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.In

..\BSTIL\CT. A brief sumIrlary of the selfeonsistent field method leading to a four-index matrix
dielectric fUllction, as the one of the randorn phase approximatian, for a quasi-two-dimensional
eleetran gas is reminrled. General expressions for the form factor concerning electron-electron
interaction in single heterostructures and qUilntum welIs are derived when different dielectric
constants on each side of an interface are considered alld, besides, the envelope functions in the
('onfinernent direction can penetrate into the barrier regíons. This problern is tightly connecterl
with lIumerical calculations for lllultisubband transport in inversion layers and semiconductor
heterostructures, as well as for other phenomena itl this kind of systems where screening of
ill\'oln'd interaction in intersubband scat.tering I1l1lsthe t.akcn into account.

HESU~IE:\'. En este trabajo se obtienen relaciones generales del factor de forma para la inter-
acción e1ect.rón-electrón en heteroestructura..'i simples y pozos cuánticos cuando las constantes
dieléctricas etl cada lado de la interfase es diferente y la.s funciones envolventes pueden penetrar
la barr('ra de potencial. Adicionalmente se presenta una breve descripción del método del campo
autoconsistent e y de la aproximación de fase aleatoria en lo que coucierne al cálculo de la función
dieléctrica de un gas de electrones cuasi-bidimensional. Las expresiones que aquí se presentan
son út.iles en el estudio de fenómenos de transporte donde pa.rticipan varias sub-bandas y donde
el apalltal1amiento involucrado juega un papel importante.

I'ACS: 73.40.Lq

l. INTHODUCTION

AlIlOII~ the elcctrollic properties of a <¡llasi-two-dilllellsional (Q2D) electron ga" fOrIncd
in semiconductor hetcrostructures and illvcrsioIl layers, transport phcllomcna have bcen
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widely studied both theoretically and experimentally. Most of the works developing con-
crete ca1culations has employed the so-called sizc-quantulll-limit (SQL) approxilllation,
where only the lowest subband amI intraBubband transitions are considered. Multisub-
band transport, ineluding intersubband transitions, has been treated following the qua-
sielassical formalism of Boltzmann transport equation (BTE) [1-11] amI the quantum
forlllalism of Kadanoff-Baym ansatz (KBA) [12-14]. Theoretical approaches have been
mainly concerned with elastic scattering mechanisms [1-6,12-14]; while inelastic scat-
tering mechanisms have been inchllled in a few works [7-11]. In numerical ca1culations
carried out for 1ll0mcntUI11 relaxation rates ar mobilitics, scrcclling of thc involved inter-
actions has been disregarded [9,10,12] or considered in different ways [2,3,5-8,11,13].

Sorne works suggest the random-phaBe-approximation (RPA) result, giving a four-
index matrix dielectric function (OF), to take acconnt of the screening elfect [1-41; but
the needed matrix elements of screened interaction expressed through the known matrix
elements of baTe illteractioIl requirc the invcrsion of sllch a four-indcx matrix, él problem
not explicitly considered in Rels. 1-4. Other works employ a strictly two-dim~ ••sional
(20) or a SQL result of the Q20 case, originally obtained in a se¡fconsistent field (SCF)
approach, for the OF in order to consider the screening effect even in intersnbhand
scattering [5-8,13], what seems to be a eoarse approximation, but avoid the inversion of
the four-index matrix OF. A mathelllatieal formalism has been developed to find directly
the elements of the inverted four-index matrix OF [15]' avoiding in this way the inversion
of the generally known RPA result, but leading to a rather cumbersome proeedure to
take account of the screening effect.

The best OF for a Q20 electron gas to be employed in numerical ca1culations related
to transport phenomena is the RPA result, which could be further enhanced in two ways:
introdueing a factor multiplying the polarizability, on the line developed by lIubbard or
Singwi and Sjolander for a three dimensional (3D) eleetron gas [16); or improving the
polarizability itself, as Maldague did for a 2D electro n gaB [17). None of that would
change the four-index matrix fonn of DF in the Q2D caBe. Reeently a method to invert
such four-index matrix, leading to an easy procedure to take aecount of the screening
effeet, has been developed [18].

The RPA result ineludes the so-called form factor eoncerning electron-electron inter-
action, which takes aceount of the inhomogeneous character of the Q2D electron gas in
the eonfinement direction through the envelope functions corresponding to the eonfining
potential model [19]. It also depends on whether the Coulomb interaction is assumed
to occur in an hOlIlogeneous 01"an inhomogeneous IIlcdimIl. In the fOfmcr ea.o:.¡c the dif-
ferenee between dielectrie constants on both sides of each interface is neglected, and a
general express ion for this form factor haB been widely employed in ca1culations [10]. In
the latter CaBe,considering the different dielectric constants on both sides of an interface
a quite general expression has been reported for inversion layers and single heterostruc-
tures (SH's) [4]' hut it has not been derived for quantulll wells (QW's). A particular
expression, aBsuming infinite-barrier square confining potential model (IBM), haB been
obtained for a QW [20]. These two expressions have iu COlllmon that they have been
derived for envelope functions in confinement direction which do not penetrate into the
barriers at the interfaces. But consideration of finite barrier at eaeh interface or self-
consistent ea1culations lead to penetration of these euveloped functions into the barrier
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regíon, a faet that lOannot be uisregarded in ealculations [19]. Sinee a further enhanee-
ment of the RPA result, as suggesteu just aboye, would not ehange the strueture of this
form factor, it is to the point the ueriyation of general expressions for SR's and QW's.
The present paper aims to solye this question of both theoretieal anu praetical interest.

2. FOUR-INDEX MATRIX DIELECTRIC FUNCTION

In the study of transport phenomena in SR's, QW's or inyersion layers, we deal with
a Q20 eleetron gas when an external field, namely the seattering field, is present. The
perturbed Hamiltonian of sueh a system is

ii(i',z;t) = Ho(i',z;t) + V(i',z;t),

where the unperturbeu Ramiltonian is taken in the effeetiye mass approximation

~ _ ¡¡2 (2 2)
Ho(r,z;t)=-- \7,+\7z +U(z),

2m'

(1)

(2)

with U(z) the eonfining potential aeeoruing to the ehosen model, i.e., infinite triangular
potential for a SH, finite-barrier square potential for a QW, selfeonsistent potential for
a Sil or QW. cte. (sce e.g. Ref. 19); and the perturbation is

V(i', z; t) = V(i', z) exp[(iw + 1¡)t], (3)

with 1¡-t +0 for auiabatie eonneetion (after making t -t -00). Here i' = (x, y) and w is
the seattering field frequeney.

This pertnrbation is nothing else but the sereened seattering potential,

V(i', z; t) = Vo(i', z; t) + VI (r"", z; t), (4)

where Vo(i', z; t) is the bare seattering potentia! (external perturbation) and VI (i', z; t)
is the sereening potential (indueed perturbation). The bare interaetion eorresponds to
the eonsidered seattering meehanism. Elastie seattering of eleetrons oeeurs when they
interact with acoustic phonons, ion-impurities, interface roughness or somc other defects;
eaeh of these meehanisms is usually modeleu in the same way and one ueals with statie
sereening (w = O). On the other hand, inelastie seattering of eleetrons by optieal phonons
depends on the starting model for this branehe of lattiee Yibrations, leading to different
interaetion Hamiltonians (see, e.g., Refs. 9, 11 and 19) anu one must ueal with dynamieal
sereening (w '1 O).

If the perturbation is suffieiently smal! (i.e., V(i', z) « kfjT, the thermal energy of
the Q20 eleetron gas), linearization of the equation of motion for the statistieal operator
amI solution of the Poisson equation, relating inuueeu perturbation with indueeu uensity
of electrons. yield the following relation between 20 Fourier eomponents of the bare
interactioll ami the screcncd interactioll (sce, e.g. Ref. 20):

V~n,(q,w) =:L 'nn'/¡o(q,w) V¡¡o(q,w),
1,11

(5)



(6)
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whieh means that the matrix element of the transition between snbbands n and n' dne
to the bare seattering potential:

v.?n,(t!,w) ~ J 'P~'(z) VO(q,z;w) 'Pn(z) dz,

and the matrix elements between snbbands / and /' dne to the sereened seattering po-
tential,

V¡?M,w) = J 'Pi,(z) V(q,z;w) 'P/(z) dz, (7)

with 'P/(z) the envelope fnnetion eorresponding to U(z) along the confinement direetion
aIJ(1q= (q"qy), are eonneeted by the fOIIr-index matrix OF, whose elements are

(8)

(9)

(10)

where 0n/ is the Kroneeker symbol and the suseeptibility is

Xnn'ldq,w) = e2sf1l1'(q,w) Fnn'ldq),
qEo

where f1l1'(q,w) and Fnn'lI'(Q) are the polarizability and the form factor, respeetively,
whieh are given by Eqs. (10) and (11), EO is the statie dieleetrie eonstant of the material
lodging the Q20 electro n gas and S the norma!ization arca in the XY plane parallel
to interfaces. The latter result conld be enhaneed introducing a factor rnultiplying the
polarizabi!ity, on the !ine developed by Hubbard or Singwi and Sjolander for a 3D eleetron
gas [WJ.

The polarizability is given by

TI ( - ) "" jdk + q) - j¡(k)
u' q,w = Lo- - ..... ,

k E(k + ,n + El' - E(k) - El + fu.u - ir,

where j¡(k) is the Fermi-Dirae distribution fnnction (see, e.g., Ref. 10), E(k) is the qlla-
sidassieal energy assoeiated with 20 motion of 'In eleetron with waveveetor k = (k" ky)
and E¡ is the bottom of / sllbband. This express ion eould be improved as Maldague did
for '120 eleetron gas [17J.

Tite fOfm factor conccrnillg clectroll-clcctron intcractioll, obtaillcd IIcglcctillg tite dif-
ferenee between dieleetrie eonstants of materials forming the inversion layer. SH or QW.
¡s givell by

(JI)

Considering the dillerent dieleetric constants at both sides of eaeh interface such a general
expressioll ha.s hccn rcported [or il1v(~rsioll Ia.yers aJl(i SH's (sce EC}. (:J.:J7) in Ref. 4}, hut it
has uoí, hccn dcrived ror QW's. A particular cxprcssion, a.sslllllillg infinitc-harricr squarc
confining potential, was first obtained in Ref. 20 [see Eq. (20) there].

In this way a for-iudex rnatrix DF is fonud using a SCF approach, huI. exactly the
same result can 'liso be obtained iu the RPA of rnany-body theory. so it is usually named
the RPA result.
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3. FORM FACTOR FOR ELECTRON-ELECTRON INTERACTION

The derivation of a general expression for the form factor concerning c1ectron-electron
interaction, such ,~, (11), but considering the different dic1ectric constants at both sides
of each interface in a QW, requires the solution of an electrostatic problem, which arises
when one follows the SeF approach to ¡¡nd the four-index matrix DF of a Q20 electron
gas. (see, e.g., Ref. 20).

The Poisson equation relating induced perturbation with induced density of electrons
results in the following equation for the 20 Fourier component of the screening potential:

where the lineal differential operator is

- d2 2L=--q
dz2

and the induced charge density is given by:

2

J(z) = E:(:)S ~?=(.0, l'lpdk, 1). <pi(z) <p¡-(z). Ók..•.k+Q" ,
k,l k' ,1'

(12)

(13)

(14)

with S the normalization area in XY plane, PI the non-equilibrium part of the statistical
operator and

o < z < el (inside the QW);
z < O and z > d (in the barriers).

(15)

Equation (12) must be solved together with the houndary conditions at z -+ :1:00 and
the matching conditions at z = Oand z = d:

yl (:1:00) = O, (16)

yl(O-) = yl(O+), yl(d-) = yl('¡+), (17)

el 1 el d d
tb-I Y (0-) = tW-d yl(O+), tW-d

yl(,r) = tb-d
yl(el+). (18)

(Z z Z z

The solution of the mathematical problem (12) with (16)~(18) is sought employing
the Green function (GF) method. Thus one has

yl(Z) = J dz' J(z')G(z,z'),

where the GF have to satisfy the following equation:

¿G(z, z') = -47TÓ(Z - z'),

(19)

(20)
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together with the same kind of boundary and matching conditions:

G(:I:oo, z') = O,

G(O-, z') = G(O+, z'), G(d-, z') = G(d+, z'),

d G(O- ') d G( + ') d G( _ ') d +,Eb-d ,z = EW-d O,Z, Ebd- d,z = Ew-G(d ,z).
z z z dz

One looks for the solution of (9)-(12) in the form

G(z, z') = 271 r(z, z'),
q

where

(21)

(22)

(23)

(24)

¡rdz,z'),
1'(z, z') = rw (z, z'),

I'n(z, z'),

z' < O

0< z' < d
z' > d.

(25)

The GF can be interpreted as refiecting the interaction between a source charge
p1aced at z' and a test charge placed at z. The presence of the interfaces is taken into
account by means of the two image charges corresponding to the source charge. The test
chargc interacts with au illlage charge ollly if they are loeated al diffcrcllt media ami,
besides, at different sides of the interface giving rise to the latter. Notice that here one
is dealing w¡lh dielectrics allll therc are only two images of t}¡c source~ which are due to
the polarization of thc media, but Bol a series of imagc::i a."i in thc case of conductors.

This way when the source charge is on the left side of the QW (z' < O):

z < O;

0< z < d;

z > d;

(26)

where the constants are found from the matching conditions (22) and (23)

1 = 2- (,2 _ ,2) (1 _ c-2'1d)
I L E CIJ C-1JJ ,

2
DI, = EEb (E", + Eb) .

_ 2 ) 2'1"el, - EEb (E", - Eb e ,

4
DI, = EEbE""

with

2 2.-2qdE = (Eb + E",) - (Eb - E",) e .

(27)

(28)

(29)

(30)

(31 )
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When the source charge is inside of the QW (O< z' < d):

r Aweq(z-z'),
fw(z,z') = ie-q1z-z'l + Bwe-q(z+z') + Gweq(Z+Z'-2d),

lDwe-q(z-z'),

z < O;
0< z < d;

z > d;

(32)

where, from the matching conditions,

Aw = ;éw [(éw + éb) + (éw - éb) e2q(Z'-d)] ,

Bw = ~ (éw - éb) [(éw + éb) + (éw - éb) e2q(Z'-d)] ,

Gw = ~ (éw - éb) [(éw + éb) + (éw - éb) e-2qZ'] ,

Dw = ;éw [(éw + éb) + (éw - éb) e-2qZ'] .

Finally, when the source charge is on the right side of the QW (z' > d):

(33)

(34)

(35)

(36)

lA -q(z'-z)Re ,

fR (z, z') = BRe-q(z-z'+2d) + GRe-q(z'-z),

-qlz-z'l + D -q(z+z' -2d)e Re 1

where, from the matching conditions,

4
AR = Eéwéb,

BR = ;éb(éw - éb)e-2q(z'-d),

2
GH = Eéb(éw + éb),

DR = ~ (é~- é~)(1 _ e-2qd).

z < O;

0< z < d;

z > d;

(37)

(38)

(39)

(40)

(41 )

Notice that if one takes the ¡imil case d --+ O and éw --+ éb the following values are
obtained: AL = O, BL = 1, GL = O, DL = 1; Aw = 1, Bw = O, Gw = O, Dw = 1;
AR = 1, BH = O, Gil = 1, DR = O. This means that from (32), (26) or (37) one recovers
the hornogcllcous case.
Following the GF method, as it has just been employed for a QW, one can find for a

SH that the GF corresponding to the electrostatic problem similar to (12) and (16)-(18)
(now one must omit matching conditions at z = d since this interface does not exit) has
exactly the form given by (24), bllt now:

r(z z') = {f - (z, z'),
, f +(z, z'),

z' < O;
z' > O.

(42)
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When the source charge is at len from the int.erface (z' < O):

z' < O;
z' > o; (43)

where

(44)

Finally, when the souree charge is at. right. from t.he int.erface (z' > O):

where

z' < o;
z' > O

(45)

C
_ 2Ew+-

Eb + Ew
D

_ Ew - Eb+- .
Eb + Ew

(46)

Not.ice t.hat if one t.akes t.he ¡¡mit. case Ew -t Eb t.he following values are obt.ained:
A_ = O, B_ = 1; C_ = 1, D_ = O. This means t.hat from (43) or (45) one recovers the
hOlllogeneous case.

Finally, remark t.hat. t.aking t.he ¡¡mi!. d -t 00 from (26) obtains (43), while from (32)
or (37) one obt.ains (45).

Following t.he SCF approach st.raight.forward ealculations lead t.o

¡+oo ¡+oo
Fnn'ldq) = -00 dz -00 dz' r(z,z';q)'I'~,(z)'I'n(z)'I'i(z')'I'I'(z), (47)

whieh is the more general expression for t.he fonn factor one can writ.e t.o employ any
envelope funct.ions in t.he confinement. direct.ion. Of course, t.he function r(z, z'; '1) have
to be specified in accordance with the result.s present.ed just aboye in this section.

4. CONCLUSIONS

In this paper we have derived general expressions for the form fact.or concerning electron-
electron interaction in SH's and QW's when different dielectric constants at each side
of an interface are considered and, besides, the envelope functions in the confinement
direction can penetrate int.o the barrier regions. For this purpose we have employed the
GF method together with the image met.hod to solve the electrostatic problem arising in
the confinement direction; these met.hods seems to he the more suitable ones, as will be
(iiscussed elsewllcre.

This problem is connected not only with multisubband transport in semiconduct.or
heterostructures or inversioll layers, but also with any calculation concerning phcnomena
in Q2D systems where the screening of involvcd intcractions in intersubband scattering
must be taken into aecount. Actual calculations are in progress in our group and will be
prcsented in a furthcr paper.
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