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ABSTRACT. Field theory, born as a description of high energy physics, is also used at much lower
energies, in condensed matter physics and statistical mechanics. \Ve make a historical survey oC
haw this usage cvolvcd, fram the Dirac equation to the presento

RESU~tEN. La teoría de campo, inicialmente utilizada en la física de altas energías, se usa también
a mucho más bajas energías, en la física del estado sólido y en mecánica estadística. En este
trabajo se hace una revisión histórica de como evolucionó el uso de la teoría de campo, desde la
ecuación de Dirac hasta nuestros días.

PAes: 11.1O.-z

1. INTRODUCTION

The first two decades of the twentieth century witnessed the development of relativity
and quantum mechanics. Both the speed of light, c, and Planck's constant, n, were firmly
established as fundamental quantities of Nature. The stage was, then, set for an attempt
at a quautum description of relativistic electrons, which could not be accomplished with
the nonrelativistic formulation of Heisenberg and Schr6dinger.

Dirac [1] provided the solution to the problem by writing down his differential equation
for free relativistic electrons:

(in,"D" - me!)'¡' = O. (1)

\Ve use the notation: x" = (et, x), with D" == D/Dx"; the ,"'s are 4 x 4 Dirac matrices,
which satisfy the anticommutation rule, h", 'Y"} = 2,)''" I; 1)"v is the metric tensor:
1)00 = _1);i = 1, rlj = O for i i' j; I stand, for the identity matrix. '¡'(ct,x), a Dirac
spinor, was initially regarded as a four-component wavefunction.
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The equation admitted a conserved quantity, j~= ,p1,0,~,p (,pI is the Hermitean
conjugate of ,p), satisfying a continuity equation, 8~j~= O. Its zeroth component,
jO = ,pl,p, for ,p's defined as (four-component) c-number functions, was clearly positive
definite. This led to its interpretation as a probability density [2].

Equation (1), written in the form ili(8,p/8t) = HD,p, al!ows for the identification of
the Dirae Hamiltonian

HD = ¡;.p+mc!, (2)

with " == ,°1. The equation admits plane-wave solutions, ,pp, with energy eigenvalues
whieh may be either positive (E ~ mc2) or negative (E :'Ó -mc2). It fol!ows that the
expectation values for such plane waves;

(3)

are unbounded below, indicating an instability of the system.
In order to cope with that difficulty, Dirac postulated that the ground-state of the

system would have all the negative energy eigenvalues populated, respecting Pauli's ex-
clusion principie. This lowest energy state, named the "Dirac sea", would, then, have
many degrees of freedom. Excited states would correspond to populating one or more
positive energy eigenvalues and would, thus, describe systems with one or more (free)
electrons (particles).

Dirac's hypothesis opened the way for the predictioll of a remarkable mechallism: as
soon 'L' one al!owed the electrolls to interact with an electromagnetic field [formal!y, by
lettillg 8~ --+ 8~ + (ie/lic)A~], one had the possibility of exciting an electro n belonging
to the sea to a positive energy eigenvalue; for this to occur without depleting the sea
(assumed to be the grollnd-state), required the creation of another particle, with the
same energy of the excited electron and opposite charge. The wOllld-be "hole" in the
sea wOllld materialize as an antiparticle of the electron, the positron, in a process of pair
creation which conserved charge and energy.

The experimental diseovery of the positron [3]' in 1932, was a great triumph. Never-
theless, pair creation demanded a reformulation of some of the ideas that had led to its
very prediction: particle number was not conserved and, therefore, the conserved quan-
tity obtained from the integral of jO over al! space had to be reinterpreted. Relativistic
qllantllm mechanics led to the birth of quantum field theory.

2. QUANTUM FIELD THEORY: A SECOND QUANTIZATION

The key to the correct interpretation of the conserved current, j~, was to consider ,p not
as a (four-component) c-number function, but as an operator acting on an underlying
spacc, caBed Fock space.

First quantization, which led to quantum mechanics, promoted physical quantities,
such as positions and momenta, to operators acting on a Hilbert space, such as the
space of wavefunctions. Second quantizatioll promoted Dirac spinors, initial!y viewed as
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relativistic wavefunctions, to field operators of the typc

'¡'(ct,X) =¿ [,pnct,p)bp+,p~-)(ct,p)d}],
p

whcrc the sum, whcnever performed ovcr a continuum of states, is shorthand for an in-
tegral; ,p~~)denotes positivc and negativc cnergy c-number solutions of Dirac's equation,
whereas b} and d} create clectrons and positrons, respectively, by acting on the lowest
energy state of Fock spacc. Thc latter will be denotcd 10)and, hcretofore, callcd the vac-
uum, as it is annihilated by both particlc and antiparticlc operators, if a normal ordering
instruction is adopted [4]. Successive application of the crcation opcrators generates Fock
space.

Going back to the conscrved current, we can write

.N- . - J d3x .].o(ct x-l' - "'. b-¡ b- dít b-_.
•• - • 1 .-~. pP- pP"

p

which has an obvious interprctation as the fermion number opcrator, a quantity that
assigns (+ 1) to particles and (-1) to antiparticles. ;Ir is conserved, but not positivc
definite; the double-dots denote the normal ordering prescription which ensures that
(O¡:N:IO) = O.

The vacuum of a field thcory is the natural descendant of thc "Dirac sea" idea. Jt
may be thought of as an immcnse reservoir of dormant particles and antiparticlcs, ready
to bc excited, which has many degrees of frcedom.

Many-body theory [5) is nothing but the condensed matter vcrsion of thc vicw just
described. Instead of dealing with highly cnergetic electrons, it trcats systems with a very
large (N ~ 1024) number of particles, at much lower encrgies (down to eV, for examplc).

Clcarly, many-body systems of N particles of mass M can be treated in first quanti-
zation, by using a Hamiltonian

N [ 2 -2 ]HN =¿ -r~Za + U(I)(xa) +¿U(2)(xa, Xb) + ... ,
a=1 a#b

which is a sum of a one-body term, H~») (the term inside the brackets), with two, H~~)
(i.e., the next term), and higher-body interactions; onc may, then, construct a basis for
the many-particle wavefunction from the products of one-body wavcfunctions, ,pi:

This is accomplished by using products which rcspcct thc appropriatc statistics. If ni,
denotes the number of particlcs in statc ij (L:f=l ni, = N),

'P", ... ,iN(X¡"" ,xN,t) = ¿Cp(i),pi,(X¡,t) ... ,piN(XN,t), (8)
P(i)

P(i) stands for permutations of the indices; Cp(i) is givcn by (ni,!ni,! ... /Nl)1/2, for
bosons, and by [(-l)P(i) /(N!)jl/2, for fcrmions. The collection, {'Pi, ,... ,iN}' for all values
of thc ia's, defines a basis. Eigenfunctions of H N can be expanderl in this basis.
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Alternatively, one may adopt a second-quantized approach by defining a Fock-type
basis from onc-particle creation operators acting on a vacuum state (the many-body
ground-state) :

(9)

(lO)

Since the expectation values of physical quantities are invariant under the change of basis,
{Wi" .."i,,} -+ {Ini!,"" ,ni,,)}, j.e.,

- /3 3 1 -(nill ... ,ni .••.1'Hlnil' ... , niN) = d Xl ... d XN \Jf I} , ... ,iN H N Wil •... ,iN

with

1/.- "\' 1/.(1) -1 - "\' 1/.(2) -1 -1 - -= L ij ai aj + L ijkl ai aj ak al + ...
ij ijkl

Field operators may be defined using one-particle wavefunctions:

(11)

'¡'(x, t) == L ,¡,;(X, t)iii, (12)

so that the second-quantized Hamiltonian reads:

il = / d3x ( - 2: 'l'¡'1 , 'l'¡' +'¡'IU(1)'¡' )

+ / d3x¡ d3x2'¡'1 (x¡)'¡'1 (X2)U2(X¡, X2)'¡'(X2)'¡'(X¡) + .. , (13)

The field-theoretic description of many-body systems, widely used at very low ener-
gies, only differs from the field theories used at very high energies in that its "oscillators"
are labelled by discrete, {jalo rather than continuous, {P}, indices. This reflects itself
in the need for a highly nontrivial continuutTl Iimit in field theories, which led to the
development of renormalization theory [6],

Nowadays, rigorous results in quantum field theory are often obtained by studying
the theory on a (hyper)cllbic discrete lattice of space-time points (a many-body system)
and taking, besides the usual (large-distance, infrared) thermodynamic Iimit, a (small-
distance, llltraviolet) continuum Iimit.

3. PATH INTEGRALS

The close relationship between field theory and the many-body treatment of condensed
mattcr physics is also cvidcnt if alle adopts, instead of thc opcrator forrnalism of thc
previolls section, a description in terms of path integrals.

Path integrals were introdllced, in 1947, by Feynman and Wheeler [7]' as an alterna-
tive way of treating problems in qllantum mechanics. Indeed, a one-dimensional quantllm
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mechanical probability amplitude to go from position qo, at time to, to position q¡, at
time t¡, can be written as

. J rql
(q(t¡)Ie-iHt>t/hlq(to)) = [D1'(t)] J

qO
[Dq(t)]eiS[P,ql/h, (14)

6.t == tI - to; the integrals on the right-hand side are over aU possible paths, q(t), which
satisfy the boundary conditions, q(t¡J = q¡ and q(to) = qO, with aU possible momenta
1'(t), regarded as independent, weighted with an exponential of the corresponding action

¡ti
S[p, q] = dt (1'<1- H[p, q]) .

to
(15 )

Although a rigorous mathematieal definition of sueh objeets is only available for a limited
dass of Hamiltonians [8J, various perturbative and nonperturbative computational teeh-
niques exist whieh lead to approximat.e evaluations of the sums. In faet, this formulation
reduces a quantum meehanieal problem to a da_"ieal sum over paths.
The same teehniques can be used in a path integral formulation of equilibrium quan-

tum statisticalmechanies. The partition funetion for a system deseribed by a Hamiltonan
operator, f¡, is

(16)

where the amplitude can be thought of as that for start.ing from, ami returning t.o, qo,
within an imaginary time interval, 6.t, such that i6.t = {3h. This amplitude can be
obtained from (14) by analytieaUy continuiug to imaginary time, i.e., it --* T, T being a
real (Eudidean) variable. Such a procedure is known, in the jargon of field theorist.s, as
a Wick rotation (after Giancado Wick). Expression (16), then, becomes

/
+00 J ¡qOZ({3) = dqo [D1'(T)] [Dq(T)] e-SE[p,ql/h,
-00 qo

where the Eudidean action, Se, is defined as

r~h (Dq )
Se[P, q] = Jo dT l'DT + H[1', q] .

(17)

(18)

The generalization of (14) to field theory can be accomplished, formaUy, by first
extending it to many degrees of freedom, q(t) --* qj(t), and, finaUy, letting the discrete
index, j, become continuous [9]. Defining a field opeerator, ~(:i), and its eigenveetors,
14>(:i)), and eigenvalues, 4>(:i), such that

~(:i)l4>(:i)) = 4>(:i)l4>(:i)),

ane may writ.c

. J l~l(i)(4)(:i, t¡Jle-Wt>t/hl4>(:i, to)) = [Drr(:i, t)] [Dq,(:i, t)] e;S(~,~I/h,
~o(i)

(19)

(20)
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,,(x, t) being the canonically conjugated momentum density, and the action giyen as

(21)

Continuing the formulae of the previous paragraph to Euelidean times allows one to
write down a path integral formalism for equilibrium quantum statistical field theory,
j.e., the statistical mechanics of field theories. Indeed, the partition function(al) for such
theories may be expressed as

Z [/1, J(x)] = J [D,,(x, T)] f [D1>(x, T)) e-sEi~,<p;Jl/h,

where the Euelidean action is given by

(22)

(23)

We have ineluded an externallocal source, J(x), coupled to the field, in the action. The
trace in Z leads to the instruction, encoded in the symbol f, that the sum is to be
performed over all fields which satisfy the boundary conditions

1>(x, /1!í) = :I:1>(x, O) = :I:1>(x); (24)

the upper (lower) sign is for bosons (fermions), to account for the appropriate statistics.
Furthermore, one has to sum over all boundary fields, 1>(x). Thus, formally

f J l"<P(X)
[D1>(x, T] == [1>(x)] [D1>(x, T)J.

<p(x) (25)

Quantum statistical field theory enables us to compute correlation functions for sys-
tems which admit a field-theoretic treatment, whether they describe high-energy (contin-
uum) field theories or low-energy many-body systems. Indeed, one may use the operator
formalism discussed in the previous section, or the path integral formulation, to compute
the partition function(al) for a field theory Hamiltonian and, from it, obtain other gen-
erating function(al)s, as well as correlations, which are associated to physical quantities.

Expectation values of the fields can be calculated from the functional derivatives [9]
of Z[/1, J(x)] with respect to the external current, J(x),

(1)(x¡) ... 1>(XN ))¡¡,J(x) = Z-I J [D"l f [D1>] 1>(x¡) ... 1>(XN)e-sE1h; (26)

whenever the express ion aboye is evaluated at J = O,we shall denote it C(N)(X¡, ... , XN; /1).
Clearly

(27)
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We may define a Helmholtz free energy, F[,6, J(x)], through a functional, W[,6, J(x)]'
by writing

(28)

Functional derivatives of W, at J = O, yield the, so-called, connected (zero field) corre-
lation fUIlctions

aNC(N)(- - . a) _ ( 8
N
W )

JJ e XI, ... ,XN,I' - 8J(x¡) ...8J(XN) J=O

As a consequence, W admits a functional Taylor expansion around J = O:

(29)

(30)

(31 )

(32)

A simple Legendre transform will define a Gibbs free energy functional, 9[,6, (1)(x))]'
through a functional, r[,6, (1)(x))], by

r == ,ag == ,6F +,6!dD X J(x)(1>(x)),

which admits a functional Taylor expansion around (1)) = Oof the type

N
r =L ,6NIr(N) (Xl, ... ,iN;,6) (1)(x¡)) ... (1)(XN )).

N .

The r(N) 's are called one-particle irreducible vertex functions in the field theory jargon.
Use of the previous formulae, for N = 1 and N = 2, yields

as well as

J(-) a-I 8r
X =JJ 8(1)(x)), (33)

It can be shown that r(2) is the inverse (in the matrix sense) of C~. These correlations
will play an important role in our disCllssion of phase transitions in the next section.

4. PHASE TRANSITlONS

The use of field-theoretic methods in condensed matter theory, outlined in the two pre-
ceding sections, led to a major breakthrough in the study of phase transitions which goes
back to the late 60's, early 70's, when the ideas of Leo Kadanoff and Michael Fisher
were formalized in the Nobel Prize winning renormalization group studies of Kenneth
Wilson [10].
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Phase transitions are quite common in Nature and occur in a variety of systems.
To make contact with the previous discussion, imagine a magnetic system which has a
certain scalar magnetic dynamic variable, <1>, such as a spin projection along an axis,
defined al. every point x (if the variable can only assume values :1:1 and if the points
belong t.o a square or cubic lattice, one would have the familiar Ising model). Then,
the ext.ernal source, J(x), would have to be an external magnetic field along the axis,
whereas t.he expectation value of thc ficld, (<1», wc should identify with the magnetization
per unit. volume along t.hc axis.

Equations (33) and (34), in this example, can be intcrpreted as the usual statements
t.hat. relate the Helmholtz free energy to the magnetizat.ion or t.he Gibbs free energy to
the magnetic field. Furthermore, thc two-point (connectcd) correlation function measures
the net inlluence of the magnetic variable at point XI on that al. point X2. The integral
of that quantity over all space defincs the magnetic susceptibility

(35)

we have assumed that our system is translationally invariant, so that. C~2) depends only
on the relative coordinate, r '" IXl - x21.

A continuum (2nd order) phase transition [11] will occur whenever the expectation
valuc of thc ficld, (<1», ha" finit.e values, al. low temperat.ures, and drops continuollsly
down to zero as we raise the temperat.ure of the system. Once it vanishes, al. a given
temperature Te, it remains zero for T ::::Te. This means that we go from an ordered
phasc, al. low temperatures, which has a residual magnetization al. zero external field,
to a disordered phase, abovc Te, where thcre is no residualmagnetization. Near Te, the
two-point correlator will transition from an ordered behavior

(2) 1
Ce (r; {3) ~ rD-2+,¡ (36)

below Te, characterized by long-range (powcr-law) correlations, to a disordered behavior

(37)

aboye Te, characterized by short-range (exponent.ially supprcssed) correlations.
At. t.he critical t.emperat.ure, t.he correlat.ion lengt.h, ~({3), appearing in (37) will di-

verge. The susceptibility also diverges as we approach Te. These singularit.ies are t.he
signat.ure of a 2nd order phase t.ransit.ion; t.he leading behavior of ~({3) and X({3) near
(amI hclow) Te can be described by:

(38)

(39)

This defines t.he, so-called, critical exponents, v and 1, which charact.erize the singularitics.
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4.1. TIIE RENORMALIZATION GROUP ANO CRITICAL EXPONENTS

Up until the work of Kadanoff, Fisher and Wilson, the treatment of pha.se transitions
made use of Landau theory [12J, which gave a good overall qualitative description of the
pheuomenon, but failed to yield theoretical values in agreemeut with experimental data
for critical exponents in two and three dimensions.

Kadanoff and Fisher, in the late 60's, recoguized that critical exponents were rather
universal. Their values seemed to be the same for a large dass of phase transitions. In
fact, transitions were soon catalogued under different universality dasses, each dass con-
taining many examples of rather d¡fferent systems whose critical behavior was, nonethL~
less, characterized by the same values of critical exponents. Those authors explained this
feature by resorting to a scaling theory which, essentially, attributed universality to the
independence of collective behavior on the microscopic details of the Hamiltonian of the
system. Scaling implied that, near criticality, various systems, when viewed at larger
and larger scales, could be described by the same type of effective (critical) Hamiltonian.
Their large scale properties would be, for some quantities, the same, thus leading to the
universality of the critical exponents.

Field theorists were quite familiar with scaliug ideas, although in a different contexto
Ever since the days of the Gell-Mann-Low equation [13], they had been interested in the
scaling behavior of correlations-only at the other limit, that is, the short-scale or high-
energy limit (the ultraviolet or continuum limit). At about the same time of Kadanoff
ami Fisher's work, the renormalization program of field theories had developed into a
much better understood discipline, as a result of the contrihutions of Callan [14) and
Symanzik [15]. Thanks to Wilson, these developments were fused with the advances
in the study of phase transitions to yield what is now known as renormalization group
theory [10].

Suppose that we have a four-dimensional system characterized hy a Lagrangian den-
sity such as

r 1(" ",)2 1 2",2 1, "','
L = 2" u11'f'O - 2"7no¥'o - 41"'0'+'0. (40)

The subscripts are there to remind the reader that quantities in the Lagrangian density,
which are called "bare", are devoid of physical meauing; in field theory, what matters are
the correlation functions, which have to be computed in an unambiguous way. To do so,
one has to cope with the singlllarities that appear whcnever wc have corrclations involving
two (or more) fields at the same space-time point. That is where the renormalization
procedure comes in: the field theory is first defined in a regularized fashion (i.e., by
defining it on a lattice whose points are separated by a finite lattice parameter, A-1); one
can, then, compute finitc correlation fUllctions ami, from thcJIl, paralnctcrs; by imposing
rcnormalization conditions, one can relate thcsc parameters to physical valucs, extracted
[rom cxperimcnt, in the continuum lirnil of intcrcst. These physical parameters are
defined at an arbitrary scale, J1' if their number is finite and if they allow one to obtain
physical quantities at any other scale, the program is accomplished ami the theory is said
to he renormalizable.

Coming back to our problem, one may relate renormalized (physical) quantities to
hare ones by introducing three dimensionless renormalization constants, Z", Zm and ZÁ,
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such that

1/2 1/2 1/24>0== Z~ 4>mo == Zm m Ao == Z~ A; (41 )

in particular, an N-point correlation, which involves the praduct of N 4>-fields,will be
writtcn as

where hoth (41) and (42) are supposed to hold for A -'> 00 (the lattice space vanishing
in the continuum limit) and l' is the arbitrary reference scale, called a renormalization
point.

The physical requirement that the theory (i.e., the physical corre1ations) should be
the same whatever the choice of reference scale translates into

[ d] (N)1'- r - O
dJL Áo,mo,A o - ,

leading to the following equation, due to Weinberg [16):

which used r6N) = Z;N/2r(N). Defining ,,(t) == ¡ie', we have

dA -
- = (3[A(t)]
dt
dm _
-1 = mim[A(t)],
<t

(43)

(44)

(45)

(46)

which define a running cffcetive coupling constant and au effective mass parameter, 3..1;) we
change the reference scale. Physical quantities, which should be invariant under changes
of reference scale, such as the physical mass (the inverse physical correlation length),
obey

P(A,m;JL) = P(A(t), m(t); I,(t)). (47)

Equation (44) is one of the forms of a renormalization grau]l equation. It can be solved to
yield the behavior of correlations, in momentnm s]lace, either under changes of reference
scale or, alternatively, uader changes of momenta (kee]ling the scale fixed):

Whenever {3(A') = O, A will be fixed at the critical value A'. Clearly, if d{3/dA < O,
it will be stable for t -'> 00 (ultraviolet stable), whereas, if d{3/dA > O, it will be stahle
for t -'> -00 (infrared stable). It is the latter situation that is relevant for the study of
criticality in ]lhase transitions. Critical points correspond to infrared stable fixcd ]loints
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in renormalization group language. In fact, the critical exponents defined previously can
be related to the values of i'm(A;R) and i'(A;R)' at an infrared fixed point, A;",

The previous formulae apply to D = 4. In that case, A;R = O amI the critical
exponents thus obtained coincide with the values of Landau theory. However, for D =
4 - " , « 1, Wilson was able to show that there existed a A;R ,¡ O, for , > O, in a
perturbative expansion in" Amazingly enough, computing the corresponding exponents
in an ,-expansion and setting , = I yields the critical exponents for D = 3 observed
experimentally to an accuracy of 1% or better.

4.2. CONFORMAL THEORIES IN TWO DIMENSIONS

The ideas underlying the renormalization group analysis of phase transitions can be
illustratred, in a remarkable fashion, in two-dimensional systems described by conformally
invariant field theories [17].

Infinitesimal con formal transformations change coordinates in the following way:

x~ -> x'~ = xl' + ,~(x).

Conformal transformations multiply the metric by a conformal factor, n(x):

(49)

(50)

These transformations fonn a continuous Lie group, the con formal group, which, in
four dimensions, has fifteen generators: ten that generate the Poincaré group, four that
generate the, so-called, special conformal transforms and one that genera tes dilatations.

In two dimensions1 however, the conformal group has an infinite number of generators.
In fact. if we represent a point on the plane by a complex number, z = x + iy, conformal
transformations will mal'

z -> z' = j(z),

Z -> z' = f(z),

(51 )

(52)

with z == x - iy. j and f are arbitrary holomorphic and antiholomorphic functions,
respectively. The infinite generators in two dilllensions can he represented as operators
of the type

I = _zn+lan - Zl

1- = _z-n+la_n - z,

which satisfy a local algchra of COllullutators:

[ln,lm] = (m - n)lm+n,

[In, 1m] = (m - n)lm+n,

(53)

(54)

(55)

(56)

(57)
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In order to implement con formal transformations at the quantum level, we start from
the current that generates the local coordinate transformations of (49), i.e., JI' == TI'"<",
where TI'" is the stress-energy tensor of the system. Changing to complex notation and
introducing Tu == T(z), T" == T(i) (Tú = T" = O), we may define the associated charge

Q = 2~i [1dz T(z)«z) + 1 di T(i)'(i)] ,

which leads to infinitesimal transformations of the fields, <I>(w,w):

c5<1>(w,w) = [Q, <I>(w,w)].
The operator, T(z), expressible in terms of the fields, satisfies, for z close to w:

h I
T(z)<I>(w, w) = ( j2 <I>(w,w) + ( )Bw<l>(w,w) + ... ,

z-w z-w

(58)

(59)

(60)

where the terms left out are nonsingular. Again, we have singular behavior as two fields
are defined the same space-time point. A similar relation involving T defines h. The
quantities h and h are called conformal weights.

It turns out that, when one looks at the short-distance product of two T's, one obtains,
from the requirement that the algebra should close, the relation

c/2 2 I
T(z)T(w) = ( )4 T(w) + ( )2 T(w) + ( )BwT(w) + ... , (61)

Z-W z-w Z-w

a-, z --+ w. The quantity, c, as well as its analogue, e, is completely arbitrary, not fixed
by con formal invariance. If we define the quantum generators, Ln and Ln, via

T(z) == L>-n-2 Ln,
"

T(z) == L i-n-2 L",
"

they will obey an algebra which involves c and e as free parameters:

[Ln, Lm] = (m - n)Lm+n + IC2(n3 - n)c5,,+m,o,

- - - e 3
[Ln, Lml = (m - n)Lm+n + 12 (n - n)c5,,+m,o,

[L", Lm] = O.

(62)

(63)

(64)

(65)

(66)

The quantities, c and e, are called central charges and characterize ditIerent conformal
theories. The conformal weights, h and J" characterize the ditferent representations of
the quantum algebra, known as the Virasoro algebra [18]. Fields transform under seale
changes with the exponent 6 == h + J" whereas their spin (rotation) index is s == h - J,.

The unitary representations of the Virasoro algebra with e < 1 belong to the, so-
called, minimal series:

6
c=l-----

m(m + 1)' 11t = 3,4, .... (67)
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The corresponding conformal weights satisfy

h (m) = [(m + l)p - mqJ2 - 1
p.q 4m(m + 1) , (68)

with 1 :::;p :::;m - 1 and l :::;q :::;p. By identifying the properties of the fundamental fields
with respeet to scale transformations and spin, one can recognize that the dynamieal
variables for m = 3,4,5,6 (c = t, [70, ~, ~) are those of the Ising, trieritical Ising,
3-state Potts and 3-state tricritieal Potts models, respeetively. Furthermore, looking at
the singular structure of correlations at short-distances, which is fixed by the conformal
invarianee, one is able to obtain the critieal exponents as funetions of e, e, h and !,.
lndeed

1
(1)(r)<I>(O)) ~ r"'

(
2 2 1

1> (r)1> (O)) ~ r4-2/v'

(69)

(70)

define 1/ and v; their values can, then, be extraeted from the singular behavior predieted
by conformal invarianee. From these two exponents, we can obtain al! others via scaling
relations.

5. FIELD THEORY DESCRIPTION OF POLYMERS: AN EXAMPLE

To il!ustrate one of the eurrent uses of field theory in condensed matter physics, we have
chosen to discuss linearly conjugated polymers, with polyaeetylene being the prototypical
object of our interest.

Polyacetylene exists in nature in two forms: trans- and cis-polyacetylene. The former
alternates single and double bonds between carbon atoms along a linear chain so that
the single bonds adjaeent to a double bond lie on opposite sides; the latter has the single
bonds on the same side with respeet to the double bond in between. For our purposes,
it suffices to know that the trans-variety has a doubly degenerate ground-state, whereas
the cis-variety has a unique ground-state whieh, however, has an energy very close to
that of the first-excited state.

A simple model that captures the essential features of the physics of polyacetylene is
the Su-Sehrieffer-Heeger (SSH) model [19]' whose Hamiltonian is

¡{55B =L[;~+ K(Yn - Yn+d2 + tn,n+[ (ene~+1 + Cn+1C~)], (71)
n

where M is the mass of the CH ions, K is a spring eonstant, Yn denotes the displaeement
of the ions from the nth site of an ideal linear lattiee, en (e~) are annihilation (creation)
operators of 7l'-electrons ami t",n+l is a hopping amplitude for an eledran between sites
n and n + 1. In a linearized appraximation, the latter is given by

t",n+l = to + (_I)n(21') + 'Y(Yn - y,,+d + O([t.yf). (72)
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"1 is related to the electron-phonon coupling; for ¡J = O, we have trans-polyacetylene,
while l' # O describes cis-polyacetylene.

We may introdnce what is knowIl as a dimerization parameter, Un == (_l)nyn, which
measures deviations from an ideal lattice. If we are only interested in physical quan-
tities measured at distances much larger than a lattice spacing, we may take a (nalve)
continnum limit of the model, by letting the lattice parameter go to zero. Then, sums
will become integrals and finite differences will tUrI! into derivatives. Tbe dimerization
parameter un(t) will give rise to a field, r/!(x, t). If we linearize the dispersion relation for
rr-electrons, near the Ferllli 1Il0mentnm, the ferlllionic degrees of freedom will beco me

The SSH-model will, then, correspond to a Lagrangian density

1.2 I 2 -
LSSII = '2r/! - '2r/! + t/J(i-yYOy -1' - gr/!)t/J,

(73)

(74)

where 9 is related to "1 amI we have used n = 1, VF = 1 (the Fermi velocity). We can
investigate this continuum model by using field-theoretic methods. Indeed, integration
over feflnions yields an effective action, Seff[r/!], whose extrema can be found exactly, by
means of inverse scattering methods, for both trans- [20] and cis-polyacetylene [21]. They
correspond to dimerized, soliton and polaron configurations (defects).

These defects play an important role in the mechanism of conduction of electrical
current at low doping, and can be observed indirectly through optical absorption exper-
iments. The field theory analysis allows one to discover various types of defects, which
may be stable, unstable or metastable, depending on the number of electrons which are
bound to thelll [22J. It also allows one to calculate physieal parameters of polyacetylene,
such as tbe splitting between the first excited and ground-states of cis-polyacetylene, as
well as a limiting velocity for the motion of defects [23).

6. CONCLUSION

In summary, the formulation of field theory has beco me, over the years, a common tool
in the analysis of condensed matter systems. Recent examples are the studies of the
quantum Hall effect, superfluids and superconductors.

Acting as a bridge between high and low-energy physics, the formalism has also led to
the investigation of the statistical mcchanics of high-energy systems. In fact, heavy-ion
collisions and cosmological phase transitions have been extensively investigated using the
techniqnes of condensed matter physics and statistical mechanics, made available through
the formal closeness between these disciplines and field theory. Interesting progress is
al so heing made in thc analysis of SystClllS out of equilihriurn [24).

Field theory in condensed matter physics, as well as the study of the statistical
mechanics of field theories, apart from pointing towards the unity of physics, will certainly
play an important role in the discovcry of fascillating IlCW phenomena.
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