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ABSTRACT. In this work we propose the analysis of the complete Blumlein circuit for the exci-
tation of a Ny-laser that produces a high order linear integro-differential equations system, when
each of the two discharges (the spark gap and the laser chamber) taking place in the circuit are
simulated by an inductance and a resistance connected in series. The switching time of both
discharges is considered. The solution is found through a parametric identification method based
in the measured voltages in the charge capacitors. A Runge-Kutta method for solving the integral
terms and a Gauss-Seidel algorithm for the parametric identification were used.

RESUMEN. En este trabajo se propone el andlisis del circuito Blumlein completo para la excitacion
de un laser de Ny, el cual produce un sistema de ecuaciones integro-diferenciales lineales de alto
orden, cuando la descarga de interruptor de chispa (spark gap) y de la cdmara de descarga laser
se representan cada uno por medio de una inductancia y una resistencia conectadas en serie.
El tiempo de encendido de cada descarga es considerado en el analisis. La solucién se encuentra
usando un método de identificacién paramétrica basado en los voltajes medidos en los capacitores
de carga. Los términos integrales se resuelven usando el método de Runge-Kutta y la identificacion
paramétrica se hace usando el algoritmo de Gauss-Seidel.

PACS: 42.55

1. INTRODUCTION

For the pulsed excitation of Ny lasers, two simple electrical circuits are mainly used,
known as Blumlein and charge transfer (C-C) circuit. Their role is to produce a very
intense uniform glow discharge across the laser head during a very short time. Both
circuits (see Fig. 1) consist of two common no-linear elements, a spark gap whose function
is to fire the circuit and the laser chamber where the laser discharge takes place. Besides,
in order to charge both circuits an impedance Z (it could be a coil or a resistance)
parallel to the laser head is used. Traditionally it is supposed that when the spark gap
fires the impedance Z shows so high values, in relation to the other elements, that it is
possible to eliminate it from the analysis. So, both circuits are reduced to two loops,
which follows to a fourth order differential equation for any voltage and current in the
circuit, when each discharge taking place in both circuits is simulated by an inductance
and a resistance connected in series. The solution of the voltage of these equations is
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FIGURE 1. Schematic diagram of pulse N lasers. (a) Blumlein circuit. (b) Charge transfer
circuit.

given by the following relationship:
V(t) = Ae™** cos(wit) + Be**! cos(wat + ?), (1)

where the parameters A, B, wi, wy, ai, ay, and ¢ are given by the circuit elements of
the equivalent circuit and the initial conditions. Fitting this solution to the experimental
laser voltage has been possible [1-5] to find out the parameter values and the average
values of the resistances and inductances used to simulate the spark gap and the laser
chamber. However, when the obtained parameters are used in the Eq. (1) for the laser
voltage a first symmetrical pulse in the wave form is obtained. That is a deviation of the
experimental wave form [3], where the leading edge of the pulse is more slowly than the
trailing edge.

In this work we propose the analysis of the complete Blumlein circuit considering Z.
That produces higher order linear differential equations that can not be solved with
the use of Eq. (1). The integro-differential equations of the system are solved through
parametric identification method based in the measured voltages in the capacitors C and
C3. A Runge-Kutta method for solving the integral terms and a Gauss-Seidel algorithm
for the parametric identification were used. A much better fitting between theoretical
and experimental laser voltage is obtained.

2. THEORETICAL CONSIDERATIONS

Figure la shows a schematic diagram of the Blumlein circuit. The circuit is composed of
a spark gap (S.G.), the laser head, two capacitors and a coil L as the Z impedance. When
high voltage is applied, both capacitors are equally charged until the breakdown voltage
across 5.G. is reached. At this potential, the S.G. fires and C; begins to discharge very
fast through S.G., so does C) but through L and S.G. in a slower way. A very fast rising
high voltage difference appears across the laser head until the laser beakdown voltage
is reached and the discharge takes place. Figure 2 shows the voltages V,, Vi,, and
Ve, = Ve,. The mechanical construction of the laser is reported elsewhere [6].
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FIGURE 2. From top to bottom: voltage appearing in C; (V,); voltage in Cy (Vi,); voltage
waveform across the laser head (Vo, — Vi, ).

The voltages Vi, and Vi, were measured with two equal high voltages probes (Tek-
tronix P6015, rise-time < 4.5 ns) combined with a 300 MHz bandwidth oscilloscope (Tek-
tronix 2440). The voltage in the laser head (Fig. 2) is the voltage difference Vo, — Vi, ,
which was automatically given by the oscilloscope and is the average of 16 discharges.
Stable operation of the laser was achieved at voltages ranging from 6 to 12 KV, pressures
between 60 and 130 hPa and frequencies up to 20 Hz. The pulse-to-pulse fluctuations of
the laser head voltage were less than 5%.

To analyze the circuit, each discharge taking place in the circuit is simulated by an
inductance and a resistance connected in series (see Fig. 3). R, and L; stand for the
inductance and a resistance associated with the laser head loop, respectively, and Ry and
L, stand for the analogous parameters of the spark gap loop. The differential equation
governing the performance of the circuit are given as follows.

2.1. THE FIRST STEP (0 <t < tg)

At t = 0the S.G. fires and at t = tpg the laser head fires. Through this step, the equivalent
circuit showing the operation of the system is shown in Fig. 4a. The equations governing
its performance are given as follows:
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FIGURE 3. Equivalent circuit of the Blumlein circuit.

RI+L@+i/tB(1 In)dt +Vg,|,_. =0 2)
e+ Legrt+ o | (2= In Calyg =0
dly 1 tn 1 tB
e’ L Y Al 2. Py e =
Gt 11dt+02/0 (I — L) dt + Ve, |,y + Ve |,y =0, (3)
where
Vei iy = Voul iy = Vas (4)

I; and Iy; can be calculated through a Runge Kutta method. The evaluation of tg could
be done from the relation

1 [te 1 ftn
VB = (VC1 - VCQ)lt:tB = a/(} I dt + VC71|t={) - a;/O (I — I,)dt - VCzjtzos (5)

where Vg is obtained from the experimental voltage, i.e.,

I e 1, e
tB:{tE[O,tmN]: C—lfo Illdt+vcl|t_[)_c_2[0 (IE—Ill)dt—VCQI£:U=VB}' (6)

2.2. THE SECOND STEP (tg <t < tpIn)

At triv the glow discharge in the laser head gets in the break down. Through this step
the equivalent circuit showing the operation of the system is shown in Fig. 4b. The
equations governing its performance are given as follows:

dl; 1 trIN
R\ +Li— + — I+ Iy) dt + Ve
1 1+ 1 dt + Cl /;E ( 1 11) Cl't:tg
1 tFIN
+52/£B Ul+Ill_I2)dt+VCz|:=ta:0’ (7)
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FIGURE 4. Equivalent circuit for the different operation steps of the Blumlein circuit. (a) 0 <
t <tg. (b) tg <t < trIN.

e

d;’;l 5 C%/:IN(I} +In)dt+ Ve |y,
1 trIN
+ C—Q/tB (I + 111 ffz)dt+ch|£:tH =0, (8)
RoIr + Lz%% - CLZ -[;“N(Iz — I —I)dt+ VC?lt:tB =0, 9)
where

1 gyt
Vcllf-:ta - afo Iy dt + V(—'lls:()’ (10)

1 [i8
VC?'t:tB a/g (12 —Ill)dt+ch|t:U. (11)

3. PARAMETRIC IDENTIFICATION

The parametric identification is accomplished through a comparison of the values in the
real process and the theoretical model. To do that is necessary to consider n experimental
voltage values V¢ (tx) for k = 1,2,... ,n, and n experimental voltage values Vi, (tx) for
k=1,2,...,n, satisfying Eqgs. (2)(11).

As parameter identification index we propose

s i [(Vﬂﬂ'l(tk) - Ve, (f’k))2+(VC«'s(ik) = Vc‘_ig{fk))g] . (12)

k=1
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To use Eq. (12) we need the values of Ry, Ry, L1, Lo, L, C1, Cy. The last ones are
established by design, but Ry, Rs, L, Lo, are the non-measurable, non linear resistance
and inductance of the laser and spark gap, respectively. Here we consider them as
constants. So, we are looking for the values of Ry, Ry, L,, Ly for which Eq. (12) has a
minimurmn.

So that the problem is reduced to the minimization

i 2 (Ve Ve w) + (Ve - v 0) . a9

For 0 < tx < tg, Ve, and Vi, are given as follows:
1 [t
Vcl(tk)IOStkSLB — O_]_./[] Illdt+V61|tk:[}7 (14)

1t
VCZ(tk)lUStkSin — C_l_/o (Iz — Ill)dt + VC2th:0, (15)

where I and I are calculated from (2) and (3), and for tg < t; < tpin,

1 [h

ch(tk)haﬁikétpm - Ezjt'a (2= L = Tu)dt + VC"’lithn’ (16)
1 [t

Ve, (tk)ltBStkSt?lN - Cy ts Ui+ Lo -+ Vi |tk=ta’ (17)

where I, I}, and I are calculated from Egs. (7), (8) and (9).

4. PROPOSED ALGORITHM

The algorithm based on the Gauss-Seidel method used in this work is reported else-
where [3], and the integrals terms in the equation system are solved using a conventional
Runge-Kutta method. The algorithm was written in Fortran v. 5 from Microsoft and a
PC Pentium 100 Mhz was used. The solution took approximately 5 hours. To obtain a
graphical representation of the voltage we have used an additional Fortran program and
the Harvard Graphics software.

5. RESULTS AND CONCLUSIONS

From the experimental voltages Vi, and V¢, (see Fig. 2), we chose 26 values V¢, and
V¢, for calculation (see Table I). After processing with Vi, (tx) and Vi, (tx), for k =
1,2,...,26, we obtained the parameter values shown in Table II.

In Table II the obtained values when the spark gap and the laser head fired at the
same time [3] are shown too. In the present model we have that for the laser head
R = oo for 0 < ¢ < tp (because in this period of time no current flows through the laser
head) and Ry = 1.644%Q and L, = 5.072 nH for tg < t < tppn, while in our previous
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TABLE I. Measured values.

k te x 1079 [seg] VG, (t) VI VE,(t) [V]
1 0.0 8857 8857
2 2.22 8857 8286
3 4.44 8611 6944
4 6.66 9428 6000
5 8.88 10000 4444
6 11.10 10571 3143
7 13.32 10000 1389
8 15.54 9714 571
9 17.76 5833 833

10 19.98 4286 1143
11 22.20 1389 1389
12 24.42 0 1389

13 26.64 833 556

14 28.86 833 —833

15 31.08 0 —1389

16 33.30 0 —1143

17 35.52 i aakil —-1389

18 37.74 —833 —1571

19 39.96 —1389 —833

20 42.18 —1111 —1389
21 44.40 —833 —1944
22 46.62 —833 —1389
23 48.84 —833 —1111
24 51.06 —417 —833
25 53.28 —556 —556
26 55.50 —a71 0

report [3] Ry = 3.068 €2 and L; = 19.09 nH for 0 < t < tpin. We conclude that the lower
values of R; and L calculated in this work, occur because we are considering now that
the change of their maximal to their minimal values take place in a shorter time. The
two steps model produce a very important change in the value of Ly and in the relation
L1/Ly. Now the calculated inductance of the laser head is lower than the inductance of
the spark gap. This is physically very reasonable because the channel of the discharge in
the laser is thicker than the channel of the discharge in the spark gap.

Finally, Fig. 5 shows the voltage behavior obtained with the parameters from Table I
and Eqgs. (2)-(10). The evolution in the voltages until the first 26 ns, Figs. 2 and 5, show a



PARAMETRIC IDENTIFICATION OF THE VARIABLE STRUCTURE ... 255

0 5 10 15 20 25 30 35 40 45 50 55 ns 0 5 10 15 20 25 30 35 40 45 50 55 ns

KV
10

8

Viasen
‘ 3
i |
Ver '-ch
2 :
0 v/\‘-—-—-—__u

2
0 5 10 15 20 25 30 35 40 45 50 655 n8

FIGURE 5. Top left: simulated voltage V-, ; top right: voltage Ve,; bottom: voltage across the
laser head (Ve, — Vi,).

TABLE II. Results of parametric identification.

This work From Ref. 3
R, 1.644 [ 3.068 [Q]
R, 1.1936 [Q] 1.43 [Q]
L, 5.072 [nH] 19.09 [nH]
Lo 20.062 [nH] 8.65 [nH]

good fit taking into consideration that a linear mathematical model was used to simulate a
nonlinear process. The breakdown in the laser head takes place when Ve, — Ve, reaches its
maximum value. From this time on, the process is represented by the equivalent circuit
of Fig. 4b, but after laser emission the laser discharge changes into an arc discharge,
changing their inductance and resistance drastically. Because this discharge period of
time is not interesting for laser emission it has not been analyzed.
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While conventional methods of solving Blumlein or charge transfer circuits, like the
method used in our previous report [3], do not consider the inductance L and the fire
times of the spark gap and the laser, and assume a given solution, simplifying the solution
of the circuit, these do not explain the asymmetrical behaviour of the first pulse in the
laser voltage. The model proposed in this work allows to introduce all the elements of
the laser circuit, or the analysis of more complex circuits, and the fire times of spark
gap and the laser, producing a best fitting to the real operation of the circuit and to
the experimental voltages. Finally the two steps model produce most suitable values for
the inductances. A limitation of our model is that it does not consider the nonlinear
properties of the spark gap and the laser.
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