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ABSTRACT. We find exact eigenstates for the infinite-range hopping approximation to binary
alloy disorder. We show how the determinants can be rearranged to get the exact solution. The
cigenstates are well defined and not smeared as in CPA. To get the thermodynamic limit we find
it necessary to scale the hopping term ¢ by dividing by z (the number of neighbors) and not by
/2 as adopted for the infinite dimension model by other authors.

RESUMEN. Encontramos autoestados exactos para la aproximacién de rango infinito de la aleacién
binaria. Mostramos también cémo hay que reorganizar los determinantes para obtener la solucién.
Los autoestados estan definidos por deltas en contraste con la CPA que da bandas. Para obtener
el limite termodindmico vemos que el escaleo del término de salto t debe ser z (el nimero de
vecinos) y no su raiz cuadrada como sucede en la aproximacion de dimensién infinita de otros
autores.

PACS: 61.43.-j

1. INTRODUCTION

It is of current interest in solid state physics to study the tight-binding model which in the
most difficult limits has two ingredients: correlation interaction and disorder. The first
of these leads to states with different occupation number, whereas the second involves
states that are no longer translationally invariant. Here we will present a solution with the
disorder ingredient only, leaving the correlation interaction for further studies. Recently
there has been increased interest in the so-called infinite dimension of the hopping term
of the tight-binding part. It was first introduced by us [1] with the following scaling:
t' = t/z, where t is the tight-binding hopping term and z is the number of nearest
connected neighbors. It was called the infinite-range hopping model. The scaling is
necessary to have the energy as a finite quantity. After that Volhardt et al., [2] have
published a series of papers where, using the same idea they scale: ¢ = t/\/z arguing
that it is essential to obtain a proper density of states.

The completely connected t-model has its origin in the Sherrington-Kirkpatrick model
for a classical spin-glass [3] where much work has been achieved. Our scaling of ¢ [1] is
the same as appears in the spin model [3]. The picture we have in mind is that of a
big cluster with all the sites connected by a hopping ¢t of equal strength. This somewhat
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FI1GURE 1. The matrix elements for the infinite-range hopping approximation. The example is
for six sites. The rows and columns are labeled by the position sites | i . b) The matrix elements
for the infinite dimension approximation (2-d example for 4 sites). The rows and columns are
labelled as before.

unphysical feature can be relaxed in further studies taking the ¢ parameter from some
random distribution. Volhard’s et al. (2] scaling is different but the picture of the model is
also different as can be seen writing down the matrix elements. This latter model is called
of infinite dimension, having connections only to nearest neighbors in each dimension but
with an infinite number of them. Our matrix is complete with all the off-diagonal sites
taking the t value. Volhard’s et al., matrix is of “fractal” design as has been studied by us
previously [4]. It has zeroes in some of the off-diagonal terms. We give a picture of both
matrices in Figs. la and 1b, respectively. We think it is the first time that such a clear
difference between the infinite dimension and infinite range approximation is stated.

Volhard’s et al., model has been adopted for fermions where promising studies give a
new and “local” picture of the Hubbard and other models of strong correlation.

Our original attempt with the infinite-hopping model was applied to a Hartree-Fock
term of a negative U Hubbard model with disorder incorporated which led to a very in-
teresting phase diagram for the localized superconductivity phenomenon [1]. We are still
exploring the connection of these results with the phenomenology of high-T;. samples [5].

We will discuss in this report a completely new and intuitive solution of the infinite-
range Hamiltonian with binary-alloy disorder.

2. THE HAMILTONIAN

The Hamiltonian reads
H=—t Z ('E('J‘ + Z cﬁczc:i, (1)
%) 1

where t is the hopping connection with all the sites and e; which is €] + t includes the
diagonal energies with the added diagonal hopping term.
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The €] are random energies. In particular we think here of the binary alloy case so

€, = €4, with ny terms,

(2)

€ =€, with ng terms,

where ng+npg = N. There is a certain number of € 4 energies and e g energies completing
the total number of degrees of freedom N.

We choose a certain state in position representation formed by the creation operator
for an electron having the diagonal energy e5. We take it as an origin for the atoms of
type A, in number n4 and represent it by |4y - € ny4 (where ny are the atoms of type
A). We then propose the following [6] “traslational states”

[[Ag>= —[ A=~ (3)
[ # 0,1 € na, and analogously for the B cluster
[1Bo> —| By =~ (4)

L#0,]l €ng.

We call them “traslational states” as they are the difference between two electrons in
different position sites.

These (N —2) “traslational states” diagonalize the Hamiltonian

H|Aj = = 4lldog= —|AL>>,  1#0, I €ny, (5)
H|Bj» = ép||By» —|By =, 1#£0, leng. (6)

Explicit operator procedure shows:

EZ(,‘ICJ-CHU>- = ﬁthI [% - (,'}Cj] |0~= —thIfU», (7)
i i i

Zei(:zcic;rl()%

In order to find the rest of the states we again postulate “cluster states” or “reservoir
states.”

We call them by these names as they are states that gather all the electrons of type
A in one of the states and all those of type B in the other state and they in some sense
resemble the Fermi sea of electrons of each type.

|4 =3"c] =,

nA

[B==3"|c ».

np

I

ZEQC;{ [51'; - CIC:‘] |0>= efc}i0>— ; (8)
13

(9)

We look for the linear combinations which are eigenstates. We apply H on the states
H|A= = (eq + £)| A= —tn4|A> —tng|B -, (10)
H|B> = (ep +t)|B> —tnp|B> —tng|As> . (11)
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The explicit eigenstates in a 2 X 2 space are:

(w—¢€}) |A= +tp|B> =0, (12)
(w—¢€g) |B>= +talA= =0, (13)
where the parameters read
Gi =eqs+t(l—mna), (14)
E?;»:EB%‘f(l—'H.H), (15)
L4 =4, (16)
g =ing. (17)
We build the determinantal equation
(w = Ef,") (u) - E’;}) —tatg = 0. (18)
Then,
E’f’l + 6’;3 1 W "2
w = T+§ (fa*fﬁ) +4t_.-.1t3. (19)

We have therefore solved the infinite-range hopping binary alloy problem. We find:

1. “Traslational states” in number N —2 which are localized (without dispersion in the
hopping ¢) which read ||Ag = —|A; =~ with the eigenvalue €4 and [[Bg - —| B, >
with the eigenvalue €5. .

‘ “ st el N _ 1 ; - i) : )

2. The “cluster states” which read: [A>= 3", |¢ »=and [B>==3,, |e,, = with the
dispersion relation given above.

Now we want to justify our procedure by the precise determinantal rules for the
Hamiltonian in the matrix form.

3. THE DETERMINANTAL STUDY

Due to the current interest in matrix manipulations we want to rederive the previous
results through explicit and well known mathematical rules for the determinants. We
hope not to be too repetitive with this but in our opinion it is interesting to see step by
step how the matrix is being diagonalized.

In all that follows in this paragraph we are thinking of the eigenvalue matrix w — H
where w has been omitted for clearer visualizations of the matrix parameters.



THE INFINITE-RANGE HOPPING APPROXIMATION ...

125

We choose a finite sample with ny = 4 and ng = 5. The matrix elements read

The labels of the rows and columns are

€A
—t
=i
=1
—=1,

< = =f o —h -
by =1 =g —f =f -

-t -t -t —t —t -t

—t i
=1 =
—t =t
—t —1
= =¥
—t =t
—f —=f
€RB i
—t e€pg

04 o | Ba, 0> ...|[4p>.

(20)

By using the rule that the determinant of the matrix does not change if we sum or
substract rows or columns, we first formn

€a —t—eq —t—eq —t—ey -t 0 0 0 0

—t eq+t 0 0 —t 0 0 0 0

—t 0 €4+t 0 —t 0 0 0 0

—1 0 0 €4+t —t 0 0 0 0

— 0 0 0 e —t—€g —t—ep —t—eg —t—e€p

—t 0 0 0 —t ep+t 0 0 0 (21)

—t 0 0 0 —t 0 eg+t 0 0

—t 0 0 0 —t 0 0 eg+ T 0

—t 0 0 0 —1 0 0 0 eg—+ 1,
where the row labels of the matrix are:|0 4 >, [ =0 < s 5 |34 ~0a, |0p =, |15 — 04>

... |45 —0p . We have substracted the |04 > column from all the A states and the 0p =
column from the B states.

Next we add all the A rows with the first A row and all the B rows to the first B row

€4 — 3t
—F
=
=i
-5t
-4
4
-
—

€4+t
0

0 0 —4t

0 0 —t
€a+1 0 —t

0 €4+t ~t

0 0 €EB — 4t

0 0 =

0 0 —t

0 0 =

0 0 —1

The column labels are

L’:;;)—.

0
0

0

0

0
eg+1t

0

0

0

0
€p +1
0
0

0
0
0
0
0
0
0
eg+t
0

€B

0
0
0
0
0
0 (22)
0
0
+

1

Oax H¥nd = la=...184%, [0 +| T, nd >, |1gs=
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Rearranging we get

€4 — 3t —4t 0 0 0 0 0 0 0
—ot eg — 4t 0 0 0 0 0 0 0
—t 0 €a+1i 0 0 0 0 0 0
—t 0 0 Ea+1 0 0 0 0 0
—t 0 0 0 eq +i 0 0 0 0
= 0 0 0 0 e+t 0 0 0 (23)
—i 0 0 0 0 0 ep +1 0 0
—t 0 0 0 0 0 0 eg+1 0
—t 0 0 0 0 0 0 0 ép +1.

The row labels are |04, 0>, [14—0g> ...|34 — 04>, |1 —0p> ... |45 — 05>~
The column labels are |04 + Einf = 0B+ > ; nf>—, IR | PR | SR
Now we expand the determinant along the first row

(4 — 3t)(ep — 48)(€4)" " (€)™ — (=51)(—4t) ()™ (€)™ 7! = 0. (24)

Throughout this determinantal presentation we kept in mind of the eigenvalue equa-
tion, w was not written for graphical simplicity of the presentation. Therefore the diag-
onal elements in all th section should read w — e. Putting it now explicitely we have to
solve

[w— (€4 — 2t)][w — (e — 3t)] — (=5¢)(—4t) =0 . (25)
Generalizing
{w —[ea+ (1 - na)t|)Hw — [eg + (1 — TLB)t]} - thAnB e=s ), (26)

we obtain the same result as by the intuitive guess described at the beginning.

We think that this example shows clearly the way of manipulating the matrix in
tight-binding models.

In particular for one impurity with the hopping term in the “infinite hopping” ap-
proximation we get

(w—€ea){w—[es + (1 —npg)t]} — t*ng = 0. (27)

4. SCALING

In order to get results in the thermodynamic limit we have to scale the hopping term ¢
with t/N, where N = n4 +np is the total number of elements in the alloy so as to get an
analytic dependence for the concentration. For example the equation for the “reservoir
states” will read

{w - [6_4 + (1/N — c,‘l)t']}{w — [EH + (1/N — (‘H)t’]} — (t’)zc,qc” =} (28)

where ' is the bare hopping parameter and ¢4 p is the respective concentration.
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FIGURE 2. a) Density of states for diagonal disorder (t = 1) in the case €4 = —eg = —1.7 and

¢ = 0.01 (full curve) and ¢ = 0.1 (broken curve) corresponding to the method of Ref. [8] for a
Bethe lattice with coordination number equal to 4. The vertical lines mark the positions of the
Delta peaks of the present model (which are almost coincident for both concentrations). b) The
same as above for the CPA result.

In order to show more explicitly the result of the infinite-range hopping approxima-
tion for binary alloys we plot our points for the results shown in a recent paper [8] as
given in Figs. 2a and 2b. In Fig. 2a the authors [8] show the results of their method
for two different concentrations of diagonal disorder applied to the Bethe-lattice of co-
ordination number equal to 4. Our scaling results do not distinguish, on the scale of
the figure, between the two concentrations. In Fig. 2b the comparison with the co-
herent potential approximation (CPA) is made. Both of these approximations are for
the nearest-neighbors hopping in rather a low dimension so they are essentially differ-
ent from the infinite range approximation. which has an infinite coordination number.
Nevertheless we think it is of interest to compare the results. The infinite dimension
approximation as shown by Volhard et al., agrees with the CPA The infinite range hop-
ping result gives a kind of “center of mass” result relative to the nearest-neighbor results
for low dimension at least in the approximation available here. It allows to visualize
the meaning of the results of the infinite range-hopping approximation with respect to
the model most currently thought as representative of the physical solid. Unpublished
studies of the Hubbard model made by us along the lines of this paper seem to show that
the infinite range approximation picks up special points of the density of states related
to the peak, but not exactly the maximum.
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The no-disorder limit is reproduced by our exact result. This limit, taking e4 = ep =
0, and using the properties for the delta functions, gives for the infinite range hopping
approximation the eigenvalue located at the value of the hopping {. In our solution the
four delta eigenvalues reduce to ¢ also as can be checked on the formulae of the first
section.

The previous comparison with the CPA and with the Bethe-lattice of low coordination
number (4) can be seem slightly unnecessary since the connectivities are very different.
However since they were available we decided to show them, as to situate the infinite-
range approximations with respect to the more realistic ones.

The result for the Bethe lattice with z infinite and nearest-neighbor hopping t = t//z
were given (Ref. [9]). The semicircular density of states is obtained in this case [10]:

1 : :
D(e) VAt? — e?le| < 2t. (29)

22

We see therefore that the no disorder limit of our approximation gives a degenerate
delta function at ¢ whereas the infinite dimension result is the semicircular band extending
from —2t to 2t.

It must not be surprising that although the /z scaling gives bands the z scaling gives
deltas as they are very different as shown here.

The closer connection with the original Sherrington-Kirkpatrick problem is not obvi-
ous for us at the moment. Perhaps by using the scheme of Volhard et al., one could try
a solution of the Wigner-Jordan transformation but we leave it for another work.

5. CONCLUSIONS

We have solved the “infinite range” hopping model with binary alloy disorder by intu-
ition [7] and by the strict determinantal rules applied to the corresponding tight-binding
matrix. It is a completely new solution an the eigenstates are not trivial. We find N —2
states, where the ¢ term shifts the diagonal energies of the pure alloy only slightly in the
thermodynamic limit. They are formed by a difference of two local states inside each
cluster. Besides, two reservoir states appear which can be called extended because they
have some dependence in the hopping.

Recently Vlaming and Volhardt studied [7] the “infinite dimension” approximation
with random diagonal energies using the diagrammatic technique. They find that the
density of states is that of the coherent potential approximation (CPA). This approxi-
mation gives broad, continuous densities of states.

We find here, with the infinite range hopping approximation, well defined and discrete
eigenstates. We show that for our approximation the scaling of ¢’ is t'/Z or t'/N which
is the same in our model [1].
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