...,p— 1. (36)

4. Calculate Ag%), gl¥) and elaborate the test of convergence
A

_— p=-1 N , m(sﬂ),y(w) "
Ig®N5=>">"In (W) s T, (37)
z 1

p=17=1

5. Define new values of InK¥) (¢ =1,...,p— 1) and go back to step 2.
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The whole process is then repeated until convergence is obtained. It has been well
identified [17] that Eq. (22) can efficiently be solved from an unconstrained minimization
algorithm by keeping the variables ”5'@) (i=1,...,N; ¢ = 1,...,p — 1) inside the
convex constraints domain given by Eqs. (21) and (23) during the search for the solution.
However, mainly for multiphase systems, some algorithms can lead to a violation of these
constraints at the earliest iterations when the initialization is far from the solution even
if the latter was obtained from a stability test. That is, the projection of the variables
ng”?) (¢=1,...,N; ¢ =1,...,p— 1) on the constraints domain can not be numerically
Jjustified with some algorithms and results in a singularity of matrix A and in an erratic
behavior of the subsequent calculations.

In order to overcome these difficulties, we have adopted a hybrid approach to minimize
the total Gibbs free energy of the system, starting with the steepest-descent method in
conjunction with a robust initialization supplied from the stability test to ensure a certain
progress from initializations, and ending with the quasi-Newton BFGS method, which
has superlinear rate of convergence and ensures the property of strict descent ¢ the Gibbs
energy surface; the converged solutions from both methods representing local minima of
the Gibbs free energy.

The iterative scheme presented above is common for these two methods and only the
form to update the values of InK () in step (5) of the scheme will differ from one method
to another.

Steepest-descent method

This method is a gradient-type method and it is an extension of the successive substitu-
tion algorithm incorporating a line search to estimate the step length A, and it can be
expressed by

sk) = _AK)-1g(k) (38)
InK*+) — In K® + }\p(k)_ (40)

Quasi-Newton BFGS method

This method has a superlinear rate of convergence at the end calculations and although is
slower to reach the solution than with the Newton method (with quadratic convergence
rate), it has the advantage of generating a matrix very close to the inverse Hessian
matrix G ! so that this method has the same feature as the Newton method under the
circumstances where the initiation procedure is performed near converged points. The
BFGS step can be written as

gk) — —H(k)g(k), (41)
p(kJ = As(k) (42)
InK*+ = InK®) 4 \pk) (43)
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where the approximant H to the inverse of the Hessian matrix is set equal to A" at the
end of the steepest-descent method and it is updated by the BFGS formula,

&%) = InK*®+) _ [nK®), (44)

..’,Uf) (k+1) _ g(k)’ . (45)

=8
and Eq. (11), during the subsequent iterations. All matrices H are positive definite since
A~ is positive definite; hence, the descent property is ensured and convergence is always
to local minima.

The common feature of these methods is that both require a partial line search al-
gorithm to compute the step length A. This is done by imposing the following two
requirements upon A:

Ag®) — AgkHD > —pag®ITs®), (46)

‘g“"*‘)”‘s“‘w < —ogWTgk) (47)

in order to ensure a satisfactory decrease of Ag, and restricted, quadratic interpolations
or cubic extrapolations and interpolations are used to find A.

Finally, it is worth noting that one of most important steps of our algorithm is the
switch from the steepest-descent method to the quasi-Newton BFGS one, since it should
lead to a decrease in execution time during the calculations; otherwise the switch is not
necessary. Therefore, based on extensive testing of phase equilibrium calculations, we
suggest that the passage to the quasi-Newton BFGS method takes place after at least
five iterations and when the gradient norm is lower than 1073 RT. Nonetheless, in certain
situations corresponding to an ill conditioning of the Hessian matrix, it may be necessary
to get back temporally (2-3 iterations) to the steepest-descent method.

3. DATA REGRESSION

In order to use the NRTL or UNIQUAC thermodynamic models (see Appendices A and
B) or any other excess Gibbs energy model for liquid-liquid calculations, it is essential to
obtain the required adjustable model parameters from regression of experimental data
which, in turn, can be used for interpolation of the data or extrapolations in regions
beyond where measurements have been made. Therefore, with a given set of model
parameters, it is possible to calculate the number of phases in equilibrium and their
compositions from the global composition of the system. However, if the minimization
of Ag is started from any set of parameters, the phase equilibrium calculation could,
for instance, lead to a homogeneous system in which the distance to the experimental
system will be independent of the parameter values inside a certain domain, so that
it is necessary to initialize these parameters with reasonable values. Toward that end,
the following procedures are given to estimate the model parameters from liquid-liquid
equilibrium data.
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1. Minimization of the sum of squared differences between activity logarithms of each
component in each phase,

i M 2 2
Fo=3) w {[ln(wij%'j)l - ln(-Tij'Yij)“] + [111(93:'36%'3')[ = ln(frij%'j)m] }
j=la=1
Npar

+Q )Y p2, (48)

m=1

where w;; is the weighting factor associated to the component i of tie line (or tie

triangle) j,xgj is the experimental mole fraction of component i of tie line (or tie
triangle) 7 in phase I, and ’ygj is the corresponding activity coefficient which is
calculated from an excess Gibbs energy model depending on J:lj and the model
parameters py, (m = 1,..., Ny, ). Equation (48) has been written for three equi-
librium phases but for systems with two equilibrium phases, it reduces to contents
of the first bracketed term.

2. Minimization of the sum of squared differences between the calculated and experi-

mental mole fractions,

Neq Nph N Npar
Fe =) "3 wij (zije — 241)° + Q 3 P (49)
k=1j=11=1 m=1

where wyjg, Tij, and &;j;, represent, respectively, the weighting factor, the exper-
imental mole fraction, and the calculated mole fraction of component ¢ in phase j
corresponding to the tie line (or tie triangle) k.

The second term of the right-hand side of Eqs. (48) and (49), i.e., the “penalty” term,
is added to the objective functions F, and F, to ensure that we can get relatively small
parameters without increasing the minimum of these functions, so that the risk of multiple
solutions is avoided. This term has also the advantage that the minimum of F, and F,
becomes sharper promoting thus the convergence, and it is activated only if one or more of
the model parameters are greater than a specified value. In this work, we have chosen the
value of constant @ in such a way that the quantity Q(500)? represents approximatively
one per cent of the value of the objective function (F, or F). This approach has been
systematically used to estimate the NRTL and UNIQUAC parameters. In addition, we
have also replaced the experimental uncertainties (which in general are not available) by
weighting factors which can be used to force the thermodynamic model to represent with
more accuracy certain concentrations. Here, unless otherwise stated, all these factors
were fixed equal to unity.

Although the activity objective function F, has been frequently used in the literature,
it suffers from the disadvantage that it only contains the differences between computed
activities. Hence, minimization of this function does not necessarily lead to small differ-
ences between experimental and calculated mole fractions which is desired in practice.
Notwithstanding, to obtain an initial guess of the model parameters, it is often advan-
tageous to use function F, since it can be evaluated explicitly. Parameters obtained in
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this fashion provide a sufficiently good initial estimate to enable fairly easy convergence
in subsequent iterations based on Fj.

Conversely, minimization of objective function F; is more complicated and time con-
suming (see Refs. [8,31,32]). It involves the computation of mole fractions z;;; for a
given current set of model parameters and minimization of Eq. (49) with respect to the
model parameters from which will arise a new set of parameters. Computation is then
continued until the value of F, is smaller than a prescribed tolerance.

In Eq. (49), the experimental and calculated phases corresponding to each point of
overall composition are coupled by order of decreasing proximity. However, it is possible
that during minimization of F, there exists a mismatch in the number of calculated and
experimental phases, e.g., when there are two experimental phases but three calculated
ones. In this case, the calculated phase which is the farthest from experimental phases
will not be taken into account in the objective function. In fact, it is expected that this
last phase will only appear in a very small amount as soon as the other calculated phases
are close to the experimental ones since both the experimental and calculated systems
correspond to the same overall composition. In this regard, based on the representation of
a wide variety of binary, ternary and quaternary systems, this approach always matched
correctly the number of calculated and experimental phases for all systems studied.

In this work, the estimation of the NRTL and UNIQUAC parameters was carried out
in a two-step procedure which involves the minimization of functions F,, and F, by using
either the Simplex [33] or the Marquardt [34] optimization methods.

4. CALCULATION OF LIQUID-LIQUID CRITICAL POINTS

It has been established (see Ref. [35]) that critical points in liquid systems (i.e., plait
points) play an important role in chemical and petroleum industries. Thus, having in-
dicated in previous sections how we can get liquid-phase equilibrium compositions from
overall compositions using an excess Gibbs energy model, in this section we have ad-
dressed our attention to the calculation of liquid-liquid critical points of multicomponent
mixtures using a procedure similar to that suggested by Novdk et al. [36] which is, in
turn. a modification to that presented by Heidemann and Khalil [37].

In general, application of this procedure requires to find a vector Az that satisfy the
relation

D -Az =0, Az'Ax =1, (50)

where D is the matrix of second derivatives of the mixing Gibbs energy with respect to
the corresponding mole fractions,

a‘z
p— (989 o =1 eV = 1 (51)
()Iid;r:J 5 43
and
N
Ag,, = Z z; In(ziy;) (52)

1—1
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is the mixing Gibbs free energy for an N-component system at constant temperature
and pressure, and Az = Az, Az, ..., Azy_; is a non-zero vector of changes in the
mole fraction. On the spinodal surface, the determinant of matrix D should be zero, i.e.,
det(D) = 0, which can be evaluated by Gaussian elimination with scaled column pivoting
to reduce matrix D to an upper triangular form which, in turn, is used to find Az: then
det(D) is evaluated as the product of the diagonal elements. It is assumed that the last
component of vector Az is not zero, and in this way Azy_; = 1 can be selected, then
use back- substitution to find Az, Azy, ..., Azy_o.

When vector Az is inserted in Eq. (50), then the following cubic form term should
vanish:

N—-1N-1N-1 83 Ag
G = — Ax; Az Az, ¥

The elements in the quadratic and cubic forms of the critical criteria can easily be
obtained from the relations

6‘2Afj”l 613 1 N N N N
= ok =L+ — QN QN -QN+QNN, ii=1,....N—1;
(8.'1?1'(");123 o T TN & sz QIN QJ!\ Q[\a}\ 4HJ (54)

N N N N N
52:05;02% R =t Qijk — Qijn — Qixn — Qien + Qiny
P 1 2

83/—\9‘”1 ) _ 761'3'19 1
15 B

s Q?f_\r‘r\r =+ (b).{c\f\'N = (JﬁNN, 'l:,j,k' = 1, — ,N - 1, (55)

where Qg and Q{}k are the second and third derivatives of the excess Gibbs energy with
respect to the composition. Nevertheless, for more complicated thermodynamic models
where the evalustion of the third order composition derivatives of the excess Gibbs energy
is too cumbersome, Michelsen [38] presented a modification to evaluate numerically the
cubic form C. That is, all third order partial composition derivatives can completely be
avoided if C' is rewritten as

N-1N-1
C= Y 3 DjAzAz; = AzTD*Ax, (56)
i=1. g=1
with
£ o 2]
D* — {()D(m + ,'HA.'E,T,I) , (57)
ds 5=0

where D* is a partial composition derivative of D in the Az-direction. Thus, since only
a single derivative is required, then numerical differentiation, based on forward or central
finite-differences, can efficiently be used.

The implementation of the excess Gibbs energy approach for computing plait points
using this procedure at constant temperature and pressure, requires to iterate on mole
fractions =, and r, in a nested way. That is, based on an initial guess of xy, e.q., for
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ternary systems, by using the z; and z; (solute) values corresponding to the closest tie
line approaching the plait point or from an equimolar mixture, the composition z2 is
determined in an inner loop until det(D) = 0 is satisfied; then the convergence criterion
of the cubic form C is checked. If C evaluated at the stability limit is zero (or smaller
than a prescribed tolerance), the calculation ends; otherwise a new estimated for =z, is
generated in an outer loop and the iteration upon z; is carried out again. Once z; and
79 have been obtained, the remaining compositions can then be calculated from the mole
fraction constraint equation.

5. NUMERICAL EXAMPLES

The methods described above for the calculation of multiphase liquid equilibria and the
estimation of the parameters of a given model from liquid-phase equilibria data exhibiting
at most three coexisting phases, are used to represent the phase behavior of the systems
presented below. Here, both the NRTL [9] and UNIQUAC [7] equations have been used
as the thermodynamic models for all phases in equilibrium.

5.1. Ternary systems

Two ternary systems exhibiting simultaneously two- and three-liquid phase equilibria
have been considered to demonstrate the performance of the computational procedure
presented in this work: I-hexanol-nitromethane-water at 21°C and Il-nonanol-
nitromethane-water at 23°C. These systems were also represented by Negahban et al. [6]
using the UNIQUAC equation.

The liquid-phase equilibrium data of the 1-hexanol-nitromethane-water system, re-
ported by Sazonov et al. [39], include fourteen two-phase tie-lines and one three-phase
tie-triangle while the equilibrium data of the 1-nonanol-nitromethane-water system, re-
ported by Sazonov and Chernysheva [40], include ten two-phase tie-lines and one three-
phase tie-triangle. The phase diagrams of these systems show that all component pairs
are partially miscible.

In this work we have used both the NRTL and UNIQUAC equations to estimate their
interaction parameters which best represent the experimental equilibrium data of these
systems, and they are given in Table I. Also reported in this table are the pure-component
molecular-structural parameters that were taken from the collection of Serensen and
Arlt [41].

Figures 1 and 2 show the calculated and experimental tie lines for the systems 1-
hexanol-nitromethane-water at 21°C and 1-nonanol-nitromethane-water at 23°C, respec-
tively. In both figures, the shaded area depicts the experimental three-liquid-phase region
while the adjacent dashed lines show the calculated three-phase boundary domain.

The comparison between calculated and experimental concentrations is carried out
from the value of the root-mean-square deviation defined by

B min(F}.) ”
Tz = « T ? (*)8)
(2Nhi1| = ‘SNll'i)j\ == Npar




TABLE I. Estimated binary interaction parameters of the NRTL (Renon and Prausnitz, 1968)
1975) equations for the

and UNIQUAC (Abrams and Prausnitz,
systems 1-hexanol-nitromethane-water at 21°C and 1-nonanol-nitromethane-water at 23°C.

UNIQUAC Molecular- UNIQUAC Root-Mean- NRTL Root-Mean-
Structural Parameters Parameters, K Square Dev. Parameters, K Square Dev.
System r q i, 7 aij @ji o By a;j aji %004
1-Hexanol (1) 4.8031 4.1320 1,2 317.97 55.061 0.83 0.2022 134.01 734.57 2.21
Nitromethane (2) 2.0086 1.8680 1,3 37.872 443.51 0.1866 —108.29 1397.87
Water (3) 0.9200 1.4000 2,3 481.09 165.57 0.3461  681.14 658.64
1-Nonanol (1) 6.8263 5.7520 1,2 395.12 33.874 0.46 0.1612  33.608 1081.4 0.46
Nitromethane (2) 2.0086 1.8680 1,3 13542 340.22 0.1674 -180.50 17404
Water (3) 0.9200 1.4000 2,3 416.08 207.64 0.3481 666.83 852.29
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FicURE 1. Experimental data and calculated phase envelope with the UNIQUAC (Abrams and
Prausnitz, 1975) equation for the system 1-hexanol-nitromethane-water at 21°C.

where F, is the objective function which represents the differences between calcu-
lated and experimental mole fractions, and N, Npin, Niri, and Npar are, respectively, the
number of components, tie lines, tie triangles, and model parameters. The root-mean-
square deviation values obtained for the NRTL and UNIQUAC equations are also given
in Table L. In general, the results show that the calculated phase behavior describes the
experimental data of these systems quite well.

On the other hand, in order to show the evolution of the phase behavior of the 1-
nonanol-nitromethane-water system with increasing temperature, the equilibrium data
of this system were modeled with the UNIQU AC equation in the temperature range of
20 to 45.1°C. The equilibrium data, reported by Sazonov and Chernysheva [40], contain
seven two-phase tie-lines and one three-phase tie-triangle at 20°C, ten two-phase tie-lines
and one three-phase tie-triangle at 23°C, and fourteen two-phase tie-lines at 45.17C. This
system display a three-phase evolution pattern with decreasing temperature, i.e., at high
temperature, all mixtures split into two equilibrinm phases while a three-phase region
appears in so far as the temperature decreases.

For each temperature, the phase equilibrium data of this system were regressed with
the UNIQUAC equation. Figure 3 shows the estimated UNIQUAC parameters expressed
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FIGURE 2. Experimental data and calculated phase envelope with the UNIQUAC (Abrams and
Prausnitz, 1975) equation for the system l-nonanol-nitromethane-water at 23°C,

as a function of temperature. An examination of this figure indicates that the estimated
parameters either decrease or increase linearly as temperature increases. Consequently,
the parameters can adequately be expressed as a linear function of temperature by,

a;j = a; + aj; (T — 273.15) (59)

where 7" is the temperature in Kelvin. Table 11 summarizes the results of phase behavior

for this system. After applying Eq. (59) at different temperatures, it can be seen that the
predicted three-phase region extends beyond the temperature range that was investigated
experimentally. Of course, to examine the capability of the model extrapolation, it is
necessary to carry out measurements with similar overall compositions as those used in
the predicted three-phase regions.

3.2, Quaternary system

Relatively few data exist for systems comprised of four liquid components and. to date.
only a few researchers have attempted to calculate quaternary liquid-liquid equilib-
ria [42.43]. Liquid-liqnid equilibrium calculations of quaternary liquid systems having
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FIGURE 3. Estimated UNIQUAC parameters expressed as a function of temperature for the sys-
tem 1-nonanol-nitromethane-water. Phase equilibrium data from Sazonov and Chernysheva [40].

up to three immiscible liquid pairs have been investigated (see Ref. [41]) but systems
with three-liquid phases, which have potential application in tertiary oil recovery, have
not been simulated. In this section, the liquid-phase equilibrium data for the system
benzene-n-heptane-sulfolane-water at 25°C, reported by Hartwig et al. [44], have been
studied. These data include eleven two-phase tie-lines and one three-phase tie-triangle.
For this system, the component pairs benzene-water, n-heptane-sulfolane, and n-heptane-
water are partially miscible. Previously, to the best of our knowledge, no attempt has
been made to represent the phase behavior of this system.

Thus, the equilibrium data of this systems were used to correlate the interaction
parameters of both the NRTL and UNIQUAC equations. The estimated parameters
for these equations are given in Table III. This table also gives the pure-component
molecular-structural parameters of benzene, n-heptane and water, reported by Serensen
and Arlt [41], and those of sulfolane which were estimated during data regression. The
root-mean-square deviation values obtained for the NRTL and UNIQUAC equations are,
respectively, of 0.94 and 1.00% which is very good.

Deviations between experimental and calculated compositions (expressed in weight
fractions) obtained from the UNIQUAC equation are given in Table IV. On the whole, the
results show that there exists an excellent agreement between measured and calculated
concentrations of the coexisting phases.



TaBLE II. Coefficients to estimate the interaction parameters of the UNIQUAC (Abrams and Prausnitz, 1975) equation for the system
I-nonanol-nitromethane-water at 20, 23, and 45.1°C.

UNIQUAC Molecular-

UNIQUAC Parameters, K

Root-Mean-

Structural Parameters Square Dev.
Component T q i, a?j a?i aj; al; T(°C) Yooz
1-Nonanol (1) 6.8263 5.7520 1,2 400.97  39.639 20 0.47(0.48)*
Nitromethane (2)  2.0086 1.8680 1,3  130.08 336.11
Water (3) 0.9200 1.4000 2,3 41581  209.26
1,2 395.12 33.874 23 0.46 (0.50)
1,3 13542  340.22
2,3  416.08 207.64
1,2 35499 16.250 45.1 0.61 (0.61)
1,3 12746  389.82
23 357.98 200.45
1,2 439.18 55.875 —1.8683 —0.8794 20-45.1
1,3  137.11 289.01 —0.2088 2.2348
23 470.76  216.14 —2.4970 —0.3486

* Number in parentheses is the Root-Mean-Square Deviation obtained from Eq. (59).
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TABLE III. Estimated binary interaction parameters of the NRTL (Renon and Prausnitz, 1968) and UNIQUAC (Abrams and Prausnitz,

1975) equations for the system benzene-n-heptane-sulfolane-water at 25°C.

UNIQUAC Molecular- UNIQUAC Root-Mean- NRTL Root-Mean-
Structural Parameters Parameters, K Square Dev. Parameters, K Square Dev.
Component r q i, ] @iy aji %o, v aij aji Yoo
Benzene (1) 3.1878 2.4000 1,2 13793 -190.50 1.00 0.20 473.64 —537.02 0.94
n-Heptane (2) 5.1742 4.3960 1,3 -5.2939 7.7393 0.20 410.86 —-318.77
Sulfolane (3)  4.2704% 3.5474 14 65898 116.28 0.20 1804.8 2658.6
Water (4) 0.9200 1.4000 2,3 T742.79 45.887 0.20 1469.1  956.72
24 963.80 744.47 0.20 899.90 1110.3
34 37372 —164.90 0.20 8.5326  303.98

# Estimated from data regression.



TaBLE IV. Experimental and calculated phase equilibrium compositions (expressed in weight fraction units) for the system benzene
(1)-n-heptane (2)-sulfolane (3)-water (4) at 25°C. Activity coefficients from the UNIQUAC (Abrams and Prausnitz, 1975) equation.

Overall composition Lower Phase Middle Phase Upper Phase
weight fraction Experimental /Calculated /Error Experimental/Calculated/Error  Experimental /Calculated /Error
Z) 22 Z3 24 Iy I I3 Ty T3 I9 T3 T4 T Is I3 Ta
0.426 0.074 0.474 0.026 0.373 0.035 0.560 0.032 0.604 0.253 0.141 0.002
0.378 0.028 0.562 0.032 0.610 0.251 0.136 0.003
—-0.005 0.007 —0.002 0.000 —0.006 0.002 0.005 -0.001
0.378 0.122 0.474 0.026 0.289 0.023 0.652 0.036 0.558 0.363 0.077 0.002
0.301 0.021 0.642 0.036 0.561 0.363 0.074 0.002
-0.012 0.002 0.010 0.000 —0.003 0.000 0.003 0.000
0.304 0.196 0474 0.026 0.201 0.013 0.745 0.041 0.444 0.521 0.034 0.000
0.212 0.015 0.733 0.041 0.462 0.506 0.031 0.001
—-0.011 -0.002 0.012 0.000 —0.018 0.015 0.003 -0.001
0.229 0.271 0474 0.026 0.143 0.010 0.803 0.044 0.339 0.655 0.006 0.000
0.142 0.011 0.803 0.044 0.351 0.636 0.012 0.001
0.001 —0.001 0.000 0.000 -0.012 0.019 -0.006 —0.001
0.149 0.351 0.474 0.026  0.082 0.007 0.864 0.047 0.213  0.778 0.009 0.000
0.083 0.009 0.861 0.047 0.230 0.766 0.004 0.000
—0.001 -0.002 0.003 0.000 —-0.017 0.012 0.005 0.000
0.075 0.425 0474 0.026 0.028 0.004 0.918 0.050 0.108 0.888 0.004 0.000
0.038 0.008 0.905 0.049 0.116 0.883 0.001 0.000
—-0.010 —-0.004 0.013 0.001 —0.008 0.005 0.003 0.000
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TaBLE IV. (Continued).

Overall composition

weight fraction

Lower Phase

Middle Phase
Experimental /Calculated/Error Experimental/Calculated/Error Experimental/Calculated/Error

Upper Phase

z Z9 23 2 T T I3 Ty T Ty T3 By ) T T3 Ty
0.378 0.122 0.449 0.051 0.227 0.011 0.689 0.081 0.602 0.298 0.098 0.000
0.238 0.008 0.672 0.082 0.598 0.301 0.098 0.003
—0.011 0.003 0.017 —0.001 0.004 -0.003 0.000 —0.003
0.304 0.196 0.449 0.051 0.157 0.014 0.744 0.085 0.492 0.471 0.036 0.000
0.170 0.007 0.737 0.086 0.496 0.466 0.036 0.001
—0.013 0.007 0.007 —0.001 —0.004 0.005 0.000 —0.001
0.229 0.271 0.449 0.051 0.110 0.006 0.795 0.089 0.358 0.625 0.017 0.000
0.113 0.006 0.790 0.090 0.377 0.609 0.013 0.001
—0.003 0.000 0.005 —0.001 —0.019 0.016 0.004 —0.001
0.149 0.351 0.449 0.051 0.065 0.004 0.837 0.094 0.226 0.767  0.007 0.000
0.065 0.006 0.834 0.095 0.246  0.750 0.004 0.001
0.000 —0.002 0.003 —0.001 —-0.020  0.017 0.003 —0.001
0.075 0.425 0.449 0.051 0.025 0.004 0.874 0.097 0.111 0.886 0.003 0.000
0.030 0.005 0.867 0.098 0.124 0.875 0.001 0.000
—0.005 —0.001 0.007 —0.001 —0.013  0.011 0.002 0.000
0.426 0.074 0.449 0.051 0.000 0.000 0.659 0.341 0.387 0.037 0.544 0.032 0.625 0.193 0.180 0.002
0.068 0.000 0.594 0.338 0.393 0.027  0.546 0.034 0.618  0.212 0.166 0.004
—0.068 0.000 0.065 0.003 —-0.006 0.010 -0.002 —0.002 0.007 -0.019 0.014 —0.002
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5.9. Liquid-liquid critical points of ternary systems

In order to test the ability of the NRTL and UNIQUAC equations for predicting plait
points of multicomponent systems together with the computational procedure developed
in this work, we have calculated the liquid-liquid critical points of thirty-two ternary
systems at 25°C by locating the stable point along the stability limit which satisfies the
cubic form C' = 0 in Eq. (53). In general, the computational procedure converged to the
liquid-liquid critical points in a few iterations without any difficulty. Table V presents
the calculated plait point compositions (expressed in mole fractions) for the thirty-one
systems of type 1 (see Ref. [45]) that were taken from the collection of Sgrensen and
Arlt [41]. and one system, investigated by Negahban et al. [46], exhibiting a type 3 phase
behavior in which there are one three-phase tie triangle and three two-phase envelopes.

6. CONCLUSIONS

A rigorous and computationally efficient thermodynamic algorithm for calculating mul-
tiphase liquid equilibria of multicomponent mixtures from known overall composition of
the system, at specified temperature, has been presented. In order to find the stable
solution, this calculation procedure uses both the tangent plane criterion for stability
test and a robust approach for calculating the multiphase liquid equilibria based on the
minimization of the total Gibbs free energy by using the steepest-descent method at the
early iterations and finishing it with the quasi-Newton BFGS one.

This procedure coupled to a correlation data method, has allowed to verify that
classical thermodynamic models such as the NRTL or UNIQUAC equations can repre-
sent correctly the phase behavior of ternary and quaternary systems exhibiting two-
and three-liquid phase in equilibrium. In particular, an excellent representation of
the liquid equilibrium compositions was obtained with both equations for the systems
I-hexanol-nitromethane-water, 1-nonanol-nitromethane-water, and benzene-n-heptane-
sulfolane-water at, respectively, 21, 23 and 25°C. Hence, we believe that our algorithm
in conjunction with a more suitable thermodynamic model (see, e.g., Refs. [47-51]), will
be able to represent the phase behavior of complex systems such as micellar (water-
amphiphile) or microemulsion (water-oil-amphiphile) solutions, which are of central im-
portance in a broad variety of industrial and biological processes including enhanced oil
recovery, detergency, emulsion, polymerization, and catalysis.

Finally, a procedure to calculate liquid-liquid critical points at specified temperature
and pressure was developed. This algorithm, similar to that presented by Heidemann
and Khalil [37] but in terms of the mixing Gibbs energy, was successfully used for cal-
culating the plait point compositions of thirty-two ternary systems by using the NRTL
and UNIQUAC equations as the thermodynamic models. On the whole, for all systems
so far studied, this procedure converged in a few iterations without any difficulty.



TABLE V. Estimated plait point compositions (expressed in mole fractions) for ternary systems at 25°C with the NRTL (Renon and
Prausnitz, 1968) and UNIQUAC (Abrams and Prausnitz, 1975) equations®.

UNIQUAC Molecular- UNIQUAC Critical NRTL® Critical
Structural Parameters Parameters, K Composition Parameters, K Composition

System r q 1.9 Gi; aj; i &

Glycerol (1) 3.5857 3.0600 1,2 —9.5920 —-274.21 0.207 —181.37 —468.95 0.225
Ethanol (2) 2.1055 1.9720 1,3 300.09 329.12 0.522 1039.6 1425.6 0.508
Tetrachloromethane (3) 3.3900 2.9100 2,3 74791 -165.69 0.271 545.76  —497.24 0.268
Tetrachloromethane (1) 3.3900 2.9100 1,2 336.80 —85.423 0.050 703.29  —183.39 0.038
2-Propanol (2) 2.7791 2.5080 1,3 656.78 248.47 0.309 885.90 983.89 0.246
Water (3) 0.9200 1.4000 2,3 76.985 68.463 0.641 —244.79 964.61 0.716
Trichloromethane (1) 2.8700 2.4100 1,2 —146.59 54.545 0.192 —525.92 57.819 0.189
Acetic acid (2) 2.2024 2.0720 1,3 659.85 379.05 0.442 769.74 1518.5 0.421
Water (3) 0.9200 1.4000 2,3 —121.08 —108.23 0.366 —364.94  —98.812 0.390
Trichloromethane (1) 2.8700 2.4100 1,2 417.94  —-228.61 0.071 1804.1  —880.74 0.055
Propanoic acid (2) 2.8768 2.6120 1.3 12433 257.67 0.316 1943.3 2207.7 0.234
Water (3) 0.9200 1.4000 2,3 176.22  —20.420 0.613 476.94 73.994 0.712
Trichloromethane (1) 2.8700 2.4100 1,2 27643 —42.811 0.022 955.11  —362.40 0.018
2-Propanol (2) 2.7791 2.5080 1,3 629.70 284.71 0.249 868.79 1297.7 0.210
Water (3) 0.9200 1.4000 2,3 —0.1489 169.40 0.729 —354.02 1132.2 0.772
Furfural (1) 3.1680 2.4840 1,2 -333.21  —480.97 0.232 74520  —517.04 0.176
Formic acid (2) 1.5280 1.5320 1,3 110.78 190.59 0.116 22.522 1209.4 0.112

Water (3) 0.9200 1.4000 2,3 —627.56 136.29 0.652 —10.682  —492.26 0.712

78

IV LA ZAHONYS-VIDHV) OANVNYH



TABLE V. (Continued).

UNIQUAC Molecular- UNIQUAC Critical NRTLP Critical

Structural Parameters Parameters, K Composition ~ Parameters, K Composition
Svstem r q i, ] ag; aj; aij (125,
Water (1) 0.9200 1.4000 1,2 -177.22 —187.79 0.150 1020.1  —814.90 0.170
Methanol (2) 1.4311 1.4320 1,3 429.01 638.14 0.461 1790.4 944.01 0.471
1,2-Dichloroethane (3) 2.9308 2.5280 2,3 —66.033 307.47 0.389 512.05  —18.927 0.360
Methanol (1) 1.4311 1.4320 1,2 —16.965 —64.745 0.417 169.39  —580.60 0.420
Acetic acid, Methyl ester (2)2.8042 2.5760 1.3 12635 625.79 0.044 385.68 467.08 0.088
Cyclohexane (3) 4.0464 3.2400 23 —4.7990 —10.666 0.539 -234.39 -218.92 0.492
1-Nitropropane (1) 3.3573 2.9480 1,2 757.36 —183.64 0.107 836.34  —159.44 0.102
Methanol (2) 1.4311 1.4320 1,3 499.46 296.51 0.419 598.47 2472.6 0.396
Water (3) 0.9200 1.4000 2,3 —43.494 182.09 0.473 761.22  —69.326 0.502
Cyclohexane (1) 4.0464 3.2400 1,2 -59.532 -130.17 0.466 —-447.04  —-336.27 0.473
Tetrahydrofuran (2) 2.9415 2.7200 1,3 618.50 13.935 0.047 445.78 396.55 0.059
Methanol (3) 1.4311 1.4320 2,3 —159.85 8.7418 0.487 —T748.38 427.75 0.469
1-Butanol (1) 3.4543 3.0520 1,2 320.76 —199.90 0.133 703.82  -178.09 0.106
Methanol (2) 1.4311 1.4320 1,3 —68.151 396.99 0.116 —344.40 1756.8 0.108
Water (3) 0.9200 1.4000 2,3 —81.520 -319.75 0.751 45.740  —-147.43 0.785
Phenol (1) 3.5517 2.6800 1,2 -270.21  -80.219 0.120 —-42.444 -33.676 0.078
Methanol (2) 1.4311 1.4320 1,3 —257.86 566.90 0.073 —567.84 1884.0 0.078
Water (3) 0.9200 1.4000 2,3 —235.52 129.16 0.808 55.212 44.631 0.844
Methanol (1) 1.4311 1.3200 1,2 —8.3649  —72.360 0.429 322.69 —921.90 0.419
Benzoic acid (2) 4.3230 3.3440 1,3 12.256 678.14 0.068 373.25 539.45 0.069
Cyclohexane (3) 4.0464 3.2400 23 —46.742  —7.8853 0.503 -619.13 —362.75 0.512
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TABLE V. (Continued).

UNIQUAC Molecular- UNIQUAC Critical NRTLP Critical

Structural Parameters Parameters, K Composition Parameters, K Composition
System r q 4 @ aj; ajj aji
Cyclohexane (1) 4.0464 3.2400 1,2 —11.799  —24.202 0.375 —647.20  —376.15 0.391
Naphthalene (2) 4.9808 3.4400 1,3 753.28 —8.1030 0.073 659.47 300.44 0.071
Methanol (3) 1.4311 1.4320 2,3 36.338 110.15 0.552 —681.65 725.01 0.538
Methanol (1) 1.4311 1.4320 1,2 103.66 —179.61 0.520 873.57 —1245.0 0.470
Diphenylamine (2) 6.5760 4.6360 1,3 14.019 704.77 0.034 379.39 578.07 0.044
Cyclohexane (3) 4.0464 3.2400 2,3 —108.50 —75.541 0.446 —987.32 —856.11 0.486
Water (1) 0.9200 1.4000 1,2 —1.4582  —112.24 0.285 319.11  —280.94 0.280
2-Propanol (2) 2.7791 2.5080 1,3 335.30 702.78 0.406 1877.8 T08.87 0.402
Tetrachloroethene (3) 3.8879 3.4000 2,3 —85.104 205.12 0.309 —100.12 328.53 0.318
n-Heptane (1) 5.1742 4.3960 1,2 —=77.340 119.27 0.279 —82.539  —170.79 0.279
Benzene (2) 3.1878 2.4000 1.3 632:92 29.945 0.282 557.12 689.63 0.278
Acetonitrile (3) 1.8701 1.7240 2,3 18.087 72.756 0.439 —239.57 215.35 0.443
Water (1) 0.9200 1.4000 1,2 —16.853  —58.866 0.319 503.62  —531.48 0.364
Acetic acid (2) 2.2024 2.0720 1,3 642.80 702.87 0.389 1878.8 1023.2 0.387
1,2-Dichloroethane (3) 2.9308 2.5280 2,3 —166.46 399.33 0.292 —62.672 80.132 0.248
1,2-Ethanediol (1) 2.4088 2.2480 1.2 SEYTL —391.53 0.482 324.88 —838.73 0.470
Acetic acid (2) 2.2024 2.0720 1,3 72:350 295.47 0.069 462.97 431.49 0.073
Acetic acid, Ethyl ester (3) 3.4786 3.1160 2,3 —303.67 —123.43 0.449 -464.49  —396.64 0.453
1-Butanol (1) 3.4543 3.0520 1,2 155.34 —211.40 0.123 192.64 —412.70 0.102
Acetic acid (2) 2.2024 2.0720 1,3 -30.037 311.03 0.090 —330.50 1601.7 0.085
Water (3) 0.9200 1.4000 2,3 -30.340 -170.32 0.787 -114.89  —182.85 0.813
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TABLE V. (Continued).

UNIQUAC Molecular- UNIQUAC Critical NRTLP Critical

Structural Parameters Parameters, K Composition  Parameters, K Composition
System r q i aij g i Gy
Diethyl ether (1) 3.3949 3.0160 1,2 —212.01 26.114 0175 955.63 —679.82 0.145
Acetic acid (2) 2.2024 2.0720 1,3 493.70 127.55 0.199 374.70 1168.1 0.189
Water (3) 0.9200 1.4000 2,3 —254.66 129.86 0.626 65.933 —58.806 0.666
Furfural (1) 3.1680 2.4840 1,2 34299 —-361.92 0.217 514.63  —757.65 0.144
Acetic acid (2) 2.2024 2.0720 1,3 149.81 110.29 0.111 28.810 1248.6 0.102
Water (3) 0.9200 1.4000 23 —-12749 —419.83 0.673 —250.83  —502.50 0.754
I-Butanol, 3-Methyl (1) 4.1279 3.5880 1,2 384.62 —-318.92 0.103 610.35 —601.10 0.084
Acetic acid (2) 2.2024 2.0720 1,3 18233 249.91 0.177 27313 1807.9 0.160
Water (3) 0.9200 1.4000 23 17.453 -317.31 0.719 —66.424 . —69.290 0.756
Water (1) 0.9200 1.4000 1,2 —266.09 —129.95 0.212 —88.738  —325.86 0.224
Acetic acid (2) 2.2024 2.0720 1,3 596.58 703.31 0.496 1804.8 924.96 0.503
Benzene (3) 3.1878 2.4000 2,3 —69.726 0.0824 0.291 188.14  —154.94 0.273
Acetaldehyde, Diacetate (1) 5.1542 4.5320 1,2 —129.46 109.27 0.117 357.15 -377.74 0.096
Acetic acid (2) 2.2024 2.0720 1.3 351.59 36.746 0.186 —75.473 1586.2 0.179
Water (3) 0.9200 1.4000 2,3 -125.10 125.00 0.697 —2.1213 190.88 0.725
2-Pentanone, 4-Methyl (1)  4.5959 3.9520 1,2 —225.65 —13.128 0.118 696.81  —565.15 0.091
Acetic acid (2) 2.2024 2.0720 1;3 437.77 107.98 0.212 228.70 1827.0 0.204
Water (3) 0.9200 1.4000 2,3 —278.01 128.06 0.670 —-11.779 44.146 0.705
Acetic acid, Isobutyl ester (1)4.8266 4.1920 1,2 —114.20 3.1591 0.116 356.30 —319.24 0.093
Acetic acid (2) 2.2024 2.0720 1,3 494.86 124.58 0.285 350.10 2408.7 0.266
Water (3) 0.9200 1.4000 2,3 —227.48 118.70 0.599 —204.91 318.66 0.641
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TaBLE V. (Continued).

UNIQUAC Molecular- UNIQUAC Critical NRTLP Critical

Structural Parameters Parameters, K Composition Parameters, K Composition
System Cid q 149 s G @ij @i
Water (1) 0.9200 1.4000 1,2 —132.62 198.68 0.180 631.71  —212.84 0.146
Acetic acid (2) 2.2024 2.0720 1,3 -101.73 1033.9 0.395 950.38 811.06 0.392
Aniline, N,N-Dimethyl (3) 5.1094 3.9200 2,3 —30.321 225.39 0.425 50.658 409.82 0.462
1-Butanol (1) 3.4543 3.0520 1,2 190.76  —243.34 0.114 270.88  —450.93 0.097
Ethanol (2) 2.1055 1.9720 1,3 —23.464 308.83 0.093 —311.68 1579.4 0.088
Water (3) 0.9200 1.4000 2,3 —-16.989 —199.44 0.793 —35.903  —180.00 0.815
Water (1) 0.9200 1.4000 1,2 26693 —266.09 0.226 376.33  —441.74 0.264
Ethanol (2) 2.1055 1.9720 1,3 249.80 807.82 0.394 2797.7 986.99 0.397
Benzene (3) 3.1878 2.4000 2,3 —73.352 256.10 0.380 87.744 118.04 0.339
Water (1) 0.9200 1.4000 1,2 —62.614 8.0261 0.097 34743  —222.42 0.081
Ethanol (2) 2.1055 1.9720 1,3 21018 692.86 0.446 1488.9 822.47 0.509
2-Chlorotoluene (3) 4.5477 3.4120 2,3 —96.017 381.84 0.457 317.40 204.12 0.410
Water (1)¢ 0.9200 1.4000 1,2 255.88  —35.103 0.256
2-Butyloxyethanol (2) 4.4697 5.7979 1,3  205.89 4660.3 0.328
n-Decane (3)° 7.1974 6.1060 23 68493  —357.76 0.416

a UNIQUAC and NRTL parameters taken from the collection of Serensen and Arlt [41]
b Nonramdomness parameter, a;; = «j; = 0.2 for all calculations

¢ UNIQUAC parameters taken from Garcia-Sanchez et al. [29]
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APPENDIX A: THERMODYNAMIC FUNCTIONS FOR THE NRTL EQUATION FOR
AN N-COMPONENT SYSTEM

Tij # Tji» @j = «yi: Parameters characterizing the interactions between molecules i and
J (15 =755 =0).

T =ag/Ty  §F =1y oy N; (60)
9ij = exp(—aym5), 4, j=1,...,N; (61)
N
By =3 dalp, =Ll ., (62)
J=
N
Z 7 31 Y51, ey 13 7N: (63)
Ci | <= Tk gik Cr
Iny; = — 4 - i=1,...,N; ‘
nqy S, g ( Tik Sk)’ b= Dyors g3 (64)

N
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N 9ji9ki (2@'
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APPENDIX B: THERMODYNAMIC FUNCTIONS FOR THE UNIQUAC EQUATION
FOR AN N-COMPONENT SYSTEM

i, qi: Parameters characterizing the volume and surface area of component i; 7;; # 7j;:
parameters characterizing the interactions between molecules 7 and j (7;; = 7;; = 1);
z = 10: coordination number.

Tij = exp(—a;;/T),  i,5=1,...,N; (67)
N

r= Z:}Iif‘i, (68)
i=1
N

g = Z%‘% (69)
i=1

& = vt 1 = e oalV (70)

0; = ziqifq, i=1,...,N; (71)

Si=) 6imi,  i=1...,N; (72)

w18 (2 (o[ -w(3)

AT
q,-(hlnsj—z%), i=1,...,N; (73)
j=1 "7

Ql} = (1‘1$j)71 [_d)imj — (ﬁjﬂ?i + ¢i¢j - (z) Q(Qbi = Hi)(‘;bj - 9j):|

N

qid; Tji Tij Hk Tik Tik - )

+ 2y T W N IR ) 4= [T)
q( S S5 5:3)
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o
“
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