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ABSTRACT. Tbe motion of a rotating rigid body with no torques, can be separated and solved
in a spheroconal coordinate system, in classical mechanics and also in quantum mechanics. In
this paper the solution to the Euler case of no torques is reviewed and afterwards the same case
is sol ved in new coordinates, where the problem is separable. Nevertheless since it is not evident
a p,"¡ori the relation with the usual coordinates, the solution in the new coordinates is developed
until various explicit relations with the traditional solution are made.

RESUr..tEK. El movimiento de un sólido rotante en ausencia de torcas puede ser separado y resuelto
en un sistema coordenado esferoconal, tanto en mecánica clásica como cuántica. En este trabajo
se revisa la solución del caso de Euler y a continuación se resulve en nuevas variables de separación
hasta obtener relaciones explícitas con la solución tradicional.

PAes: 03.20.+i; 46.1O.+z

1. INTRODUCTION

The free motion of the rigid body without torques has been tied to the name of Leonard
Euler, because he started the study of this motion in the XVIII century. The analysis of
this motion reaches its highest development with Jacobi in the middle of the XIX century
with the evaluation of Euler angles in terms of elliptic functions and its expression in
terIns of a Fourier series which converges extremely fa.,t.

The known solution of the Euler's rigid body [1]was not sufficient for the quantization
according to the methods of the old quantum mechanics, where the separability in the
Liouville sense [2]' is not directly applicable in the coordinates used originally to solve this
problem. Reiche [3) finds that the problem of the Euler's no torque rigid body is separable
whenever the component of the angular mOInentum vector in the inertial system, which
is equal to the canonical moment corresponding to the gyration angle around the angular
momentum, is zero. That results from a particular selection of the coordinate frame in
the inertial system. In addition, proper elliptic coordinates are chosen.

Once the existence of a coordinate system where a mechanical problem is separable
is recognized, the solution to it is reduced to quadratures and it is trivially integrable.
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However, by direct comparison of the Jacobi and Reiche coordinates, one discovers that
both can be expressed in terms of Weber conical coordinates [4]' but with an essential
difference in the parameter m of the Jacobi elliptic functions that are used to define the
two different conical coordinates.

We are therefore faced with the necessity of finding the explicit relation between two
solutions to the same problem. This relation seems far from trivial because the existence
of such essential difference in the parameters.

In another context, the question of solving the same mechanical problem in quantum
mechanics by considering the Schr6dinger equation of the rigid body model has been
considered. Schr6dinger's equation is simplified [5] when one takes into account that the
angular momentum components in the inertial system commute with the Hamiltonian
and with the square of the angular momentum vector in the body system. It is then
sufficient to consider the simultaneous eigenfunctions of these two operators: Hamiltonian
and square of the angular momentum, assuming that the eigenvalue of the operator
associated to a given component of the angular momentllm in the inertial system is
zero. In terms of Euler angles this simplification leads us to a problem where only two
of these angles appear. This implies no loss of generality because the known angular
momentum techniques allow us to find the wave eigenfunctions corresponding to any
non-zero eigenvalue of that component of the inertial angular momentum.

However in such a case the simplified Schr6dinger equation is separable [51 in the
same coordinates used by Reiche to separate the classical problem. It seems then quite
interesting to make explicit the solution of the classical case in elliptic coordinates similar
to the ones used by Reiche in order to easily study in the same coordinate system the
quantum limit to the classical case.

This paper begins with the study in conical coordinates to construct the Jacobi solu-
tion. The form that we use has been presented previously by Piña [6,7] by means of the
hypothesis that a constant vector of the inertial system is transformed by the rotation
matrix in a variable vector of the body system.

In the Sect. 2, the separation of variables according to an identity by Reiche [3] is
achieved, with the introduction of conical coordinates also associated to the parametriza-
tion used by Piña [6], albeit with a different value of the parameter in t he Jacobi elliptic
functions.

When we carry out explicitly the integration of the equations of motion in the new
variables, there appear in a natural way, different new coordinates, which are dependent
on Jacobi elliptic functions, with the same value of the parameter as the one used by
Jacobi. We followed this hint until we were able to make transparent the relation between
this solution and the classical one.

2. THE MOTION OF A RIGID BODY WITHOUT TORQUES

Let us begin the study of the rotational motion of a rigid body in the absence of torques.
The sustitution of the torque equal to zero in the equation of motion immediately

furnishes us with the conservation of the components of the angular momentum vector
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J in the inertial frame:

J = constant of motion. (1)

On the other hand, if the torques is set equal to zero in the Euler equations, we will get
the equation of motion for the components of the angular momentum vector L in t he
moving frame:

(2)

(3)

These equations are to be integrated in the system of principal axis of inertia, in which
they acquire the form

£] = (;3 - ;J L2L3,

. ( 1 1 )L2 = !¡ - [3 L3 L],

. ( 1 1 )L3 = - - - L] L2.[2 []

The scalar product of (3) with the vector L yields the constancy of the magnitude of this
vector,

LT L = constant, (4)

that results also from the fact that the constant vector J is the rotation of the vector L

J =RL.

Let J to be the magnitude of this vector. Hence J2 is the constant (4)

LTL=JTJ=J2.

(5)

(6)

The scalar product of the Euler equations with the angular velocity vector provides
a second constant of motion, equal to the kinetic energy

yielding

w - 1-1 L- ,

T = ~LT1-1 L = constant.

(7)

(8)

If we denote this constant by E, since in the absence of torques it represents the total
energy,

LTI-] L = 2E. (9)

The sustitution of the two constants of motion, energy and angular momentum, in
the equations of motion (3) will give us the time as an elliptic integral of one component
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of the angular momentum vector. The components of the vector L are therefore elliptic
functions of time. In what. follows it.s explicit. dependence in t.ime will be present.ed; for
the t.ime being, it. will be enough t.o point. out. t.bat. it. is possible t.o know t.he component.s
of L as funct.ion of t.ime.

We face the case 3 in which t.he components of two vectors J and L are known, with
one vector being rotated with respect t.o t.he other by means of the rot.ation matrix. In
Ref. 6 we see how to paramet.rize the rotation mat.rix in t.erms of t.hese two vect.ors and
of anot.her paramet.er denot.ed by ¡.

It. is frequent in t.he lit.erat.ure [1] t.o associat.e J t.o t.he const.ant direct.ion of t.he axis
3 and t.o L one assigns the Euler angles () and 1/J as spherical coordinat.es:

(

sin ()sin 1/J)
L = J sin ()cos 1/J •

cos ()
(lO)

From t.he integrat.ion of L the knowledge of t.hose two Euler angles as a function of
t.ime results. However, t.he symmetry of tbe problem in no way implies the introduction
of ordinary spherical coordinates for L, except when the ellipsoid (8) happens to be a
revolution ellipsoid. Only in such circumstance the use of Euler angles is recommended.

In general, Euler angles are not. t.he hest. coordinates, and one should use t.he sphe-
roconal coordinat.es inst.ead. These inelude as coordinat.e curves on t.he sphere, it.s in-
tersect.ion with ellipt.ic cones. These coordinat.es are expressed by means of t.he Jacobi
elliptic functions furnisbing t.he dependence in t.he time of t.he components of the angular
rnornentuIIl vector.

Denote by 1 the unitary vector in t.he variable direct.ion L

Tl 1=1.

The Euler Eqs. (3) in funct.ion of the vector 1 become

(11)

(12)

where 1], 12, /3, are t.he component.s of t.he vector 1.
Tbe properties of t.he Jacobi elliptic funct.ions t.hat. are used t.o integra te t.he equations

of mot.ion are the following five, t.woof them are not. independent of t.he other three:

sn2(~,m) + cn2(~,m) = 1,

m sn2(~, m) + dn2(~, m) = 1,
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d
d~sn(Crn) = cn(~,m)dn(~,rn),

d
d~cn(~,rn) = -sn(~,m)dn(Crn),

d
d~dn(C m) = -rnsn(~, m) cn(C m),

where m is the parameter of these Jacobi functions, previously denoted in the past
literature by k = ml!2

Introduce the spheroconal coordinates defined in terms of the Jacobi's elliptic func-
tions, SIl, en and dn, with parameters m and rn'.

1] = sn(a2, mi) dn(a], m),

12= dn(a2, mi) sn(a], m),

13 = cn(a2, mi) cn(a], m). (13)

The spheroconal coordinates will be orthogona1 on the sphere of unit radius when the
equation

m + mi = 1 (14)

for the parameters m and mi holds.
In addition, one asks that Eq. (9) should be satisfied identically when expression (13)

of the spheroconal coordinates, for a constant value of the coordinate a2 and for any
value of the coordinate al is substituted in it. This is satisfied when and only when (l1p
to the sign of the square root)

and taking into account (14)

m=

m'=
(J J) (2E J)7}-13 7-7;

(J J)(2E J)'Ti-Ti T-r;

( 15)

(16)

(17)

and the vector (13) expressed only as function of the variable a] satisfies identically (9)
and (11):
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2E J
I¡ = -r - ~ dn(a¡, m),

TI-Tj

(18)

These are the parametric equations of the curve where the sphere and the cone a2 = con-
stant meet.

But the principal reason for introducing the spheroconal coordinates comes after these
expressions are replaced in any of the Euler Eqs. (12). This becomes

da¡
dt = (19)

showing that the spheroconal coordinate al is a linear function of time. One discovers,
as did Jacobi, that these coordinates are natural for the problem of the free asymmetric
rigid body.

The three Jacobi functions, used to describe the motion of the vector 1, are periodic
functions with the same periodo The three can be seen also as inverse functions of elliptic
integrals of first kind. The period of these three functions with respect to the variable
a¡ is 4K where K is the complete elliptic integral of first kind

K(m) = r/2 ----,=d=x==
Jo vl-msin2x

The period with respect to the time is then

(20)

4K(m)
JIlzJ3

(lz - JI )(2Eh - J2).
(21 )

We can now get the rotation matrix up to the parameter I from Re£. 6, since the
rotation matrix depends on the vectors Iand k which are related by the equation

k = RI,

where k is the constant vector in the dircctioll of the angular momentum of the ¡nertia}
system J and I is the vector (18), function of t.

On the other hand, one knows [6] the angular velocity in terms of the parameters 1
and I

I .
w = 1 + 1Tk [1 x (1+ k)] + l' 1, (22)
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and the same is known in function of time after one knows the angular momentum vector
L = JI, because of the relation (7), which give us

w=r-1L=JPI. (23)

Solving"r from (21) by taking the scalar prod\lct on both sides of this equation with the
vector k + 1, becomes

. (1+ k)T w
'Y = 1 + kT I '

and replacing (23) in (24) we have

. (1+ k)Tr-11
'Y= J 1 + kT I

(24)

(25)

The obtention of 'Y is red \lced to the integration with respect to time of the right hand
side of this equation which is a periodic function of time. The integral in (25) has not
the standard form, used in the texts, because in them this problem is solved using Euler
angles.

By means of Eq. (10), we know two Euler angles () and 1/J as spherical coordinates of

the vector 1, and by means of the same Eq. (10), where k = (~), we can change the

variables to Euler's angle <p

where

I1
1/J = arc tan -

12

and

Therefore

. 2E _ L(kTlf J 2E _ L
<p - J 13 _ + J 13
- 1 - (kTI)2 - /3 1_ J 1,-2E J 2( 1 )'

JI1-J/3cn Q',ID

where the variable "'1 is linear in time according to (19):

(26)

(27)

(28)

(29)
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Integration of (29), written as function of the constant parameter 02, gives

<P = Jt + (_2E _!....) (ni du 1 _
h J 1J Jo 1-cn2(02,rn')cn2(u,m)

which by means of the elliptic integral of the third kind

II(u, a) = (U durnsn(a, m) cn(a,m) dn(a,m) sn2(u,m)
Jo 1-msn2(a,m)sn2(u,m)

is written in the form

'" Jt sn(02, m') dn(02, m') Ina, 1
'f' = - + -~-~-~--~ du----------h cn(02, m') o 1 - cn2(02, m') cn2(u, m)

Jt dn(02, m') 1 . . I

= -[ + at ( ') ( ') + -:-II(at,102 -IK)
3 SllQ2,m cna2,rn z

Jt 1II(' 'K')= -[ + -:- at,1Q2 - I .
1 I

This could also have been expressed with the Jacobi's functions theta (8 and H).

3, SOLUTION BY TIIE METHOD OF SEPARATION OF VARIABLES

(30)

(31 )

(32)

In this section we present another form to solve the problem of the motion of a rigid
body withont torques.

We shall use the Lagrangian and Hamiltonian formalisms. Both Lagrange function
and Hamilton function are equal to the kinetic energy beca use there are not torques.

Starting from the kinetic energy in the form

(33)

which is written as a function of coordinates, similar to the previously ones used in
Sect, 2, ¡.e., assuming again that the rotation matrix transforms the variable vector u

into the constant vector v = (~) in the form

v = Ru, (34)

The rotation matrix was parametrized in terms of these two vectors and of an angle
r¡. The angular velocity in these coordinates is given in similar form to (22) by

w = 1 T [ti x (u + v)] + 7j u.
1+ u v

(35)

Sustituting this form of w in the kinetic energy one finds that the coordinate r¡ is a
cyclic variable, hence one has the conservation of its conjugated canonical momentum

!JI' T T T
1', = o7j = w 1u = L u = J v. (36)
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In the following we shall use the identity published by Reiche [31 in 1918:

and from it one deduces a suitable form of the kinetic energy

1(1/I¡)uI + (1/h)u~ + (1/h)U5 + (1/ !¡I2h)p~T----------~---~------ 2 (uI! h13) + (u~/ h1¡) + (UV!¡I2)

where the equation

u = u x w,

(38)

(39)

has been used.
But Reiche also proves that this form of the classical kinetic energy is separable in

tite Liouville sense when the conjugated canonical moment to the 11angle is zero

p, = O. (40)

The quantum case is also separable provided a similar condition for the corresponding
eigenvalue of one angular momentllm component in the inertial frame holds [5].

The coordinates for u that separate tite problelll are also spheroconal but with dif-
ferent values of the parallleters m titan those in the solution of tite previous section:

(

dn(c.pl' mil sn(c<P2,m2))
u = cn(c.p¡, mil cn(c.p2, m2) ,

sn(c.p¡, mil dn(c.p2, m2)

which are orthogonal on the unit sphere, provided the following condition holds

mi +m2 = 1.

Tite parallleters mi and m2 are deterlllined by the moments of inertia

(41 )

(42)

I I12-73
mI = 1 1 'r¡-7J

¡ ¡
_ 7l-Y2

rn2 - 1 1 'Ti-T3 (43)

where one assumes h > h > !¡ and where c is tite constant

C=):I-:3'
When writting the energy or tite Hallliltonian, two new functions appear

1 (1 1) 2P(.p¡) = h + 1
2
- 1

3
sn (c.p¡, mi),

(44)

(45)
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(46)

(47)

which is observed adopts the familiar structure [2] to be separable in Liouville sense.
From the euergy, the conjugate canonical momenta to 1>1 and to 1>2,

follow, and the lIamiltonian is

H = ~ pi P(1)2) + p~P(1)d
2 P(1)2) - P(1)d

(48)

(49)

The Hamilton-.Jacobi equation in these coordinates is separable.
The angular momentulll vector L in the body system is written as a function of the

two vectors orthogonal to u

(50)

These two vectors are orthogonal to each other and have the same magnitude, whose
square is denoted by F:

(51 )

We have

(52)

Hamilton equations of motion for these coordinates are then

(53)

subsequent sustitution of the lllomenta as a function of the coordinates, which are solved
fram the eqnation of energy conservation

2 E = pi P(1)2) + p~P(1)d,
P(1)2) - P(1)¡)

and fram the angular mOlllentum square,

(54)

(55)
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gives liS

~l = JP(</>2)
P(</>2) - P(</>¡)

~2 = JP(</>¡)
P( </>2) - P( </>¡)

2EP -P(</>¡),

2E
P(</>2) - p. (56)

These equations are explicitly separated by using an auxiliary variable a, defined by:

d</>l
da

.,j2E j J2 - P( </>¡)
=------

P( </>¡)
.,jP(</>2) - 2EjJ2

P( </>2) (57)

where the dependence on time of a can be obtained from the equation

dt 1 (1 1)
da = J P(</>¡) - P(1)2) . (58)

The problem has thus been reduced to quadratures.
The integrals in Eqs. (57) are elliptic if the coordinates P(</>¡) amI P(</>2), are used;

Gradshteyn and Ryzhik [8] prescribe a change of variables that leads us to the coordinates
transformation

(1 ) .,Jm2sn(c</>l,m¡)
sn tI, rn = ( ,

dn C</>l,mIl

by means of which the first equation of motion (57) is transformed into

(59)

(60)

In a similar way, the transformation of the second equation in (57) by means of the
change of variable [8)

(61 )

gives us the following equation of motion:

(62)

The changes ofcoordinates (59) and (61) allow us to recover, in a natural way, not only
the pammeter m, but also the parameter "'2 that appears iu (60) and (62). The Eqs. (60)
and (62) are similar to those which are found in the traditional solution of the Euler case:
compare for example Eqs. (30) and (62). Although the physical meaning is very different,
the mathematics is identical, even for the numerical value of the parameters.
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A quite simple property follows now by sustitution of the equations of motion into
the equation relating the time with a:

and it follows

dt dh¡ dh2
a-=---
da da da'

(63)

(64)

(65)

Qne can arrive to this equation from an independent argument as follows. After
rewriting the vector u as a function of the elliptic coordinates hl and h2, we obtain the
expression

1 1
u=-'-r========== -,===;;=========JI - sn2(Q2, m') dn2(h¡, m) JI - cn2(Q2, m') cn2(h2, m)

(

-cn(Q2, m') dn(Q2, m') sn(h2, m) )
x -sn(Q2, m') cn(Q2, m') cn(h¡, m)dn(h2, m) .

sn(Q2, m') dn(Q2, m') sn(h¡, m)

The orthogonality condition between this vector and tite vector 1 that appears in Eq. (13)
follows immediately.

Qne thus finds Eq. (64) as tite condition that should be satisfied in order for these
vectors to be orthogonal, in the form

dn(at, m) sn(h2, m) - sn(at, m) cn(h¡, m)dn(h2, m) + cn(at, m) sn(h¡, m) = O.
(66)

Equations (61) and (62) are integrated in terms of the elliptic function TI(u, a) and
one finds

(67)

(68)

(69)

and
J h2 1 ( . . ')a = -l- + -,TI h2,lQ2 - ,K .a ¡ ,

Upon cancelling a between tltese equations and using the next two following properties
of the functions TI(u,a) [9],

Ju 1 . Jn 1 . . _1 1 sn(n-iQ2+iK',m) 1r
- + -TI(n lQ2) - - - -TI(u lQ2 - ,l, )= -In -~------ - -ah i' al¡ i' 2i sn(n + iQ2 - iK', m) 2

and [10]

TI(h2 + at, iQ2 - iK') - TI(h2, i"2 - iK') + TI(at, i"2 - iK')

__ ~ l 1- msn(iQ2 - iK') sn(h2) sn(at) sn(h2 + at - iQ2 + iK') ( )
- 2i n l + m sn( i"2 - iK') sn(h2) sn(at) sn(h2 + at - i"2 - iK') , 70
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the equation

() Jt 1 ( . 'K')q, t = - + "7" at,lJ.l - 1
11 1

" 1 sn(h2 + at - úl2,m) - vrnsn(ia2 - iK',m)sn(h2,m)sn(at,m)+ In -~----,----,---;~--,----,-:-=:----:---;:-----;---;--,------;- (71 )="2 2i sn(h2 +at+ia2,m) + vrnsn(ia2 -iK',m)sn(h2,m)sn(at,m)'

follows, where we have used also the property [10]

vrnsn(u + iK',m)sn(u,m) = l.

The left-hand side of Eq. (71) is the mathematical expression for the third Euler angle
q,. This eqllation allows us to obtain the relation between the new coordinate h2 and the
time through this angle.

As an independent verification, one can obtain the same expression by a purely geo-
metric argumento The vector u can be assumed equal to the first column of the rotation
matrix, whereas the vector 1 is the third column. Then, starting from the expression in
Euler angles, we deduce the identity

(72)

from which one can find the same expression (71) if we multiply the scalar prodllct of
the vector (65) with the complex vector I x k + i(k - kTll). One finds, after droping out
the irrelevant real factors of the square roots in (65),

- cn(a2, m') dn2(a2, m') sn(h2, m) sn(at, m)

+ ,n2(a2, m') cn(a2, m') dn(at, m) cn(h2 + at, m) dn(h2, m)

+ i{ cn2(a2, m') sn(a2, m') dn(a2, m') sn(h2, m) cn(at, m) dn(at, m)

+ sn(a2, m') cn2(a2, m') dn(a2, m') cn(h2 + at, m) dn(h2, m) cn(at, m) sn(at, m)

+ [1 - co2 (a2, m') cn2(at, m)] sn(a2, m') dn(a2, m') sn(h2 + at, m)}. (73)

The imaginary part of this expression is simplified by means of the identity (66) to
glve liS

sn(a2, m') dn(a2, m') sn(h2 + at, m),

whereas in the real part of (73) one makes the sustitution of the identity

dn(at, m) dn(h2, m) = mcn(h2 + at) sn(at, m) sn(h2m) + dn(h2 + at, m),

in order to transform itinto

(74)

sn2(a2, m') cn(a2, m') cn(h2 + at, m) dn(h2 + at, m)

- cn(a2, m') sn(h2, m) sn(at, m)[1 - sn2(a2, m') dn2(h2 + at, m)]. (75)
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Hence, we can write (73) in the form of the numerator in (71), multiplied by the imaginary
factor

(76)

which proves the equivalence of the two ways of relating the angle q, with the coordinate
h2.

Since we know the vector u as a function of time from the precedent section, we
can as a consequence, salve the Jacobi function sn(h2, m) by using express ion (65). \Ve
therefore know the time dependence of the coordinates h2.
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