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ABSTRACT. An approximate solution to the laminar flow of an elastico-viscous fluid past a vertical
infinite porous plate is presented under following conditions: 1) Constant suction velocity, 2) Free-
stream oscillating about a non-zero constant mean, 3) Presence of free-convection currents. The
transient velocity and temperature are shown on graphs. The numerical values of the mean
skin-friction, the mean Nusselt number, the amplitude and the phase of the skin-friction and the
amplitude and the phase of the first and second harmonic of the Nusselt number are listed in
Tables. The effects of w (frequency), G (the Grashof number), E (the Eckert number), P (the
Prandt] number), & (the elastic parameter) and S (suction parameter) are discussed.

RESUMEN. Se presenta una solucién aproximada al flujo de un fluido viscoeldstico a través de
una placa porosa vertical e infinita, con las siguientes condiciones: 1) velocidad de succion con-
stante, 2) corriente libre oscilante e infinita alrededor de una media constante distinta de cero,
3) presencia de corrientes de conveccién libre. Se presentan graficas de la velocidad transitoria y
la temperatura. Se presentan en tablas los valores numéricos de la friccion superficial media, el
ntimero de Nusselt medio, y las amplitudes y fases de la friccién superficial media y del primero y
segundo armoénicos del miimero de Nusselt. Se discuten los efectos de w (frecuencia), G (nimero de
Grashof), E (mimero de Eckert), P (mimero de Prandtl), & (pardmetro elastico) y S (pardmetro
de succion).

PACS: 47.50.+d; 83.50.5p

1. INTRODUCTION

Oscillatory flows past semi-infinite bodies were first studied by Lighthill [1], Lin [2] on
the assumption of small and finite amplitude, respectively. Stuart [3] considered the
oscillatory flow past an infinite horizontal porous plate with constant suction. But the
suction effect was not considered explicitly. Hence Soundalgekar [4] reconsidered Stuart’s
problem by considering the effects of suction parameter explicitly. Lighthill’s theoretical
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predictions were confirmed through experiments by Hill and Stenning [5]. The effects
of free-stream oscillations and free-convection currents on the flow of an incompressible
viscous fluid past an infinite vertical porous plate were studied by Soundalgekar [6, 7] and
by Soundalgekar, Vighnesan and Murty [8]. In Refs. [6,7] the effect of suction parameter
was not considered, while in Ref. [8], the effect of the suction parameter was considered
in an explicit manner.

In modern technology many new fluids, not obeying Newtonian laws, are being studied
by different researchers. One such fluid whose constitutive equations were formulated by
Walters” [9] are known as Walters’ fluid A’ and B’. In case of Walters’ fluid B, the
oscillatory flows past an infinite horizontal porous-plate were studied by Kaloni [10],
Soundalgekar and Puri [11] without taking the suction parameter in an explicit way. So
Soundalgekar and Bhat [12] reconsidered this problem by taking into account the suction
parameter.

But in many industrial applications the plate is not always in an isothermal condition.
The plate is heated from an external source of heat which is supplied at constant or
variable rate. Such a situation is known as constant heat flux or variable heat flux case.
We now consider here the oscillatory flow of an elastico-viscous fuid past an infinite
vertical porous plate with constant heat flux. In Sect. 2 the mathematical analysis 1s
presented, and in Sect. 3 the conclusions are set out.

2. MATHEMATICAL ANALYSIS

Consider the unsteady flow of an elastico-viscous fluid past an infinite vertical porous
plate with z'-axis taken along the plate in the vertically upward direction and the y'-axis
is taken normal to it. The constitutive equations characterizing the elastico-viscous liquid
(Walters’ liquid B') are

Pik = —DPYik + Pigs (1)
: dri oot
PR =2 [ pt-t) o ST gy at, (2)

where p; is the stress-tensor, p an arbitrary isotropic pressure, g;; the metric tensor of

a fixed coordinate system z', ' the position at time ¢’ of the element which is instanta-
. : 1 :

neously at the point =’ at time t, egk) the rate of strain tensor and

Pt —t') = Lm N"(VT) exp [—(t — t') /7] dr;

N(7) being the distribution function of relaxation time 7. Walters (9] has shown that
in the case of liquids with short memories (i.e., short relaxation times) the equation of
state can be written in a simplified form
p"”" = QT)(]EH)”" - QHU-iszuﬁk_ (3)
ot
where

i
70 :/ N(T)dr
0
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is the limiting viscosity at small rates of shear
e o]
Ko = / TN(7)dr
0

and §/dt denotes the convected differentiation of a tensor quantity, which for any con-
travariant tensor b* is given by

vk LoV

m =g a_rﬂm’

obk bk ok

5 = ot TV agm oz (4)

where v is the velocity vector.

Because of the flow is past an infinite vertical plate in the upward direction, the
physical variables of the fully developed flow are functions of ' and t’ only and are
independent of z' and hence the two-dimensional unsteady flow of an elastico-viscous
fluid with constant physical properties can be shown to be governed by the following
equations:

av'
oy 0
ou , ou  op 0%
Pop TP 5 - or —.ng-l-??ogy,—g

o B! " P G_U’BBV' OV R (6)

ayﬂat ayﬂ ayr ay/2 ayl ayrQ
v, v oy . &V
=l =o—a— 4 Moz
at! ay' oy’ oy'?
AR N\ A A T
— 4K Vv 5

()

2ot N '? dy' Ay (7)
Here ', V' are the velocity components in the z' and y' directions, respectively, ¢' is the
time, 7o is the limiting viscosity at small rates of shear, and ¢ is the elastic constant
of the Walters’ liquid B’ assumed to be very small (< 1). Also p' is the density and g,
is the acceleration due to gravity. As the suction-velocity at the plate is assumed to be
constant, Eqgs. (6) and (7) reduce to following:

ou' ou' op' 0% P’ B!
(o R . R .. /
ap'

Then the energy equation in view of constant suction is given by

o1’ o1 Y ou'\? 9%/ %'\ ou'
! ey Vf — K“__ _) e B, ! i
pcp ( 57 + 8y’) 9y + 10 (By’ Ko ay’at +V oy | Oy (10)
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Here ¢, is the specific heat at constant pressure, K the thermal conductivity of the fluid,
assumed constant, 7" the temperature of the fluid near the plate, and the last two terms
on the right-hand side represent heat due to viscous dissipation.

If U'(t') is the free-stream velocity and p' is the density of the fluid far away from the
plate, then from Eq. (8), we have in the free-stream,

0" 7_8_1)’__ , (11)

or ~ ox Pl
Eliminating —dp’/0z' between (8) and (11), we have

((’)u’ N V,@u') y ou’ i lat N 41 0*u' B! i V,6‘3u’
— — | = . - — — Ky | —— ‘

P

But from the equation of state, we have
9z(Poo = #') = g2Bp'(T" = Ts), (13)

where /3 is the coefficient of volume expansion.
Then from (12) and (13), we get

' o\ oU !
o (—u + V’—u) =p' = + B (T - T)) + ,,U_y_"’f,

ot ay' ot! dy'?
By’ ,3311’
- Ko (By'Q(')t’ +V 55 ) (14)
The boundary conditions of the problem are
dTI ql
I s DR | L
it =100, T I at y =0;
v =U'(t) = Uy (1 +ee¥t), T ST as y oo (15)

The condition on temperature at 4 = 0 indicates the constant supply of heat at the plate
where ¢’ is the quantity of heat supplied per unit area. Also, the velocity in the free-
stream is assumed to be periodic in nature, oscillating about a constant mean velocity
Up with frequency w' and ¢ is a constant small quantity (Fig. 1).

From Eq. (5), for constant suction,

V= -Vg, (16)

where Vj is the constant suction velocity and the negative sign in (16) indicates that it
is directed towards the plate.
On introducing following non-dimensional quantities:

v y' Uy . t'U[‘f 2% !
T PR YT e
_T'-Ty _ vgBq _ % (17)
vg' [KUy’ KUE* - K
Kz o UZ2
F= B H:HU U? S:V(]I/U(]s

ve,’ 12
p P
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FIGURE 1. Transient velocity profiles for wt = 7/2.

in Egs. (14), (10) and (15), we have

1 0u Ju 10U 1 Bu Pu
—— S8 —=-—+4+ G0 K| -5 — S 18
1ot Coy Ao “(4ay2at ayB)’ (18}
P o a6 0% du\? 1 0%u  _0%u) du
—— —SP—=—+PE|\— ) —KPE| -7 -8=— | =— 19
4 ot dy  Oy? T (y) " (4 oty ay? | dy’ W
with the following boundary conditions:
df
u =0, d—y=fl, at. y=0
u=14+ee =U(t), 6=0, as y— oo. (20)

Here P, G, E are the Prandtl, Grashof and Eckert numbers, respectively, whose physical
meanings are well-discussed in standard text-books like Schlischting [13] and Gebhart [14];
k is an elastic-parameter and S is the suction parameter.

Equations (18) and (19) are coupled non-linear equations and hence their exact so-
lutions are not possible. So we derive approximate solutions. We now assume in the
neighbourhood of the plate

E ¢ ; ’
u =1y + 5 ((,W’”} +e “‘”‘u.) . (21

2
£ } —wwt s € 2w — 21w )\
0 =06+ 5 (('“"'(). + € i“"(h) e 5 ((_'z"“"ﬁz +e 2 !()z) . [22)
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We substitute (21) and (22) in Eqgs. (18) to (20), equate harmonic and non-harmonic
terms to zero, neglect the coefficient of £? in (18) and those of £3 in (19) and we have the
following:

kSugy' + ug + Suy = —Goy, (23)
w

nSu'i" + (1 - E:—ﬂ) u"l" + Su"l == ?i‘)ul = - Gby, (24)

2
6y + PS0y = —PE [(1;6)2 + %u’lﬁﬂ]

2
— kPES [uf)ug + % (ufuf + u'lﬂ'l’)} . (25)
I ,  whP Lol W o, o o

0, + PS@, — TBI = —2PFuyu; + kPE 7 tot1 — S (uguy + ujug)| ,

(26)
jwP 1 ' S
85+PS%—-%%£2=—aPTNuU2+nPE[%imUQ—§~(ﬁuﬂ], (27)
where primes denote derivatives with respect to Y.
The corresponding boundary conditions are
u=0, u1=0, h=-1, 6]=60,=0, at y=0;

u =1 w=1, =0, 6, =60=0, as y— oo. (28)

Here and henceforth, primes denote the derivative with respect to y.
Equations (23) and (24) are of third order with two boundary conditions which is
mathematically ill-posed problem. To overcome this difficulty, we now expand, wug, u;,
-, ete. in powers of & as w for such fluids is always very small (< 1). Hence we now
assume,

Up = wo1 + Kug2, U = uj + Kujo,

0o = Oo1 + K002, 01 = 011 + Kb1a, Oy = by + Kb (29)

Substituting (29) in Egs. (23 to (28), equating the coefficients of different powers of &,
neglecting those of k2, we have the following set of equations:

ug + Sug, = —Géyy, (30)
gy + Sufy = —Gloy — Sullt, (31)
w iw
uf) + Suy, — il e GO, (32)

tw ]
uly + Suly — Z W= ~Gb612 — Suf; + szu']'I, (33)
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85, + P50,

( 62
P ()" + S

2
&
02 + PSSOy, = —PE [2“61“62 ;o 0} (u)yuyy + ﬁ’n”’m)}

2
€
= PES [u{nugl + — s (@} ul) +U"11Uf1’1)} ,

iwP

+ PSBII - ‘—611 = 72PEU.01U11,
PSe iwpg w I T
o+ PS8y = ———01p — PE 1 —ufugy — S (upyuyy +uyugy)
— 2PE (ug uy + ugauyy) ,
1wl .
b1 + P86y, — —'—921 = —‘PE (“11) )
P 5
04, + PS6}, — %922 — —PEW\u\y + PE [ (= Eu’“u'{l] ,
and the boundary conditions are
upp =0, w2=0, u =0, up=0, un=0, w32=0,
a.ty:(] 661 = —1’ 962=0, q‘i] :0, Q’EQ:O, 9‘;2:0, 912=0,
’21 =0, 522 =0, 9:’31 =0, ’22 =0,
upp =1, w2 =0, un =1, up=0, an=1, =0,
at y — oo o1 =0, B2 =0, 611 =0, 612=0, 6, =0, 612=0

(34)

(40)

(41)

Equations (30) to (39) are still coupled and non-linear differential equations whose exact

solutions are not possible. Hence we again expand ugy, ug2; ---,

in powers of E. the Eckert

number, as the Eckert number for incompressible fluids is always small. Hence we assume

ug1 = ug11 + Eugie,
w1 = w11 + Fupge,
Bor = o1 + Eboi2,
61 = 611 + Efo,
021 = 0211 + Eb0y2.

U2 = ug21 + Euge,
upe = uy2] + Euyos,
o2 = Oo21 + Ebo2z,
the = 0121 + Eb19,
O = Oooy + Eb29s,

(42)
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and substitute (42) in Egs. (30) to (41),
neglect those of E? and we get

w1y + Sug)

ugiz + Sugyy

g1 + Supg

U020 + Sty
w

" !
uyy + Suyyy — ~, Hadi

w
n !
T.L112 + SUHQ = I’Ull‘z

w
" )
uyg; + Sujy — 7 2

w
n !
Uy + SUjge — Zulzz

gl] +PS€611 - 0.,

Oo12 + PSOy 1, = —P {(Ufm)z

O21 + PSSOy, =0,

Bo22 + PS8y = —P

2
e .
= PS |ugy ugy, + F3 () ufyy +U1111Ull’11)] ;
wP
011 + PSE,, — T P =1,
wwhP
0’[’“5 + PS()’ILQ = T()]]z = —QPUBH?L'IH,
0" + PSY iwpe s I w , / S (o 1 / "
122 1227 g V122 = zumuou - (”(m — Uy + Uy gy )

115

equate the coeflicients of different powers of F,

= —Ghoyy,

= —G0p2,

= -Gl — Sug;,,

= —Gbyy — Sug),,
iw

= '_'4_ - Gellla

= —Goy2,
W
. " "
= —Gbo1 — Sui), + 7 Y
w
o " "
= —Gbi2 — Suij, + 7 Y22y

2
E” .y
‘*‘5“111“111 )

2

£
! ! ! o — I !
2ugyugy + 0} (u111%yg; + ulpuly)

e ! ! !
= 2P (ugyujo) + ulyy),

. wP
0;’“ - PKS().QH — T().LH =i}
wwhP

Gy + P86Y. —

1 2
‘(’]'Izu = _EP (”111) ,

032{ =+ PS(){ZZI — %j—.()zz] =),

|

(43)
(44)
(45)
(46)

(47)
(48)
(49)
(50)

(51)

(59)

(60)
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iwP W 5 S
'2’22 + P59'222 T 0220 = P 4 (""111) = 5“’111'“’1'11 = “’111“’121 ) (61)

with following boundary conditions:

uoiy = 0, w1z =0, Oy =1, O115=0, 621 =0, boz2 =0, )
ugyr =0, ugzz =0, 0111 =0, 015=0, 6121 =0, 0122 =0,
up =0, unz=0, 6211 =0, 0212 =0, b2 =0, 0222 =0,

K. = s aty=0
up1 =0, w2 =0, 6111=0, 0n2=0, 6121 =0, bi120=0, !
i1, =0, u12=0, 0211 =0, O2=0, b1 =0, 6Oz =0,
ﬂlQl = 01 ﬁ'l?? - 07 /

(62)
w1 =1, w12 =0, 6y, =0, 6115 =0, Opo21 =0, 622 =0, )
w21 = 0, ug22 =0, 6111 =0, 015=0, 6121 =0, 0122=0,
wip =1, un2=0, 0211 =0, 032=0, 0 =0, =0 .~
ugr =0, wize =0, 6111 =0, 6112 =0, 0121 =0, 0122 =0, s

1 =1, =0, 0211 =0, O2=0, 021 =0, 22 =0,

w121 = 0, w122 = 0; J

These are coupled linear equations and their closed form solutions are derived. These
are straightforward and hence to save space, these expressions are not mentioned.

Substituting for ug11, uei2, ... , etc. in Eq. (29), we get the expression for ug and
0, which represent the mean velocity and the mean temperature. The effect of different
parameters on the mean velocity and temperature being same as that on the transient
velocity and temperature, we have discussed the same in case of the transient velocity
and temperature.

The skin-friction is given by

ou' 9! 0*u'!
P . ' :
pryr = 7]0-6? — Kg ((’)U’aﬂ -+ g ay’-z ) (63)

which in virtue of (17), reduce to

- p;:’y’ — du
Pov =008 ~ dy

1 0%u 0*u
- 40toy Oy
Substituting for u in terms of ugy, uge, we can show that the mean skin-friction is given
by
I o Pl " .
Pry,, = tgy|,—o + # (g2 + Sug1) g » (65)
where primes now denote derivative with respect to y. We have calculated the numerical
values of Py, and these are listed in Table L
We observe from this table that due to the presence of elastic-property in the fluid.
there is a rise in_the mean skin-friction and it increases with increasing the value of the
elastic-parameter r. Greater viscous dissipative heat or an increase in G, the Grashof
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TABLE 1. Values of P, (Nu)pm, € = 0.02.

E s e K w Prylm (Nt)m
50 001 020 040  0.00 50  0.60389 0.98846
50 001 020 040  0.05 50 0.60393 0.98834
50 0.0l 020 040 005 750  0.60393 0.98832
50 001 020 040  0.10 50  0.60397 0.98822
50 001 020 060  0.05 50 0.89631 0.98264

50 001 040 040 005 50 0.60220 1.9758
50 002 020 040 005 50 0.60786 0.97695

100 001 020 040  0.05 50 0.40432 1.9744

number, leads to an increase in the value of the mean skin-friction. But the mean skin-
friction decreases with increasing the Prandtl number P or the suction parameter S.

The rate of heat transfer expressed in terms of the Nusselt number is given by

B 1 du
9(0) dy y=0
1 du
= — as — = —]. 66)
0(0) 1 (

Substituting for 6 in terms of #y we can show that the mean Nusselt number is given by

1
Ny = ——.
Uy, 90(0)

The numerical values of Nu,, calculated from (67) are listed in Table I. We conclude from
this table that due to the presence of elastic property in the fluid, there is a decrease in the
mean Nusselt number. Nu,, is also found to decrease due to increasing the frequency or
the Grashof number G, or due to greater viscous dissipative heat. But due to an increase
in S or P, there is an increase in the mean Nusselt number.

(67)

2.1. Unsteady flow

On substituting for u,;;, 6, etc. in the expression for ) and 0, we can get the expression
for the unsteady components. Then the expressions for the velocity and temperature are
given by Egs. (21) and (22) which can be written in terms of the oscillating parts as

u = ug+ % [(Mr + 1 M;) plwt + (M, — iM;) ekiwt} ’ (68)
i % [(91,- +161;) € + (61, — i6);) fﬁM!J

+ = [(Bar +i820) 2! + (8, — i) g ], (69)

B3| M
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FIGURE 2. Transient temeperature profiles for wt = /2.

TABLE I1. Values of Py, (Nu)m, € = 0.02.

P E S G K w | B| tan o
5.0 0.01 0.20 0.40 0.00 5 1.1908 0.8780
50 0.01 0.20 0.40 0.05 5 1.1900 0.8779
5.0 0.01 0.20 0.40 0.05 75 1.3982 0.9678
5.0 0.01 0.20 0.40 0.10 5 1.1891 0.8777
5.0 0.01 0.20 0.60 0.05 5 1.1900 0.8761
5.0 0.01 0.40 0.40 0.05 5 1.2677 0.7687
5.0 0.02 0.20 0.40 0.05 5 1.1889 0.8747
10.0 0.01 0.20 0.40 0.05 5 1.1888 0.8778

By putting wt = 7/2, we can derive the expressions for transient velocity and temper-
ature profiles. The numerical values of u and 6 are calculated and these are shown in
Figs. 1 and 2, respectively. We observe from Fig. 1 that due to the presence of elastic-
property in the fluid, the transient velocity is found to increase and it also increases
with increasing the frequency w. An increase in s, the elastic parameter, leads to more
increase in the transient velocity. The effect of suction-parameter S is observed near the
plate only and the transient velocity is found to decrease with increasing suction velocity
which is physically possible because more and more fluid from the fluid-region near the
plate is sucked towards the plate and hence the said effect. However, little away from the
plate, suction velocity parameter helps to increase the transient velocity. The effects of



EFFECTS OF SUCTION AND FREE CONVECTION CURRENT ON ... 119

TaBLE II1. Values of |B; |, tanay, |B;|, tan as.

P E S G K 2% | By tan | Bs| tan s
5.0 001 020 040 0.00 5.0 6.1101 x107% —0.70982 1.5940 x10~3 —0.056898
50 001 020 040 005 50 6.0670x107% —0.82173 1.5834 x10~3 —(.12843
5.0 0.01 020 040 0.05 750 24513x107% —0.22793 2.00220 x10~3 —1.0321
5.0 001 020 040 0.10 5.0 6.0544x107% —0.94861 1.5808 x10~3 —0.20185
5.0 001 020 0.60 0.05 50 7.8649%10°% —0.79400 1.5652 x10~3 —0.12843
5.0 0.01 040 040 0.05 5.0 22085 x1072 —0.75660 6.6695 x10~3 —0.18200
5.0 0.02 020 040 0.05 5.0 1.1856x10"2 —0.82173 3.0942 x10~3 —0.12843
100 0.01 0.20 0.40 005 50 1.7518x10"2 —0.01364 7.1275x10~3 —0.12577

# and w on the transient temperature are the same as in case of transient velocity, but
the transient temperature is found to fall, causing cooling of elastico-viscous fluid.

We now study the effects of these parameters on the amplitude and phase of the
skin-friction and the rate of heat transfer. It is given by

d
Py= U 4 Bloos(wsta), (70)
dy y=0
1
Nu = 800) + | Bi| cos(wt + o) + | Ba| cos(2wt + a), (71)
0
where
du Bi
B =B,+iB; = — ; tana = —, T2
dy y=0 Br ( )
. 91(0)‘ ; 92(0)‘
B:B,— Bi=—, :Br S royroik
1 ir +1By 82(0) By = Boy + iBy; 62(0)
tana; = Bh‘/B]r, tanas = Bg,‘/BQ,-. (73)

The expressions for |B|, |B,|, and |B;| are very lengthy and hence to save space these
are not mentioned here. The numerical values of |B|, tan « are listed in Table II. We
observe from this Table II that an increase w or § leads to an increase in the values of
the amplitude |B|. Amplitude |B| is found to decrease owing to an increase in G, F, P.
Also we observe that there is always a phase lead.

In Table ITI, the numerical values of |By],|Ba2|, tan a; tan ey are entered. We observe
from this Table that the amplitude of the first and second harmonic decreases due to the
presence of elastic property in the fluid. An increase in w or & leads to a decrease in both
the amplitudes. But an increase in S, G or E leads to an increase in the values of both
the amplitudes. We also observe that the values of tan o, and tan ay being negative, we
conclude that there is always a phase-lag.
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3.

CONCLUSIONS

1. The mean skin-friction increases with increasing G or E but decreases due to in-

creasing I or S.

2. Nu,, decreases due to increasing w or G or E and increases owing to increasing S

or P.

3. Amplitude |B|, tends to increase with an increase in w or S but it is found to
decrease owing to an increase in G, E, P. Also we observe that there is always a

phase-lead.

4. Amplitudes |By|, | Bz| increase owing to increasing S, G or E and decrease due to

the presence of the elastic-property in the fluid.

[s5a]

rate of heat transfer.
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