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ABSTRACT. Using a simple factorization scheme we obtain the recurrence-shift relations of the
polynoll1ial functions of Aldaya, llisquert amI Navarro-Salas (ABNS), F~"(~JNx), i. e., one-step
first-orocr differential rclations refcrring to N, as follows. Firstly, we apply thc scheme to the
polynomial degree confirming the recurrence relations of Aldaya, Bisquert and Navarro-Salas, but
also obtaining another slightly modified pair. Secondly, the factorization scheme is applied to the
Gegenhauer polynomials to get the recurrcncc relations with respect to their parameter. Next,
we make use of Nagel's result, showing thc connection between Gegenbauer polynomials and the
ABNS functions, to writc down the recurrence-shift relations for the latter ones. Such relations
may be used in the study of the spatial structure of pair-creation proccsses in an Anti-de Sitter
gravitational background.

RESU~tEN. Se obtienen relaciones de recurrencia de los polinomios usados por Aldaya, Bisquert y
Navarro-Salas para describir osciladores armónicos relativistas, F: ('~Jlii x), usando un esquema
de factorización simple, incluyendo un desplazamiento discreto en el argumento, es decir, rela-
ciones diferenciales de primer orden en un paso con respecto a N, como sigue. Primeramente
aplicamos el esquema al grado del polinomio confirmando las relaciones de recurrencia de Aldaya
et al., pero también obtenemos otro par ligeramente modificado; además para los polinomios de
Gegenbauer, obtenemos una relación de recurrencia con respecto a su parámetro. Enseguida,
haciendo uso de la relación de Nagel entre los polinomios de Gegenbauer y las funciones ABNS
obtenemos un par de relaciones de recurrcncia-desplazamiento para esas funciones. Tales rela-
ciones podrían ser usadas en el estudio de la estructura espacial de procesos de creación de pares
en el fondo gravitacional de un universo de anti de Sitter.
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l. INTRODUCTION

Sorne time ago, Aldaya, Bisquert and Navarro-Salas (ABNS) [1) discussed a relativistic
generalization of the quantum harmonic oscillator for which the spacing of the energy
leve!s is kept constant in the relativistic domain. By group-theoretical methods they
obtained the wavefunctions for such a "relativistic" oscillator, which up to phase factors
and a "weight function", contain a polynomial part dubbed by ABNS the "relativis-
tic Hermite polynomials", FI:' (0, of degree n, parameter N = mc2/hw (considered as
discrete) and variable (N = (w/c)VNx. In this paper, we shall call them the ABNS
functions, because Nagel [2] showed that they actually are a praduct of a factorial, a
simple polynomial, and the Gegenbauer polynomial of the same degree and parameter
but of a different argumento

In the ABNS paper, recurrence relations with respect to the polynomial degree n
are written down. One might think of similar relations for N, which, however, appears
both as a polynomial parameter amI as a discrete factor in the argument of the ABNS
functions. We have here a case of both shift relations with respect to a discrete variable
fram the point of view of the ABNS functions and recurrence relations fram the point
of view of the polynomial parameter. We recall that shifts with respect to a continuous
variable are a common pracedure for relativistic oscillators of finite difference type [3J.
In the following, we shall show that the recurrence-shift relations for the ABNS func-
tions can be obtained almost trivially fram the corresponding recurrence relations of the
Gegenbauer polynomials. Mareover, we shall give some hints on the physical relevance of
these recurrence-shift relations, which fram their definition appear to be related to pairs
creation pracesses. A very shart presentation of our results has been published in the
Proceedings 01 Wigner IV Syml'osium [5]' and here one may find a more detailed study.
We mention that Zarzo el al. [4] studied the asymptotic distribution of the zeros of ABNS
functions, and other algebraic and spectral properties. The ABNS functions satisfy the
following second-order linear differential equation

(1 + (~/N)y" - (2/N)(N + n - 1)(NY' + (n/N)(2N + n - l)y = 0, (1)

where the derivatives are with respect to the (N variable. The limit N -+ 00 is the
"nonrelativistic one", e -+ 00, iu which the ABNS functions go into the usual Hermite
polynomials.

The base for getting our results is a simple yet sufficient general factorization method
that can be inferred fram the factorization techniques in the book of Miller [7J. A
particular case has been used hy Piña [6J to work out many examples.

2. THE FACTORIZATION SCHEME

Given the following family of sccond order linear differential equations

(2)
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let us suppose that the solutions y, to Eq. (2) satisfy the following recurrence (Iadder)
relations:

(3)

where A; are first order diffcrential operators of the type

+ + d +A, = 1, d~+ 9, , (4)

d
A;=~~+~. (5)

In Eqs. (4) and (5), I! and 9; might be functions of~, whereas in Eqs. (3) r; depend
only on the parameter s. By means of the ladder opcrators we can write down two types
of second-order differential cqllations

and

A- A+ - + -3+1 s Ys - 1's 1'8+1 Ys

A+A- + -s s+1 Ys+l = 1'8 1's+1 Ys+l,

(6)

(7)

involving the same constant k, = ri r;+I'
By substituting Eqs. (4) and (5) in Eqs. (6) and (7), respectively, one ShOllldobtain

thc second-order linear differential Eq. (2), for the indices s and s + 1, respectively. This
allows to get the following five equations as sufficient for Eqs. (2) and (6)-(7) to have the
same solutions

P= 1; j'-+I'
d'-

Q j+ ",+l j+ - 1- +,+1 = , T + , 9,+1+ ,+19, ,

Q 1- di; 1- + 1+-,= ,+1 d~ + ,+19, + , 9,+1'

(8)

(9)

(10)

k 1+d9;+l + - ( )R,+I+ ,= 'T+9, 9,+1' 11

R k 1- d9i + - ( ),+ , = ,+1 d~ + 9, 9,+1' 12

Taking the derivative of P with respect to ~ and sllbtracting Eq. (10) from (9) one will
obtain

1 (dP ) +dj,-+I d _2 d[+Q'+I-Q, =1, T=Pd~ln/'+I'

From Eq. (13) one gets easily

I,-+l= VPexp G J Q'+lp-Q,d~)= VPE"

(13)

( 14)
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and using Eq. (8)

To get 9t and 9; one should proceed as follows. Firstly, one can obtain easily

(15 )

= E-1 d9:;+1_ E d9t
'd~ 'd~ (16)

ami

1 ( dP) _ In _ f+ - .- +:2 Q'+l + Q, - d~ = v PIV, - , 9'+1 + fs+19, .

It follows

W - E-1 - +E +s - s 95+1 s 95 •

After sorne algebra one gets

RS+1 - R, dW, _ .!:!- (2E-1 _) W dlnEs
vP + d~ - d~ s 9'+1 + , d~ .

Thus

- = Es [w + J (R'+1 - R, _ W Q'+l - Q,) "c] .9'+1 2' vp '2P u.<,

The other coefficient 9t is obtained from 9t = W,/ Es - 9:;"1/ E; giving

(17)

(18)

( 19)

(20)

(21)

(22)

+ = _1 [IV _ J (Rs+l - Rs _ IV Qs+I - Qs) dC]9s 2E, s vp s 2P , .

Finally, the k-constant can be found from the most convenient of Eqs. (ll) and (12).
In order to find the r-coefficients one needs either supplementary information on the
polynomial solutions of second order linear differential equations or sorne tricks as one
can see in the applications to follow.

3. ApPLICATION TO ABNS POLYNOMIAL FUNCTIONS

3.1. FACTORIZATION \VITH RESPECT TO TIIE POLYNOMIAL DEGREE

In this case we have s = n, P(O = 1 + ~~'¡N, Qn = -2(N + n - l)~N/N, Rn =
n(2N +n-l)/N. The calculations are straightforward. However we present sorne details.
The convenient variable to work with is u = ~N / VN. Other variables will change the
constants of integration by logarithmic terrns, which anyway we shall not indude here
as far as we are interested in the sirnplest solutions. The first thing to do is to calculate
the integral in the exponential for the f coefficients, which reads

J Qn+l - Qn d~ = J -2~d~ = J -2udu = -In (1+ u2)
P N +e 1+,,2 '
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and by substituting in Eqs. (14), (15) one gets ¡- = 1 amI ¡+ = 1 + n2, respectively,
both not depending on n. Wn can be obtained from the identity in Eq. (17) leading to
Wn = - 2(J~n) VI~u" The first term in the integrals for g~ reads

J R,,+l - R" 2(N + n) ( ~) 2(N + n),¡p d~= .jN In n + vi + n2 = .jN arcsinh(n). (23)

The second part of the integral in Eqs. (20) and (21) is amenable to the following simple
one:

[arcsinh(n) - ~] .
1+ n2

2(N+n) [1 ( ~) n]r;;; n n+vl+n- - ~
vN v1+n-

2(N + n)
.jN

(24)

The final result for the g-terms is

g'f = (N.!Nn) (JI+;;2)'f
1

[_ ~:l: arcsinh(n) 'f arcsinh(n) :l: ~]. (25)
N 1+ n2 1+ n

So, in this case, g;;+1 = O and g;;- = -2(1 + n/N)~N. Since g- is nallght, from Eq. (11)
one will find out that kn = -R,,+l'

The recurrence relations for ABNS fllnctions can be written as follows:

A;;- Yn =o [ (1+ ;) iJ~N - 2 (1+ ~) ~N] Yn = T;;- Yn+1 (26)

and

A- iJ -
n Yn =o iJ~NYn = Tn Yn-l' (27)

In order to proceed further we have to be aware of the fact that the factorization scheme
aboye does not allow to find out the T-coefficients, but only the k-constant, i.e., their
producto As a matter of fact, the ambigllities of factorization procedures have been
known since Infeld and Hull [8]. For the present method, the k-constant comes out
quite often in factorized form and then one can rnake some selection of the T-coefficients
identified with the k-factors (though this is not a rule) on the base of further criteria.
This situation is clearly illustrated by the ABNS functions. Indeed, frorn Eq. (11) one
gets kn = -Rn+l = -[(n + 1)(2N + n)J/N. Becallse of the three factors contained in R,
to which one should add the minus sign, there are sixteen T-pairs leading to the same
k-constant. However, if one asks for the first two ABNS fllnctions to be identical to lhe
first two Hermite polynomials, j.e., F(;' = 1 and F{' = 2~N, respectivcly, one can show
easily that TÓ = -1 and TI = 2. In this way most of the T-pairs are discarded, and
one ends up with just two cases, j.e., (i) T;;- = -1 and T;;+I = [(n + 1)(2N + n)]/N,
(ji) T;;- = -(n+ 1) and T;;+I = (2N +n)/N. However the latter pair is merely a rescaling
of the pure numerical coefficients entering the ABNS functions. On the other hand, the
first pair corresponds exactly to the recurrence relations obtained by ABNS (see Eqs. (13)
and (14) in their paper, which are our Eqs. (26) and (27), respectively, when the first
T-pair is used).
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3.2. FACTORIZATION WITII RESPECT TO TIIE PARAMETER

To write down recurrence relations with respect to the parameter N seems impossible
from the point of view of the factorization scheme because it occurs also in the variable
of the ABNS functions and consequently one deals in fact with recurrence-shift relations
involving ABNS functions of different variables. Therefore a direct application of our
method is not possible. We have found a way to obtain such relations by making use of
the aforementioned result of Nagel [2]' who proved that ABNS functions are a product
of a factorial, a simple polynomial and a Gegenbauer polynomial. Thus, the idea is
first to obtain recurrence relations for the Gegenbauer polynomials with respect to their
parameter, which fits in our factorization scheme, since the Gegenbauer variable is not a
N-depending quantity. More exactly we derive recurrence rc1ations for the equation

(28)

Then P = x2(1 - x2), QN = -(2N + 1)x3, RN = n(2N + n)x2 The application of the
factorization scheme is straightforward leading to the following factorizing coefficients
j+ = x, r = x(1 - x2), gt = 2N + n, gN+l = -(2N + n + 1 - nx2). The constant
kN = -(2N + 71 + 1)(2N + n) is in factorized form but we shall not rnake a direct
identification of the r-coefficients with the k-factors. Instead we take rt = 2N and thus
rN+I = -(2N + n + 1)(2N + n)/2N. The recurrence relations read

[x~ + (2N + n)] eN = 2NeN+1
8x n n (29)

and

[x (1- x2) :x - (2N + n -1 - nx2) ] e,;" = (2N +n ~~~~ + n - 2)e,;"-I. (30)

The first one can also be obtained by combining Eqs. (8.933.3) and (8.935.2) in Grad-
shteyn and Ryzhik [9], while the latter one can be reached from the set (8.933.2-4),
(8.935.2) in the sarne reference.

Nagel [2] proved the following relationship:

( 2) n/2
F::(uVN) = n! 1~u e,;"(u/"Jl"+;}i). (31)

Plllgging Nagel's result into eqllations (29) and (30) one gets the following recurrence-
shift relations for the ABNS functions:

[~N (1 +~l.:/N) 8:N - ~~l.:+2N+n] F::(~N)

= 2N (Jl+ ~r F::+1 (Jl+ ~~N) (32)
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and

(2N +n - 1)(2N +n - 2)
2N - 2

x ( JI - ~ ) n F¡:-l ( JI - ~~N). (33)

llave these relationships any applieation in physies? Our answer is as follows. The wave-
funetions eontaining the ABNS polynomial funetions satisfy the Klein-Gordon equation
associated with the Anti-de Sitter (AdS) metrie (of negative eurvature R = _w2/e2) as
stated by ABNS:

(34)

The true limiting proeess (or eontraetion in group theory terminology) should be taken
as e -+ 00 and simultaneously R = _w2 / c2 -+ O, keeping cM = w, leading from the
AdS relativity to the Newton one [10]. The AdS symmetry group is a deformation of
both the relativistie free partide and the harmonie oseillator. At the quantum level,
the double eovering SU(l, 1) of the AdS group is represented by the diserete series of
representations, whieh are indexed by the dimensionless number '7= N+ ~+O( M) [10].
Our dailll is that the reeurrenee-shift relations of ABNS oseillator functions can be
important in the spatial analysis of the pair-produetion e!feets in a wave approaeh in the
AdS gravitational baekgrouud, sinee their aetion is of conneeting ABNS funetions with
c.onseeutive parameters related to diserete changes in the gravitationa! eurvature (in the
Klein-Gordon equation, Eq. (34), N is like a diserete eoupling constant for the eurvature)
and simultaneously diserete ehanges in the polynomial variable. Indeed, one can see that
N = 1/ k>'c, where k is the usual wavevector and >'c is the Compton wavelength. Thus,
one can think of Na., the ratio of the spatial resolntion of a eommon wave Q( l/k and the
spatial resolution given by the Compton wavelength. We reeall the similar suggestion
of Noll [11] in Opties on the uscfulness of ladder operations of Zernike polynomials,
whenever the gradient of a wave front is required. Moreover, to be recalled is the idea of
hadrons as AdS mierouniverses of huge eurvature [12]. Pair ereation proeesses in sueh a
eontext might be examined in the aforementioned perspective as well.
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