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ABSTRACT. The effects of external fluctuations in a laser beam interacting with a nematic liquid
crystal film are studied. We model the fluctuations in the intensity and amplitude of the inci-
dent optical field and derive the associated stochastic dynamics of the director’s reorientation.
When the parametric noise is in the intensity, the dynamics is described by a linear Langevin-like
equation with gaussian white or colored noise. In contrast, the case of a fluctuating amplitude
leads to a stochastic equation with nonlinear (quadratic) colored noise. By using a systematic
approximation method we calculate the noise induced birefringence for both cases in the final
stages of the reorientation process in the absence of hydrodynamical backflows. Numerical esti-
mates of this quantity for 5CB indicate that it may be quite large and that it should be readily
measurable. Actually, we show that this noise induced birefringence may be comparable, and
even larger, than its value in the purely deterministic case. In this sense our work suggests a new
effect and new experiments to be performed. The limitations and some generalizations of our
model are also discussed.

RESUMEN. Se estudian los efectos producidos por fluctuaciones externas en un haz laser que
interacciona con un cristal liquido nematico. Presentamos un modelo que describe las fluctua-
ciones en la intensidad o en la amplitud del campo Optico incidente y deseribimos la dindmica
estocdstica de la reorientacién del director. Mostramos que cuando el ruido estd presente en
la intensidad, la dindmica obedece una ecuacién tipo Langevin con ruido blanco gausiano o de
color. En cambio, el caso en que la amplitud fluctia, se describe por una ecuacién estocdstica
con ruido no lineal (cuadrético) de color. Utilizando un método de aproximacion sistematico cal-
culamos la birrefringencia inducida por el ruido en ambos casos en las etapas finales del proceso
de reorientacioén, cuando los contraflujos hidrodingmicos son despreciables. Las estimaciones del
valor de la birrefringencia inducida para 5CB muestran que ésta puede ser apreciable v por lo
tanto medible. De hecho, ésta cantidad puede ser comparable y atin mayor que la inducida en el
caso determinista puro. En este sentido nuestro trabajo sugiere un nuevo efecto fisico y nuevos
experimentos.

PACS: 42.65.Jx; 61.30.Gd; 64.70.Md
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1. INTRODUCTION

The interaction of laser light with liquid crystals has given rise to many interesting electro
and magneto-optical effects [1,2]. Among these, optical self-focusing stands out as a phe-
nomenon that has revealed the very strong optical nonlinearities of liquid crystals [3,4]:
an extreme nonlinearity that permits the investigation of nonlinear optical effects with
low power cw lasers. For instance, it is experimentally well established that under low
optical fields the response times of the reorientation of the director depend on character-
istic lengths such as thickness or grating constants, and are typically in the milliseconds
to seconds range [5]. However, recent experiments have shown that liquid crystals can
also respond to sufficiently intense (= 100 MW/ch) nanosecond or even picoseconds
laser pulses and that this response is also in the nanoseconds regime [6].

But although these phenomena have been well studied for deterministic light pulses
where their internal fluctuations are completely ignored, much less is known about the
effects that a noisy incident signal might produce on the reorientation of the nematic’s
director and therefore, on some of its optical properties such as birefringence. Actu-
ally, a proper characterization of laser light should take into account fluctuations. They
are needed to describe statistical properties such as intensity or amplitude fluctuations,
correlation functions or dynamical transient processes triggered by the fluctuations them-
selves, like the decay of unstable or metastable states. Laser fluctuations have their origin
in different sources of noise which may be classified as internal or external noise.

In fact, in the study of open systems it is convenient to distinguish between internal
and external fluctuations. This difference depends, of course, in how the system is defined.
In practice, however, the difference between the system and the external parameters
acting on it should be clearly established in each particular case. The external parameters
are determined by the environment of the system, that is, by boundary conditions or
applied fields.

Internal fluctuations are self-generated by the system and have their origin in the large
number of degrees of freedom that have been averaged out in its statistical description.
Their study is a well known part of statistical mechanics in equilibrium and far from
equilibrium [7] and an important feature of them is that they scale with an inverse
power of the size of the system. Therefore, they vanish in the thermodynamic limit,
except at the critical point where long range order is established [8]. In the case of laser
signals these fluctuations are related, for instance, with spontaneous emission or quantum
noise. From a fundamental point of view this is, perhaps, the most interesting source of
internal fluctuations. However, in practical devices such as memory elements or optical
transistors, quantum fluctuations are overshadowed by other more standard sources of
noise [9].

In contrast, external fluctuations are those present in the system when it is subject to
an external noise, that is, when the external parameters do not take on fixed determinis-
tic but random values. This noise has its origin outside the system in an intrinsic natural
randomness of the environment. It may also be imposed on a given experimental setup
by forcing a control parameter to take random values with a well defined prescription. In
this case it may be regarded as an external field driving the system which is controlled in-
dependently and that does not scale with the system’s size [10]. This type of noise occurs
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in a variety of systems that have been studied in the literature and includes photochem-
ical reactions [11], hydrodynamic systems near the Rayleigh-Benard instability [12] or
liquid crystals in the vicinity of the electrohydrodynamic instability [13].

It is in connection with this latter situation where the motivation for this paper
lies. The main objective is to analyze a simple model for the reorientation produced
in a nematic cell by a noisy laser beam and to calculate the induced stochastic electric
birefringence (Kerr effect). This effect occurs when the medium is optically anisotropic
and the refractive indices differ for different directions of polarization of the light.

There are different ways in which the presence of external noise can be taken into
account. We first consider the case where the intensity of the incident beam is the
fluctuating parameter. As will be shown below, this leads to linear stochastic equations
with white or color noise and to the unphysical result that the induced birefringence
does not depend on the field’s intensity. For this reason we then analyze the situation
where the external noise is in the amplitude of the electric field of the incident beam. In
this case the reorientation dynamics is described in terms of a stochastic equation with
nonlinear quadratic external noise. We find that for the final stages of the reorientation
where hydrodynamic flows can be neglected, the stochastically induced birefringence
does depends on the optical’s field intensity and that it may be as large as the usual
deterministic birefringence associated with the intrinsic asymmetry of nematic liquid
crystals. In principle, such a large effect should be measurable with high precision and in
this sense our model predicts a new effect and suggests new experiments to be performed.

To this end the paper is organized as follows. In the next section we define the
model and write down the basic dynamic equations for the particular geometry under
consideration. Then in Sect. 3 we define the stationary nonequilibrium state to be studied
and from the dynamical equations we derive an amplitude equation for the Fourier modes
of the components of the director field. In Sect. 4 we introduce noise effects into this
equation and in Sect. 5 we calculate the induced birefringence for the different situations
mentioned above and estimate its value for 5CB and for different noise parameters. We
also discuss the limitations of the model as well as possible generalizations where the
results of this work could be used as a starting point and we close the paper by making
some further physical remarks.

2. MODEL AND BASIC EQUATIONS

Consider a nematic liquid crystal placed between two glass plates perpendicular to the z-
axis and separated a distance d, as shown in Fig. 1. Along the transverse directions z and
y the cell has infinite dimensions. Boundary conditions corresponding to strong anchoring
of the director are assumed on the plates at z = 0, d and are such that the director’s
initial orientation is arbitrarily set along the 2 direction, n® = (0,0,1) (homeotropic
configuration). At some initial time an optical field (pump beam) with a linear and
constant polarization incides obliquely into the cell with an angle I' = (7/2) — 3 with
respect to the z-axis. If the laser field is intense enough, an orientational transition, the
so called optical Freedericksz transition (OFT), is induced in the nematic film [14]. Above

L

the transition threshold, F., the optical field distorts the initial homeotropic alignment



96 R.F. RODRIGUEZ ET AL.

v

—»

k

FIGURE 1. Schematics of a linearly polarized optical field acting on a momeotropically aligned
nematic crystal film.

of the film by reorienting the molecules against the elastic torques. This reorientation is
described by the director field n(r,t) and if the polarization always remains in the z—z
plane of incidence, it occurs in the same plane. Furthermore, if the aspect ratio of the
cell is chosen in such a way that the transverse direction z is small compared to z, we
may further assume that n(z,t) = [sin(z,t), 0, cos 6(z,t)], where 6 is the reorientation
angle in the =z plane.

Although the reorientation of the director is usually coupled to hydrodynamic back-
flows generated by the motion of the molecules of the nematic, for the stationary state
that we shall consider later on, they are small and we shall ignore them completely.

To describe the OFT we consider the Helmholtz free energy functional

F[n} = /V dr (fel e fem): (1)

where V is the volume of the liquid crystal. Here fe is the Oseen-Frank energy density of
elastic deformations [15], which in the equal elastic constants approximation K = K| =
Ky = K3 and for the above mentioned geometry, it is given by

2

fa = K [(0ena(2,0)* + (9:na(2,1)7] (2)
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where 0, = d/dz. Since usually the magnetic susceptibility of nematics is much smaller
than their dielectric susceptibility, we assume that the liquid crystal is nonmagnetic. In
this case the electromagnetic free energy density can be written as

Jom=—(E:-D)/2 = —g,e9(n - E)Z/Q1 (3)

where € is the electric permittivity of vacuum and where we have used the usual consti-
tutive relation between the nematic and the optical field, namely

D= §-E (4)
The dielectric tensor € is given by

gij/€0 = € 10ij + gqninj, (5)

where £, = g — ¢ is the dielectric anisotropy; €| —£1 denote, respectively, the nematic’s
dielectric constants along the parallel and perpendicular directions to n.

Using the formulation of the nematodynamic equations developed by San Miguel and
Sagués [16], from the free energy functional obtained by substitution of Egs. (2) and (3)
into Eq. (1), we arrive at the following equations of motion for the components of the
director field:

” K . £aE0Q s

Oing(2,t) = qafnz(z,t) 4 2071 (nIEj + anIEZ) ) (6)
K. £4E0

Ouma(2,8) = —-0na(2,1) + T (neBoE: +n.E2), (7)

where 7, is the reorientational viscosity. Note that the electric field enters quadratically,
that is, as the intensity of the beam.

3. AMPLITUDE EQUATION

The aim of this section is to introduce noise into the above equations. For this purpose
we restrict our analysis to the final stages of the reorientation around the final stationary
state where n is almost oriented along the polarization of the optical field. In this state
the induced backflows are negligible since reorientation is almost complete. We specialize
the general Egs. (6)-(7) to this situation by linearizing them around this final orientation
and expressing them in terms of the angle a between E and n when o — 0 (see Fig. 1).
The corresponding dynamical equations then reduce to

K .

Oinizlz; ) = —afnr(z.t) — MEZ sin /3, (8)
T 27
K :

Bna(z,t) = —02n, (2, 1) + 250 B2 cos 8, (9)
il 2’)/1

with dy = d/dt. Note that while in Eqgs. (6)-(7) the field’s amplitude enters in a mul-
tiplicative way, with these approximations it is additive in Eqs. (8)-(9). This fact will
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be important for introducing parametric noise, as will be discussed below. Before doing
this, however, it is important to remark that although these equations are linear, they
are partial differential equations and to convert them into stochastic partial differential
equations by including noise in the parameters F or I ~ E?, is a difficult problem to
deal with. To proceed further it is more convenient to derive an amplitude equation for
the Fourier’s amplitude of the most unstable mode of n(z,t) with the inclusion of noise
terms. In this way one reduces the problem posed by a stochastic partial differential
equation for a vector variable to an ordinary stochastic differential equation for a scalar
variable [17]. The method is of general validity and can be applied to a variety of similar
problems.

This is conveniently carried out by introducing the following Fourier’s transform com-
patible with the imposed boundary conditions on n

fals 1) = i ng,.m(t) sin[(2m + 1)(rz/d)], (10)
m=0

where the index m identifies the discrete modes in the z-direction and q is the corre-
sponding wave vector. It should be pointed out that since for a nematic n? = n24n? = 1,
for every 2z and t, it is sufficient to describe the dynamics of one of the components of n
only. Moreover, at this point we assume that the energy of the incident beam is such that
its amplitude is slightly greater than E.. Therefore, only the dominant mode m = 0 is
excited and only its dynamics will be described. With these approximations the resulting
equation for the amplitude ng, (¢) is derived from Eqs. (8-10) and turns out to be the
following linear stochastic amplitude equation:

ding, (t) = —Ang, (t) + BE*, (11)

where d; = d/dt, A = (K/v1)(n/d)? and B = (g,60/471) sin 3. Note that the constant A
has the dimensions of inverse time and denotes a characteristic (relaxation) time of the
dominant mode.

Next we consider parametric noise which can be imposed on this equation in different
ways. For instance, we can assume that either the intensity I o E? or the amplitude E
itself are not constants in time but fluctuate. In the former case the noise is additive and
enters linearly in the amplitude equation, whereas for the latter one it is quadratic. Of
course, it is necessary to specify the statistics of the noise in each case and this will be
done below.

4. PARAMETRIC NOISE EFFECTS

4.1. Linear noise

We first consider the case where the intensity I = cggE?/2 (¢ is the speed of light
in vacuum) of the incident signal fluctuates with white, gaussian noise. It should be
stressed, however, that although this is perhaps the simplest model of noise one could
think of, and will formally cast Eq. (11) in a Langevin form, there is no physical basis to
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Justify this choice. Furthermore, as the above given definition of I shows, the noise in I
originates in £ and therefore it really should be nonlinear. However, let us consider this
possibility because in some way it is intuitive and easy to analyze, but we will show that
it leads to unphysical predictions. Thus we assume I(t) to be a stochastic process with
zero average, (I(t)) = 0, and correlation

(I(t) I(t) = Dd(t — t'), (12)

where D is the intensity of the noise. Since in the next section we will express the
birefringence in terms of the second moments of the amplitude ng.(t), from Egs. (11)
and (12) it is easy to show that

(nﬁr(t)) = ni((]) exp(—2At) +

D (e,dsinf3
8K cm

2
) (1 —exp(—24t)], (13)

which for the final stationary state, + — oo, reduces to

2
; D  (e,dsing
2 48t __ a
(g, )" = 8K'¥1( cm ) ’ (14)

Since white noise is always an idealization, a more realistic choice for the fluctuations
of I is a colored, gaussian noise. This has the advantage of introducing the correlation
time 7 of the noise as a second parameter, apart from the noise intensity D. Actually,
many experimental results are given in terms of the parameter D /7, which is not present
in the above given white noise description. Since we want to deal with a stationary state,
let us model the linear parametric noise in I as an Ornstein-Uhlenbeck process (O-U) [10]
with zero mean and time correlation function

(I 1)) = 2 expl~t — £]/7]. (15)

If as before we calculate the stationary second moment (nﬁr)St, after some tedious
but straightforward algebra from Eqgs. (11) and (15), we arrive at

2
. 1D (ezsinB\" 7 -
2 yab . > a 1
(ng )% = T ( = ) —[14+ A7r]™". (16)

4.2. Nonlinear noise

We now consider the amplitude equation (11) under the influence of quadratic parametric
noise in the field’s amplitude. As before, we assume that the amplitude E fluctuates with
gaussian statistics and mean value F

E=E +((t), (17)

where ((t) is a stationary Markov process. Then Doob’s theorem [18] assures that up to
changes in scale, (t) is the Ornstein-Uhlenbeck process of mean value zero and correlation
function like in (15), but with a different noise intensity D*

*

Y(t—1) = (C(1)¢(t) = —exp[-|t — | /7]. (18)

T
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We are then concerned with a stochastic amplitude equation in which the Ornstein-
Uhlenbeck noise enters nonlinearly, that is,

ding, (t) = —Ang, + [% sin B] [EZ +2EC(t) + CQ(t)] ; (19)

The problem posed by this equation is much more involved than in the previous cases due
to the nonlinearity of the noise. However, there is a systematic approach introduced by
San Miguel and Sancho [19] to obtain the probability density associated with Eq. (19) in
the limit of small intensity D* and small correlation time 7. More specifically, in Ref. [18]
is shown that to first order in D* and 7, being D* /7 finite, and neglecting transient times
of order exp(—t/7), the probability density associated with Eq. (19) satisfies the following
Fokker-Planck equation:

*

A, P(z,3) = —0; (1 -+ DT) P(z,s) + D* (4 + DT) O2P(z,s), (20)

where we have introduced the dimensionless variables z = ng (t)A/ BE® and s = At.

Although the details of the method can be found in Ref. [19], at this point it is worth
emphasizing some of its essential features. It is obviously based on the requirement
that D* < 1 when 7 < 1, since otherwise the fluctuating part ((t), whose order of
magnitude is (D*/ 7)!/2, would become very large. However, it does not require that the
fluctuations are small, as in equilibrium states. Actually, it is only necessary that they
do not become too large with respect to the mean value Ej; a situation compatible with
the stationary nature of the nonequilibrium stationary state we are considering. Another
important aspect of the method to be used is that the truncation performed respects the
boundary conditions of the problem. Therefore the stationary solutions obtained from
the truncated equation Eq. (20) remain valid.

Using the stochastic properties of {(t), from Eq. (20) we can derive the contribution
to (1ra,gm)'“"t that originates in the parametric noise. That is, keeping only the terms that
involve D* or 7, we find that

] 2
2 ik ggsin\ (d D'[ 1+3rA D*2+37A
_ LA TR Bl Py s L S Ll 21
() ( 2K )(w) At 2 A (21)

Note that in contrast to Eqgs. (14) and (16), this expression depends explicitly on the
intensity I and contains quadratic terms in D*/7.

5. RESULTS AND DISCUSSION

In the Appendix we show that a normal to the cell plates incident probe beam with a
wavelength Ap, traversing the liquid crystal in the final stationary state under consider-
ation, should have its extraordinary component experience an induced phase shift given
by

= f\j /(q dz {N()Ne [er - (”’f‘)SL (le - NS)?I_I/Q B NU} ‘ )
)

p
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FIGURE 2. Noise induced birefringence ¢ (arbitrary units) as a function of the beam’s intensity I
above its critical value I. = 155 w/cm?, for linear white noise in 5CB (8 = 7/2). (—) D = 2D,;
(---) D=15D¢ (---) D=D¢; (---) D =0.5D,.

where N, and N, are, respectively, the ordinary and maximum extraordinary refractive
indices of the nematic. The expressions for the second moments (n2)** to be used in
Eq. (22) are given by Egs. (14), (16) and (21) for the different noise models considered

previously. By defining
- (M)
Ne

where M is such that 0 < M < 1, the phase shift Eq. (22) may be rewritten in the more
convenient form

M(B) = (ng ), (23)

= 2];:‘)’"" (2K (M) — ]. (24)

Here K (M) is the first order elliptic integral defined by [20]
o ife .92 y—1/2
K(M)= du (1 — Msin®u) '~ (25)
0

with u = m2z/d. Thus, the noise induced birefringence, ¢ = ¢/2n, will be calculated by
substituting Eqgs. (14), (16) and (21) into Eq. (24) for the material parameters of 5CB,
namely, ¢, = 0.62, v; = 0.01 kg/ms, K = 7x 1072 N, N, = 1.54 and N = 1.73. On the
other hand, for the separation between the cell plates we take d = 2.5 x 1074 m and the
incident signal is assumed to be a He-Ne beam with A, = 632.8 x 107? m and § = /2.
which corresponds to an incident pump beam almost normal to the plates.
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FIGURE 3a. ¢ vs. I > I. for linear colored noise with fixed D 1.5D.. (—) 7 = 107 %;
(-1 =10"3%; (---) 7 = 10~ %4 (- - -) 7 =104, Recall that t. = A™! = 1 /K(d/7)? = 10s.
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For the linear white noise case the values of the noise intensity D, with dimensions
[D] = W? s/cm®*, are unrestricted since the noise is a free external parameter. On the
other hand, since thP critical field can be estimated to be E. = (n/d) (47K [e,)/? [1], then
1. = (50E2/2 It will be convenient to define D, as D. = I? and from Eq. (12) express
the values of D in terms of D.. Consequently, by c,hoosmg Dy = 2D, and D5 = .-DC,
from Eqs. (14), (23) and (24) we calculate ¢. This yields the plots in Fig. 2 of ¢ versus
the intonsity I above I.. The first feature to note is that consistently with the fact that
(ng )$t, as given by Eq. (14), does not depend on the intensity I of the incident beam 1
for this type of noise, ¢ is given by straight lines parallel to the I-axis. Clearly, this is
an unphysical result since, as mentioned in Sect. 1, it is experimentally well established
that the response of the nematic varies with the type and intensity of the laser beam.
Since for the other models we shall use the same units to express ¢, this figure can be
easily compared with the corresponding curves for the other types of noise. This shows
that the magnitude of ¢ is quite low for all the considered values of the only available
parameter D, as compared with its value for the other cases.

A similar result is obtained for the linear colored noise with (n )t given by Eq. (16).
However, in this case we have an additional free parameter, th(‘ u)uold,h(m time 7 of
the noise. Actually, we shall consider two situations. We first fix the value of D and
calculate ¢ for different values of 7 and then for a constant 7 we vary D. In this case both
parameters are free, except from the restrictions imposed by the approximation method
and by the fact that their values should be such that the corresponding value of M (f3) is
contained in 0 < M < 1. The results are shown, respectively, in Figs. 3a and 3b for the
same values of D and the same material and geometric parameters of Fig. 2. Notice that,
as for the linear white noise case, we get the same unphysical result that ¢ is independent
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FIGURE 3b. Same as Fig. 3a for fixed 7 = 1073¢.. (—) D = 2D,; (- - -) D = 1.5D,; (---) D = Dy;
(-+) D = 0.5D,.

of I. However, note that for the situation in Fig. 3b, the choice of 7 may produce a one
order of magnitude larger induced birefringence than for the case in Fig. 3a.

In contrast, for the nonlinear case ¢ depends explicitly on I, as expected from Eq. (21)
and as shown in Figs. 4. In Fig. 4a we first fix the value of D* and plot ¢ as a function of
I, for different values of 7. Then D* is varied for a fixed value of 7 yielding a ¢ that also
depends on I. However, the magnitude of the induced birefringence may be considerably
larger in the forrier case than for the latter one. Furthermore, note that the value of ¢ in
the case of Fig. 4a is not only much larger than for the two previous cases, but that it is
comparable and even larger than its value in the purely deterministic case [14]. Typical
experimental values of ¢ for this latter case are taken from Ref. 14 and are represented
by the points R and @ in Fig. 4b. The former corresponds to ¢ for I = 306 w /em?, while
the latter one implies that ¢ = 50 for I = 306 w/cm?. However, a word of caution must
be said in connection with the above results: the values of ¢ are limited to the maximum
value obtained from Eq. (22) when ¢ = 7/2 and ”31' In this case

(Ne — Ny)d
Ap '

Pmax =

(26)

where we have assumed a constant maximum reorientation of the nematic throughout
the cell. For the 5CB cored cell used above we find Pmax = 75.06. This result restricts
the validity of the results shown in Figs. 4. Indeed, they are only correct for small values
of the irradiance of the pumping laser or for small noise correlation times. Nontheless,
note that these allowed values are still comparable or even larger than the values of ¢ for
the deterministic case, points R and Q in Fig. 4b.
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FIGURE 4a. ¢ vs. I > I, for quadratic O-U noise with fixed D* = 5 x 1075 (I¢te). (—) 7 =
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FIGURE 4b. Same as Fig. 4a for fixed 7 = 107°t.. ()
5 x 10785 (Iete); (-+-) D* =5 x 1077 (Lete); (-+) D* =5
denote deterministic values of ¢ according to Ref. [14].

DF = 5 s 1078 [T4)y (=o<) D? =
x 10775 (I.t.). The points R and @

At this point it should be recalled once more that we have only considered the final
stationary state where hydrodynamic backflows have almost vanished. It would be of
interest to study the initial stages of the reorientation near the OFT transition point as
well. In this case hydrodynamic flows would be important and could affect in a significant
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way the optical properties [21]. Also, in these nonequilibrium transient states internal
fluctuations are known to grow and to be anomalously large, so that they are an essential
part of the dynamics. On the other hand, whether external fluctuations may also induce
important effects on the optical properties for these states remains to be assessed.

Although the consideration of general transient nonequilibrium states with coupled
internal or externally imposed hydrodynamic flows may have an important effect on
various optical properties of the nematic [9], it should be stressed that for these states
even the description of the deterministic orientational dynamics is intrinsically nonlinear.
Moreover, with the inclusion of fluctuations the analysis becomes much more involved [22]
and the simplicity of models such as the one discussed here is lost. Presumably, one will
have to restore to numerical methods in this case, although analytical approaches are
valid to some extent [22].

Another feature of the model that should be pointed out is that the dynamics of
the optical field is strictly speaking coupled to the director’s dynamics and the field’s
modes should change during reorientation. However, this generalization has been entirely
neglected in our discussion but it may be considered explicitly [23].

In summary, in spite of the restrictions on the model already mentioned, our ana-
lytical results show that the external noise induced birefringence may be a large effect.
Since a difference in refractive indices can be measured very accurately (1071%) for op-
tically nonlinear polar gases like COy [24], it is to be expected that this effect might be
measured also with high accuracy for liquid crystals, where the nonlinearity in the index
of refraction is much larger. However, to our knowledge this has not been measured so
far. In this sense our work suggests new experiments to be performed.
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APPENDIX

The purpose of this appendix is to derive Eq. (22) used in the main text. The phase
difference, A¢, between the transmitted wave when reorientation occurs and when it
propagates without reorientation,

A¢ = ¢re — ¢0, (27)
is proportional to the optical path difference
z=d
Ad = kg AN ds, (28)
z=0

where by = w/c is the wave number in vacuum and AN = N(0e) — N(6p) is the cor-
responding change in the refractive index. Since the nematic behaves as an uniaxial
crystal, the refractive index N, for the extraordinary ray, which is the case under consid-
eration, depends on the relative orientation, 6, between the direction of propagation of
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the probe’s beam and the optical axis of the liquid crystal. As is well known [25], N(#)
may be written as

N(8) = NeN[NZ cos 6 + NZsin® 6] '/*, (29)

where N, and N, denote, respectively, the ordinary and extraordinary refractive indices.

As we pointed out in Sect. 2, n(z,t) = [sinf(z,1), 0, cos §(z,t)], and therefore we can
express cos as n, = (1 —n2)Y/? and sin@ = n,. Then using Eq. (10) for the dominant
mode m = 0, we may rewrite N () in the form

N(8) = NeNo [N = n2 (N2 — NZ)sin’(nz/d) (30)

] -1/2

In this expression we have considered that the director has reached its final stationary
state. Furthermore, if we assume that the time needed to measure A¢ is large enough as
compared with the relaxation time f. of the dominant mode, the director will reach the
stationary state associated with the stochastic amplitude equation for the corresponding
noise. Therefore, it is reasonable to replace ngz in Eq. (30) by its average value in the
final stationary state (ngz)“, given, repectively, by Egs. (14), (16) and (21). This then
yields Eq. (22). However, it should be pointed out that this replacement is indeed an
approximation, since Eq. (29) is strictly valid only for the complete and deterministic
reorientation process. Nontheless, the above arguments make plausible the use of Eq. (29)
also in the stochastic case discussed here.

REFERENCES

1. 1.C. Khoo, in Nonlinear Optics of Liquid Crystals, Vol. 26 of Progress in Optics, edited by
E. Wolf, North Holland, Amsterdam, (1988).

2. L. Janossy, Optical Effects in Liquid Crystals, Kulwer, Dordrecht, (1991).

3. N.V. Tabiryan, A.V. Sukhov and B.Ya. Zel’dovich, Mol. Cryst. Lig. Cryst. 136, (1986) 1.
4. E. Braun, L.P. Faucheaux and A. Libchaber, Phys. Rev. A 48, (1993) 611.

5. 1.C. Khoo, R.R. Michael and P.Y. Yan, IEEE J. Quantum Electron. QE-23, (1987) 267.

6. H.J. Eichler and R. Macdonald, Phys. Rev. Lett. 67, (1991) 2666.

7. L.D. Landau and E.M. Lifshitz, Statistical Physics, Addison Wesley, Reading (1970).

8. J.D. Gunton, M. San Miguel and P.S. Shani, Phase Transitions Academic, London (1983)

Vol. 8.

9. A.T. Rosemberg, L.A. Orozco and J.A. Kimble, “Optical bistability: steady-state and tran-
sient behavior” in Proceedings of the Workshop on Fluctuations and Sensitivity in Nonequi-
librium Systemns, W. Horsthemke and D. Kondepudi (eds.) Springer, Berlin (1984); R.F.
Rodriguez, M. San Miguel and F. Sagués, Mol. Cryst. Lig. Cryst. 199, (1991) 393; R.F.
Rodriguez and P. Ortega, Mol. Cryst. Liq. Cryst. 222, (1992) 45.

10. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North Holland, Amster-
dam (1983).
- 11. P. De Kepper and W. Horsthemke, €. R. Acad. Sci. Paris Ser. €' 287, (1978) 251.

12. J.P. Gollub and J.F. Steinman, Phys. Rev. Lett. 45, (1980) 551.

13. S. Kai, T. Kai, M. Takata and K. Hirakawa, J. Phys. Soc. Jpn. 43, (1979) 1379; T. Kawakubo,
A. Yanagita and S. Kabashima, J. Phys. Soc. Jpn. 50, (1981) 1451.



14.

16.
17

18.
19.
20.
21,

22
23.

24,
25.

PARAMETRIC NOISE BIREFRINGENCE . .. 107

S5.D. Durbin, S.M. Arakelian and Y.R. Shen, Phys. Rev. Lett. 47, (1981) 1411; H. Hsiung,
L.P. Shi and Y.R. Shen, Phys. Rev. A 30, (1981) 1453.

. F.C. Frank, Faraday Soc. Disc. 25, (1958) 19; P.G. de Gennes, The Physics of Liguid Crystals,

2nd edition, Oxford, London (1993).

M. San Miguel and F. Sagués, Phys. Rev. A 36, (1987) 1883.

H. Haken, Light North Holland, Amsterdam (1985) Vol. II; M. Aguado, R.F. Rodriguez and
M. San Miguel, Phys. Rev. A 39, (1989) 5686.

J.L. Doob, Ann. Math. 43, (1942) 351.

M. San Miguel and J.M. Sancho, Z. Phys. B 43, (1981) 361.

M. Abramowitz, Handbook of Mathematical Functions, Dover, New York (1965).

R.F. Rodriguez, P. Ortega and R. Dfaz-Uribe, “Hydrodynamic effects in the optically induced
reorientation of nematic liquid crystals”, Physica A (1996) (to be published).

R.F. Rodriguez and A. Reyes, “Propagation of optical fields in a planar liquid crystal waveg-
uide”, Mol. Cryst. Lig. Cryst. (1996) (to be published).

J.A. Reyes and R.F. Rodriguez, J. Nonlin. Opt. Prop. Mater. 4, (1995) 943.

F. Baas, LN. Breunese, H.F.P. Knapp and J.J. Neenakker, Physica A 88, (1977) 1.

M.V. Klein, Optics Wiley, New York (1970) Chapter 11.





