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ABSTRACT. The ground-state magnetic properties of clusters with N = 3 atoms are studied by
soh"ing lhe single band Hubbard Hamiltonian in the unrestricted Hartree-Fock approximation.
Three-dimensional arrangements oí spins are considcrcd in the solution. Results for the total
energy and magnetic arder, as a function of the Coulomb interaction strength Ujt and num-
ber of eleetrons v, are prcsented. For half-band filling an antiferromagnetic nOll-collinear spin
arrangement is the most stable for the trianglc structurc. For v = 2 ami U ji ~ 16.2, v = 4
and U/t ~ 2.3 the linear chain is the most stable stcucture. In particular, it is found that the
inclusion oí non-collinear spins improves in the Hartrce-Fock ground-state cncrgy as compared
with collinear spins. Our rcsults are compared and discusscd with exact calculations.

RESU1.IEN. Las propiedades magnéticas del estado base de cúmulos con N = 3 átomos son estu-
diadas resolviendo el hamiltoniano de Hubbard para una banda en la aproximación no restringida
de Hartree-Fock. Se consideran soluciones magnéticas con arreglos de espines no colineales. Se
presentan los resultados de la energía total y el orden magnético en función de la intensidad de
la interacción de Coulomb y el número de electrones. Para la banda semillena la solución más
estable para la estructura triangular, corresponde a un arreglo antiferromagnético no colineal de
espines. Para v = 2 YU /t 2: lG.2, v = 4 YU/t ~ 2.3 la cadena lineal es la estructura más estable.
En particular 1 se encuentra que considerar espines no colineales mejora la energía del estado base
de Hartree-Fock comparada con espines colineales. Se discuten y comparan nuestros resultados
con soluciones exactas.

rAes: 75.1O.Lp;61.46.+w; 71.27.+a

l. INTRODUCTION

In recent years, the study of the magnetic properties of complex systems h,~, been a
subject of considerable research elfort. Most of the theoretical and experimental studies
on magnetism have been dedicated to the 3d-transitions metals (TM) due to their fun-
damental relevance in both basic and applied science [1,2]. In particular, the magnetic
behavior of the itinerant electrons in the 3d-TM is very sensitive to the geometric stcuc-
ture and to the local atomic environmeut. For instauce, (Y-Fe(bcc) is ferromagnetic while
'Y-Fe(fcc) is weak antiferromagnetic. Therefore, a detailed study of the illterplay between
magnetism and geometrical stcucture aud the st.ability of magnetism versus stcuctural
changes is of fundamental importance for the uuderstanding of the magnetic phenomena.



MAGNETIC PROPERTIES OF HUBBARD CLUSTERS ... 281

Clusters olfer the unique opportunity to study how the magnetic properties of a
system consisting of an isolated ato m change when more atoms are added with dilferent
geometries and, when as cluster size increases, bulk behavior is achieved. Nonetheless,
ah initio results for the rnagnetic properties of clusters are a very difficult task due to
the lack of symmetry. Therefore, one have to consider a model which is simple enough to
allow at least an accurate solution and at the same tirne contains enough cornplexity to be
able to shed light on the physics ofreal systems (e.9., 3d-TM). In the past a considerable
amount of results on clusters of 3d-TM have heen found by using a tight-binding Huhbard
Hamiltonian within the unrestricted Hartree-Fock approximation [3,4).
Generally, theoretical results for clusters have been found by assuming col1inear spins,

i.e., all the atomic spins pointing along a common direction. It is well known that when
the band is half-filled the magnetic solution is antiferrornagnetic, i.e., each spin has
its nearest neighbors pointing in the opposite direction to it. Nonetheless, when the
geometrical arrangement of the atorns is such, that does not allow an array of spins as
described aboye (e.9., atoms positioned in the vertices of an equilateral triangle), then
the structure is said to be antiferromagnetic frustrated. Thus, from physical grounds,
one can expect that the cluster, if it is allowed by the current approximation, develops a
non colliuear arrangement of spins in order to reduce its energy [5,6].
In the present work, we investigate the role of non-col1inear spins on the magnetic

properties of clusters of atoms hy considering the Huhbard rnodel within the unrestricted
Hartree-Fock approximation. For the sake of simplicity we only consider into our calcu-
lations 3-atom clusters, since in this way, the number of possihle cluster geometries is
srnall amI a systematic study of all of them can he done at the same time. Nonethcless
our formalisrn is not Iirnited by the cluster size.

2. THEORETlCAL FRAMEWORK

2.1. MODEL HAMILTONIAN

The maguetic properties of the clusters are obtained by considering a singlc-band Hubhard
Hamiltonian [7]

H = -t L el. ej. + UL !lit !lij..

(i,j),C1
(1)

In Eq. (1), i and j stand for the atomie sites of the cluster, el. (e;.) refers to the oue-
particle ereation (anuihilation) operator in the local lia) hasis and ni. = el.e;. to the
particle-numher operator in the i-site with spin a. For a given nurnber of eleetrons 11, the
only parameter of the Huhbard Hamiltonian is the Coulomh-interaetion strength Uft.
Notice that the first term in Eq. (1), takes into aceount the kinetie energy due to the

eleetrouic motion throughout the cluster. The seeond term, gives the Coulomb energy
contrihution due to the doublc occupations of the electroIls in the atomic sites. As it is
evident, there is a competition hetween these two terrns. On the one hand, the eleetrons
tend to deloealize in arder to gain kinetie energy, on the other hand, and opposite to
this mechanism, is the iI,crease in the Coulomb energy due to local charge f1uetuations
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which occur when the electrons delocalize. Therefore, the many-body state is a delicate
balance between these teflns in which, electronic correlations play an important role by
reducing the double occupations in a mutual!y avoided motion.

2.2. THE UNRESTRICTED HARTREE-FoCK APPHOXIMATIOX

Although that an exact treatment of electrons corrclations is necessary for a correct
description of the many-body solution of N-atonlS clusters, most of the physics involved
in the problem, in particular the magnetic properties, may be captured with the use
of the unrestricted I1artree-Fock (UHFA) approximation. The main assumption on any
type of Hartree-Fock approximation, is that the ground state of the Hamiltonian can
be approximated by a single Slater determinant in a basis of one electron states, which
minimizes the total energy

v

l1JJm) = IlalIO).
k=l

l'l'IIF) denotes the occupied Hartree-Fock ground state, al is the creation operator for an
electron in the k-level of the cluster, lJ is the total number of electrons (1 ::; lJ ::; 2N),
amI 10) is the vacuum state. In order to al!ow three-dimensional arrangements of the
local spins, the creation operator is writtcn a..')

al = L Af(1c!a-
ia

(3)

(4)

(5)

The single-particle density matrix is deteflnined in terms of the complex coefficients A7a
v

t. "-k k
Pia,ja' = (CiaCJ(1') = L- A¡aAjql ,

k=l

where (C;aCJa') refers to the average valne of the operator C;aCja' in the HF gronnd state,
which is obtained by minimizing the total energy (H), with respect to variations on the
set {A7a}' Taking into account al! these considerations, the self-consistent Hartree-Fock
equations (SHFE) can be read as

- t'L' Aja + U (Piá,iO Ara - Pia,ia A~a) = ékA~a'
j

In equation (5) Ek corresponds to the single-particle level, the prime in the summation
denotes that it is restricted to the nearest-neighbor sites of the site i. For a given self-
consistent solution of Eq. (5), al! the physical quantities of interest can be determined
in terms of the density matrix, for example the Cartesian components of the local spin
vector at sitc i:

(Si) = Re (Pit,i¡) ,

(51) = 1m (Pit,i¡) ,

(S[) = ~(Pit.it - (Ji¡'i¡) .

(6)
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Note that, if Pit,i, = O for all i, the spins are eollinear. In the present approximation,
the HF state is not an eigenstate of the total spin operator 82, due to this faet, the spin
quantum number 8 is ealculated through out the average

(7)

However, we will diseuss later that this symmetry breaking solution improves in the total
energy as eOlnpared with the restrieted Hartree-Foek method.

3. RESULTS

From the point of view of the Hubbard Hamiltonian, there are only two struetures with
three sites to be eonsidered, they are the equilateral triangle and the linear ehain. Notiee
that the triangle is more compaet than the linear ehain with an average eoordination
number i = 2, and i = ~ for the linear ehain. For a 3-sites c!nster, in the eontext of
the Hubbard Hamiltonian, the representative values of the band filling are v = 2, 3, 4.
Moreover, for these values of v we eau ealculate the exaet ground-state vector of the
Hamiltonian. Therefore, these simple systems olfer a good opportunity to learn-by
eomparing the Hartree-Foek ground state with the exaet one-what is the main role of
the eleetronie eorrelations on the magnetie solution, and furthermore, to what extent the
Hartree-Fock state can be eonsidered as a good approximation to the exaet ground state.

3.1. I3AND-FILLlt<G 11 = 2

This is a two-eleetron problem, indeed the simplest one in the many-body problem.
However, this simple system when it is solved exaetly within the Hubbard model, it
exhibits the behavior eharaeteristie of a strongly eorrelated system [8J. Coneerning the
lIartree-Foek solution although it gives good insight into the problem for instanee, the
kind of spin-spin eorrelations, local magnetie moments, etc., it fails to yield the eorreet
stability between the struetures as the eleetron eorrelations inerease in importanee.
Figures la, lb, and le show the Hartree-Foek energies for the eonsidered two strue-

tures as a funetion of U Jt. For UJt ;:::1G.2 the linear ehain is the most stable strueture.
This is in eontnL~t to the exaet results, in whieh the triangle has the lowest ground state
energy in the whole range of U Jt with total spin quantum number 8 = O. At small
values of UJt (UJt:::; 4.5 for the triangle and UJt:::; 2.2 for the linear ehain), both strue-
tures have total spin quantum number 8 = O, having zero values of the local magnetie
moments. In the triangle, the eharge distribution is quite uniform (all the sites are equiv-
alent), and in the linear ehain there is a tendeney to alloeate eharge in the central site due
to its large local bandwidth relative to its neighbor sites. In this regime (paramagnetic
phase), the ground state is dominated by the kinetie energy part of the Hamiltonian, as
it can be inferred from Fig. 1b; the average value of the kinetie-energy operator in the
Hartree-Foek state is approximately equal to the value at U = O and the average value
of the Coulomb-energy operator varies linearly with U Jt (see Fig. le). Therefore, the
stability of the triangle over the linear ehaiu in this regime is mainly determined by its
highest average coordination number, whieh allows the eleetrons to be more deloealized
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FIGURE 1. Hartree-Fock energies as a function of U /t for the triangle and the linear chain
with v = 2.

than in the linear chain. Nevertheless, the approximated Hartree Fock solution with
local magnetic moments equal to zero may yield to wrong conc1usions eoncerning the
main features of the ground state in this regime [9]. This can be seen in Fig. 2, where
the average value of the kinetic-energy operator for the triangle of the exact solution and
the present approximation is given. Notice the abrupt change of the kinetic energy by
using the Hartree Foek approximation at about U /t "" 4.5. Beyond tltis value of U /t,
a new solution emerges. In contrast, by solving tite Hamiltonian exaetly, tite variation
of tite kinetic energy is rather smooth in tite wltole range of U/t. In botlt structures,
tite main features of tltis new solution are a strong reduction of tite Coulomb energy
(see Fig. le), and the development of local magnetie moments (local spÍns); a1tltouglt
tite eltarge distribution tltrouglt out tite cluster remains the same. Nonetheless, tltis
cltanges result in a deereasing (localization) in tite absolute value of tite kinetic energy
being this effect stronger in tite Hartree-Foek solution titan in tite exact one (see Fig. 2
for U /t > 5.4 ). Notiee tltat as a typieal mean fidtl calculation, tite repulsive Coulomb
cncrgy is overestimatcd and the effect beCOIlICS critical 3..', U jt is furthcr incrca.."icd.
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FIGURE2. Average value of the kinetic-energy operator for the triangle in the exact ground state
(solid line) ami in the Hartree-Fock approximation (dashed line) as a function of U It with " = 2.

(a) (b)
FIGURE 3. Local 5pin vectors for the triangle. In (a) the spins are non-collinear, which corre-
sponds to the Hartree-Fock solution with " = 2 for Ult > 4.5 and to the lowest energy solution
with " = 3 for all values of U It. In (b) the lowest energy solution having collinear spins with
" = 3.

The magnetie solution for the triangle yields a non integral value for the spin quantum
number and a non-eollinear arrangement of the local spins. This arrangement of the spins
Jie on a plane as shown in Fig. 3a, and the total spin vector S = ((SX), (SY), (SZ}) =
Li( (Sf), (S[), (Sf}) is equa! to zero. The faet that the total spin vector is equal to
zero, and that the charge distribution remains the same as in the previous paramagnetic
solntion is indicative that the system is still trying to be in the lowest spin state S = O
but the Hartree-Foek so!ution breaks rotationa! synllnetry. The arrangement of the local
spins c1early shows a trend toward antiferromagnetie spin-spin corre!ations. This is the
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FIGURE4. Double occupations of the linear chain with v = 2 as a function of U/1, the different
kind of solutions are separated in regions by a vertical dashc<; Hne; the insets represent the spin
arrangements.

actual behaviar of the exact solution, but the corrc1ations are less stronger in the Hartree-
Fock 80lution.

The behavior of the linear chain is more diverse. For intermediate values of U/1 (2.2 ::;
U/I ::; 7.7), we found two different 801utions (see Fig. 4); one with collinear arrangement
of the spins (2.2 ::; U/t ::; 5.4) and other with non-collinear spins (5.4 ::; U/I ::; 7.7).
The collinear solution starts as U/1 is further increased from 2.2, its features are similar
to those of the triangle, i.e., (5) = o, ami the charge distribution i8 the same ¡¡., in the
paramagnetic phase. Moreover the central site has no local moment, the outer and less
coardinated atomic sites have antiparallel moments. Again the arrangement of the local
spins resemble the sart of spin-spin correlation8 found in the exact solution. The second
and non-collinear solution appears almost at the middle of the interval (U/I "" 5.4).
Its principal features are a sudden increase from a small value of S towards S = 1,
partially inclusion of ferromagnetic 8pin-spin correlations ((Si' Sj) > O far i # j), and
(5) # O with only one component. Moreover, the charge distribution is the same as in
the ferromagnetic phase. Far U/1 :2:7.8 the solution tums on the ferromagnetic solntion
S = 1 (ferromagnetic phase).

Conceming the stability of the solutions, there are two main deviations of the present
approximation from the exact ground state. One is the stabilization of the linear chain
over the triangle far U/1 :2: 16.2. The other is that the solntion far the linear chain is
ferromagnetic (S = 1) for U /1 2: 7.8 while the exact ground state shows that ferromag-
neti8m i8 stabilized only in the U = 00 limit (Nagaoka's thearem [lO]). The onset of
ferromagnetism at a finite value of U /t is well understoocl. Due to symmetry require-
ment8 in the S = 1 8tate there can be no double occupied sites re8ulting in a Coulomb
energy equal zero. Thus, the Hartree-Fock energy in the ferromagnetic 80lution is exact
and i8 a constant far all U/l. Furthermare, me may notice that this state for finite U/1
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corresponds to the first excited state of the exact solution. Hence the onset of ferro-
magnetism is a level crossing in the spectrum of the Hartree-Fock energy. Due to the
neglection of electronic correlations, the non-ferromagnetic solution lies above the ferro-
magnetic one. This is the reason why the Hartree-Fock energy for the triangle is greater
than for the linear chain for U/t ::o: lü.2.

3.2. I3AND-FILLlNG v = 3

It is well known that at half hand filling the Hubbard Hamiltonian leads to the Anti-
ferromagnetic Heisenberg Hamiltonian for U/t --; oo. In transition metals, antiferro-
magnetism is found for low values of the effective exchange interaction parameter J/W
at the middle of the d band (here, J refers to the Con 10mb exchange integral and W
to the band width). From a local moment picture of magnetism, a solution is said to
be antiferromagnetic, if the nearest neighbors moments of one atomic site in the lattice
are pointing on the opposite direction. This requires the lattice to be formed by two
interpenetrating sublattices, one for each moment direction. Ir this is not the case, the
structure is said to be frustrated. Clearly the linear chain being bipartite corresponds to
the first case. Its lowest energy HF solution is antiferromagnetic and nothing new can be
learn from it. The triangle, in agreement with the exact calculation, is the more stable
between the two considered structures at this band filling (v = 3), and also shows a more
interesting behavior. It is not hard to see that the magnetic characteristics of the spins
correspond to a frustrated structure. This structure offers a good example to see the
physics behind the non-collinear spins. In order to see the role of non-collinearity of the
spins, two kinds of solutions for the tr¡angle are studied in the present work, one with
collinear spins (CS) and the other with non-collinear (NCS). The solution with collinear
arrangement haB two spins pointing in a given direction and one in the opposite (see
Fig. 3b), the charge distribution is not uniform and favors slightly more charge in the
sites with the same spins. The arrangement of the spins in the CS, clearly indicate a
tendency toward antiferromagnetism but with a frustrated structure. Ir the restriction
of collinear spins is relaxed, a non-cullinear spin solution with lower energy is obtained.
The spin directions are the same as in Fig. 3a and the charge distribution is uniforrn.
Furthermore, the spins have the full symmetry operations of the triangle. One can ar-
gue from this solution that the frustration is partially removed, all the spins have an
antiferromagnetic component with respect to both neighbors. This can be better appre-
ciated in the spin-spin correlations which are clearly antiferromagnetic. Concerning the
trends on the stability Fig. 5 shows the total energy differences between the CS and NCS
calculations. The difference in the energy components are also shown for comparison.
Positive values in the total energy, means that the NCS solution has a lower energy, and
in the kinetic energy means a larger delocalization for the electrons in the NCS relative
to the CS. A positive difference for the Coulomb energy corresponds to a reduction of
the double occupations of the NCS rclative to the CS. With this in mind, Fig. 5 shows
that for small values of U /t the NCS has smallee double occupations. This is mainly due
to the fact that the charge spreads uniforrnly in the NCS. Although the electrons in the
NCS solution are more localized (smaller kinetic energy) than the CS solution, the gain
in the kinetic energy is not enough for the CS to be the lowest energy solution. For large
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FIGURE5. Energy difference for the triangle between collinear spín (CS) and non-collinear spín
(NCS) solutions as a function of U/t.

values of U /t which is the regime for saturation of the spins, the clectrons in the NCS are
much more delocalized than the those of the CS solution. This is due to the symmetry
of the NCS solution which allows a smaller kinetic energy lost upon magnetization. In
contrast, the bond formed in the CS between the two sites with the same spins is now
almost broken due to the saturation of the spins.

3.3. BAND-FILLlNG v = 4
Since the linear chain is bipartite, the resnlts for this structure at this band filling remain
the same as for lJ = 2. For U = O the triangle is degenerate in its last two paramagnetic
levels. This result causes the triangle to be ferromagnetic (5 = 1), for all U > O. It
may be argued that the stability between these structures is determined by this fact.
The ferromagnetic state in the triangle always has lower energy than the ferromagnetic
state in the linear chain. This is due to the large average coordination nnmber of the
triangle. On the other hand, for small valnes of U /t (O ~ U /t ~ 5.3) the linear chain in
the paramagnetic state yields the lowest energy.

4. SUMMARY

In this work the magnetic properties of clusters of N = 3 atoms have been studied by
solving the lIubbard Hamiltonian within the nnrestricted Hartree-Fock approximation,
which allows three dimensional arrangements of spins. It has been found that close
to half band, antiferromagnetic frustrated structures may develop a non-collinear spin
solution haviilg the lowest HF-energy. Moreover, for non-frustrated clnsters (as is the
case of the linear chain), a non-collinear spins solntion may be fonnd. Therefore, at least
for frustrated clusters at half-band filling, one has to take into account the possibility
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of non-collinear solutions when using the Hartree Fock approximation. In comparison
with exact calculations we found that our results for the spin-spin correlations with
non-collinear spins are in very good agreement with exact calculations. Concerning the
magnetic moments and total energy, the Hartree- Fock calculations overestimates the local
moments and total energy. Calculations for larger clusters are currently in progress.

ACKNOWLEDGMENTS

I would like to thank G.M. Pastor and J. Dorantes-Dávila for bringing this problem to
my attention and also for the insightful discussions. A scholarship from CONACyT is
also acknowledged.

REFERENCES

1. See for instancc, Ultrathin Magnetic Structrures, 1: an Introduction lo Electronic, Magnetic,
and Structuml Properties, edited by J.A.C. Bland and B. Heinrich, (Springer Verlag, 1994)
and references thercin.

2. Proceedings of the Seventh Intemational Symposium on Small Partides and Inorganic Clus-
ters, (ISSPIC7), Kobe, Japan, September 14-16, (1994).

3. C.M. Pastor, J. Oorantes-Oávila and, K.H. Bennernann Phys. Rev. B 40 (1989) 7642; J.
Oorantes-Dávila, C.M. Pastor, and H. Oreyssé, Phys. Rev. B 46 (1992) 10432.

4. C.M. Pastor, J. Oorantes-Oávila, S. Pick, and H. Oreyssé Phys. Rev. Lett. 75 (1995) 326.
5. F. WiIlaime and L.M. Falicov J. Chem. Phys. 98 (1993) 6369
6. L. Bergomi, J.P. Blaizot, Th. Jolicoeur, and E. Oagotto, Phys. Rev. B 47 (1993) 5539.
7.. J. HlIbbard, Proc. R. Soco London A276 (1963) 238; A281 (1964) 401; J. Kanamori, Prog.

Theor. Phys. 30 (1963) 275; M.C. Cutzwiller, Phys. Rev. Let!. 10 (1963) 159.
8. C.M. Pastor, R. Hirsch, amI B. Mühlschlegel, Phys. Rev. Lett. 72 (1994) 3879; C.M. Pastor,
R. Hirsch, and B. Mühlschlegel, Phys. Rev. B 53 (1996) 10382.

9. For instance, the average value of the double occupation, spin-spin correlations, and local
moments, do not differ rcmarkably fraIn those at U = o.

10. Y. Nagaoka, Solid State Commun. 3 (1965) 409; O.J. Thollless, Proc. Phys. Soco London 86
(1965) 893; Y. Nagaoka, Phys. Rev. 147 (1966) 392; H. Tasaki, Phys. Rev. B 40 (1989) 9192.




