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ABSTRACT. A two-dimensional model for random diffusion-limited aggregation of particles of
two different types (colors A and B) on a square lattice is studied by computer simulation. Two
parameters are essential to the model—the distance d between two initial seed particles, and the
probability p for a randomly moving particle to be A-colored. Intensive numerical experiments are
carried out for different values of d and p. The competing growth of two-colored fractal structures
exhibit significant instability at p = 0.5 and small d which leads to a noticeable number of non-
symmetric aggregates. Quantitative characteristics of clusters such as their fractal dimension,
coordination number, and averaged ratio of the number of A- and B-colored particles in two-
colored aggregates are calculated.

RESUMEN. En este articulo se estudia un modelo bidimensional de agregacion al azar de dos tipos
diferentes de particulas (colores A y B) limitado por difusién, en una rejilla cuadrada, usando para
ello simulacién por computadora. Existen dos parametros esenciales en el modelo: la distancia
d entre dos particulas iniciales llamada semillas y la probabilidad p de que una particula que
se mueve al azar sea de color A. Se realizaron nimerosos experimentos computacionales para
diferentes valores de d y p. La competencia en el crecimiento de las estructuras fractales bicolores
exhibe inestabilidad significativa cuandop = 0.5y d pequena, lo cual conduce a un nimero notable
de agregados no simétricos. Se calculan algunas cantidades caracteristicas de los ctimulos, tales
como dimension fractal, nimero de coordinacién y relacién promedio del nimero de particulas
de los dos colores.

PACS: 05.40.+]

1. INTRODUCTION

Diffusion-controlled cluster formation, or diffusion-limited aggregation (DLA), is a non-
equilibrium irreversible growth process that gives rise to low-density random fractal ob-
jects. A wide variety of phenomena in nature and human activities lead to formation of
the DLA aggregates: metal-particle aggregation, coagulation of aerosols, crystal growth
governed by heat diffusion, solidification of alloys, electrodeposition, electrical breakdown
of ‘dielectrics, fluid flow in porous media, moving interface between liquids of different
viscosities (viscous fingering), secondary oil recovery, etc. [1-3].
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Various models of the growth of such aggregates have been proposed and studied so
far. The simplest one is the lattice model of Eden [4] in which particles are added at
random, one by one, to the nearest neighbors of already occupied sites. The Eden model
leads to a relatively compact cluster while a large number of experimental observations
of the DLA growth phenomena indicate structures whose density correlation falls off as
a fractional power of distance. The DLA model that reproduces experimentally observed
structures was proposed by Witten and Sander in 1981 [5]. In this model, one seed particle
forms the initial aggregate. Other particles appear a long distance from the aggregate
and perform a Brownian motion (simple random walk) on a lattice until they come in
contact with the structure and attach to it, or “die” having wandered far away from the
cluster. It was shown [5] that this model exhibits a fractional power-law behavior of a
density-density correlation function.

Since 1981, a great deal of investigations was carried out developing and expanding
the original DLA model. The subjects of studies were: on-lattice and off-lattice mod-
els, scaling properties and large scale effects, fractal dimension and symmetry of DLA
structures, cluster-cluster aggregation, etc. [6-22]. Though easy enough to formulate, the
DLA phenomenon was found very difficult to study theoretically. One possible approach
is based on hitting probabilities of moving particles [23, 24] and involves computer simu-
lations. In fact, the main means of getting quantitative information on the DLA cluster
growth still involves computational experiments.

A new model of diffusion-limited aggregation called the Colored DLA model was
developed in Ref. 25 which adds a new feature to the original model of Witten and
Sander—the competing growth of two fractal objects. In Ref. 25, the structure of the
interface between these objects was the main subject of investigation. In the present
paper, we report on intensive numerical studies of the two-dimensional Colored DLA
model. We pay particular attention to the influence of the two parameters of the model
on fractal growth - distance d between two initial seed particles and probability p for
a randomly moving particle to be A-colored. We present a qualitative description and
quantitative analysis of the two-dimensional fractal structures in the Colored DLA model.

2. CoLorRED DLA MODEL

Following Ref. 25, let us introduce the Colored DLA model in two-dimensional space.
Two particles of two different types (colors) A and B are put on a square lattice at
distance d from each other, with the origin of the Cartesian coordinate system at the
middle point between the particles. A long distance from this initial aggregate, at a
random point on a circumference Sy of radius Ry > d a new particle is added, with the
probability p of being A-colored and probability (1 — p)-B-colored. This particle then
performs a Brownian motion (i.e., simple random walk) on a lattice. If it reaches any
site of the lattice located at distance Ry > d from the origin, it is “killed” and a new
particle starts off at a random point on the circumference Sy, with the probability p of
being A-colored. The rules of interaction between particles are defined as follows. If
the particle reaches the point adjacent to the aggregate of the same color, it becomes a
part of the growing cluster. This rule is similar to the one of the original DLA model
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of Witten and Sander. However, if the particle reaches the point next to any particle of
the cluster of a different color, it is “killed.” The procedure is repeated until clusters of
sufficient sizes are formed.

Two parameters are essential to the model: the distance d between two initial seed
particles and the probability p for the particle to be A-colored. Clearly, for the reasons
of symmetry it suffices to restrict the study to the case 0 < p < 0.5. The question of our
main interest is the influence of these parameters on the fractal growth phenomenon.

In our computational experiments we utilized the procedure of the particles’ gener-
ation proposed in Ref. 6. We chose Ry and Ry to be equal to kRmax and Rmax + AR,
respectively, where k = 3, AR = 10 lattice units, and Rpax is the maximum distance of
particles in both clusters from the origin. Thus, distances at which particles are added
or “killed” change dynamically in the process of clusters’ formation. To speed up the
calculations we multiplied the elementary step of diffusing particle by factors 2, 4, 8, etc.,
whenever the particle was at distances Rpyax + 10, Rmax + 20, Rmax + 40, etc., from the
origin [6].

Our programs were written in Borland C++ and run on 66 MHz Pentium system.
We considered the following values of the distance d between the two initial particles and
of the probability p for a particle to be A-colored: d = 2, 10, 40 and 100 lattice units and
p=0.1,0.2,0.3, 0.4 and 0.5. For each pair of d and p we generated the ensemble of 25 to
100 two-colored fractal structures containing 3000 particles in the largest cluster of the
two. Some calculations were duplicated on a Silicon Graphics workstation to produce
aggregates of up to 30000 particles. The structures obtained were qualitatively the same
as those of 3000 particles (see below).

The results of our computer simulations of two-dimensional Colored DLA model are
presented in the next section.

3. TWO-DIMENSIONAL FRACTAL STRUCTURES

Firstly, we present a qualitative description of fractal structures obtained in our compu-
tational experiments.

For equal probability of generation of the color of a particle (i.e., in the case p =
0.5) cluster structures are almost symmetric for distances between initial seed particles
d = 100. Figure 1 displays a typical structure. All of the 100 experiments performed
for p = 0.5, d = 100 exhibit the aggregates looking very much like the one presented in
Fig. 1.

The picture is completely different when p = 0.5 and d = 2. We have found that
among the 100 computational experiments conducted for this pair of parameters, three
typical structures occur: aggregates that may be called “symmetric” (containing approx-
imately an equal number of particles (Fig. 2a), structures in which one of the fractals
develops as “a branch” (Fig. 2b) and, finally, two-colored aggregates in which one of the
clusters suppresses the growth of the second one (Fig. 2c). The growth of one cluster was
suppressed by the other in the 7% cases. This remarkable fact is intrinsically embedded
in the two-colored DLA model and points out a significant instability of the competing
cluster formation in the case p = 0.5, d = 2.
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Ficure 1. A typical structure for p = 0.5, d = 100.

FIGURE 2. Three different representative cluster aggregates for p = 0.5, d = 2: (a) “symmetric”
structure; (b) “branched” structure; (c) one cluster is suppressed by the other.

Figure 3 shows the superposition of one hundred two-colored cluster structures for
p = 0.5, d = 100 (Fig. 3a) and p = 0.5, d = 40 (Fig. 3b). The superposition shows a
triangular profile of a picture rather than a circular one, indicating that clusters’ fingers
extend faster in the direction along the axis connecting two initial particles. A similar
phenomenon has been discovered by Ball and Brady [9] in the superposition of clusters
of the original DLA model.

For comparison, twenty five two-colored aggregates have been superimposed for p =
0.3, d = 100 and p = 0.3, d = 40 (Fig. 4a and 4b, respectively). Similarly, for the low
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(b)

(a)

FIGURE 4. Superposition of 25 two-colored aggregates: (a) p = 0.3, d = 100; (b) p=10.3, d = 40.

value of the probability for a particle to be A-colored, p = 0.1, one hundred aggregates
have been superimposed for d = 100 (Fig. 5a) and seventy three for d = 40 (Fig. 5b).
The pictures, of course, are no longer symmetric with respect to both fractals. Figures 4
and 5 show how B-colored clusters “embrace” A-colored ones.
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FIGURE 5. (a) Superposition of 100 two-colored aggregates for p = 0.1, d = 100; (b) superposition
of 73 aggregates for p = 0.3, d = 40.

A qualitative analysis of the superposition of two-colored fractals (Figures 3-5) con-
firms, to some extent, the electrostatic analogy in the description of the two-dimensional
cluster formation presented in Ref. 25.

A “one-branched” fractal structure containing 30000 particles in the larger cluster
and 9132 particles in the smaller one (in the case of p = 0.5, d = 2) is shown in Fig. 6a.
Figure 6b displays “symmetric” aggregates for p = 0.5 and d = 40. One can see that
large structures are similar to those obtained in experiments with 3000 particles in the
larger cluster of the two.

Now we pass to a quantitative description of our computational experiments. For the
values of p = 0.1, 0.2. 0.3, 0.4 and 0.5 and the values of d = 2, 10, 40, 100, and for
each experiment conducted for a given pair of parameters p and d, we have calculated
a ratio of the number N; of particles of B-colored cluster to the number N, of particles
of A-colored cluster. In all our experiments except for those with p = 0.5, the number
N3 was larger than Nj so that Np/Nj > 1 (recall that p is the probability for a particle
to be A-colored). This is not the case for p = 0.5. As an example, Fig. 7 shows the
ratio No/Ny (on the logarithmic scale) vs. the number of experiment for p = 0.5 and
d = 100. The ratio N2/N; (also on the logarithmic scale) vs. the number of experiment
for p = 0.5 and d = 2 is displayed in Fig. 8. One can see almost symmetric oscillations
of the ratio N/N| near the value 1.0. Note also a striking difference between the two
pictures: in the former case (Fig. 7) there are no significant deviations of No /N, from
1.0, whereas in the latter case (Fig. 8) the oscillations are very strong, almost chaotic
even on the logarithmic scale. The points in Fig. 8 with very large deviations from the
value 1.0 correspond to the above mentioned typical case of the suppressed clusters. It
follows from Figs. 7 and 8 that in order to get the appropriate mean values corresponding
to the numbers of particles in both fractals, it is more convenient to use the logarithm of
the ratio of numbers of particles than the ratio itself .

Let Nmin = min(Ny, Na) and Nyax = max(N;, No). In the case p # 0.5 the non-
negative value log(Nmax/Nmin) is exactly the same as log(N,/Ny). For p = 0.5, the
value 10g(Nax/Nmin) is a rough measure of the symmetry (or non-symmetry) of a two-
colored aggregate since the necessary condition for the structure to be symmetric is
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FIGURE 6. (a) Colored DLA structure containing 30000 A-colored particles (black cluster) and
9132 B-colored particles (gray cluster) for p = 0.5, d = 2; (b) The aggregate with 20000 A-colored
particles (black cluster) and 19051 B-colored particles (gray cluster) for p = 0.5, d = 40.

102(Nmax/Nmin) = 0. At the same time, the mean value of log( Nmax/Nmin) (defined
below) is not equal to zero as it would be for log(Ny/Ny).

The individual configurations of two-colored fractal structures produced in simulation
runs for a given pair of p and d are statistically independent of each other. Therefore, the
standard error analysis applies [26]. Let I; denote the value of log(Nmax /Nmin) obtained
in the trial i (i = 1,... ,n). The average we take is the simple arithmetic average

1 n
(log(Nma.x/Nmin)) = (l) = E Zli’
3=]
and its error is estimated as
1 m 1/2
- o 5
[n(n -1) Z (ki =) ] :

t=1

The values (log(Nmax/Nmin)) averaged over the total number of experiments within each
given pair of p and d, together with its estimated error are presented in Table I. The upper
number in each entry of Table I gives the value of (log(Nmax/Nmin)). The lower number
is the estimated error. As one can see, for a given value of the probability p the error
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F1GURE 8. Relative number of particles in both clusters vs. the number of experiment, for p= 0.5,
d =12,

grows when the distance d between initial seeds changes from 100 to 10 lattice units. This
increase reflects an important fact observed in our computational experiments: significant
instability (for small d) of the initial stages of competing cluster formation caused by the
mutual screening of two-colored fractals. In the case of p = 0.5 this instability leads
to three typical cluster structures described above, with substantially different number
of particles. The effect attenuates with increasing d. The values of (log(Nmax/Nmin))
vs. probability p for distances between the two initial particles d = 2, 10, 40, and 100,
according to the data presented in Table I, are plotted in Fig. 9.

In order to evaluate the influence of the competing cluster formation in the Colored
DLA model on the fractal properties of clusters, the fractal dimensions D of both two-
colored structures of the large aggregate shown in Fig. 6a were estimated in the most
mteresting case p = 0.5, d = 2. To this end, the radius of gyration R, was calculated



356

V. TCHUIOV ET AL.

TaBLE 1. Averaged logarithm (base 10) of the ratio of numbers of particles in both structures,
(log(Nmax/Nmin)), (upper value), and its estimated error (lower value).

p 0.1 0.2 0.3 0.4 0.5
2 3.055 2.713 2.179 1.049 3.449 x 107!
3701 %1072 | 1.024x 107! | 1.319x 107! 1375 x 10~ | bdl5x16-2
10 2.559 1.884 1.128 6.262 x 10~} 1.096 x 10~}
5078 x 1072 | 3.194x 1072 | 5.266 x 1072 | 3.150x 1072 | 1.089 x 1072
40 1.672 1.154 7.419 x 107! 3.916 x 107! 4,709 x 10~2
9.063 x 1073 1.149 x 1072 1.146 x 1072 9.388 x 102 3.909 x 1073
100 1.366 9:295 % 1072 5.983 x 107! 2.921 x 107! 2.799 x 102
7.268 x 1073 7.775 x 1073 6.122 x 1073 6.601 x 1073 1.926 x 1073
Distance
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FIGURE 9. The values of (10g(Nmax/Nmin))vs. probability p for distances between the two initial
particles d = 2, 10, 40, and 100, according to data presented in Table I.

which has a power-law dependence on the number of particles in a cluster for sufficiently
large N: Ry ~ NP [27). The fractal dimension D is given by D = 1/3. The radius of
gyration R, of an N-particle aggregate is defined as

where R; is the radius-vector of the i-th particle and R.(N) is the radius-vector of the
center of mass of the aggregate (we consider each particle to have a mass equal to 1). By
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Ficure 10. Dependence of radius of gyration R, on cluster size N during the formation of the
A-colored cluster of 30000 particles shown in Fig. 6a.

using the recurrent relationships

N-1 N—1 ‘
R2(N) = TRg(N -1+ 5 R.(N -1)- Ry
N=1 1
R(N)=— re(N —1) + - Rn

it is possible to plot R, versus N in the process of the cluster growth. Figures 10 and
11 show how the radius of gyration increases with increasing cluster size during the
simulation of the structure presented in Fig. 6a. Figure 10 depicts the logarithm of the
radius of gyration of a A-colored cluster containing 30000 particles vs. the logarithm
of the number of particles. The figure illustrates that R, ~ N7 for large N with 8 =
0.575. Similarly, Fig. 11 shows the logarithm of the radius of gyration of the B-colored
“branch” cluster containing 9132 particles vs. the logarithm of the number of particles.
The corresponding value of 3 is 0.581. The fractal dimensions of A- and B-colored
structures presented in Fig. 6a are 1.739 and 1.721, respectively. The obtained values
of 3 and D are very close to those reported by Meakin [6] for conventional DLA model
which means that the competing cluster growth does not affect noticeably the fractal
dimension of the two-colored aggregates.

Finally, for each pair of parameters p and d the mean coordination number (z.e., the
mean number of neighbors of a particle in a cluster) was calculated by averaging over
B-colored fractals containing 3000 particles. The results are presented in Table II. One
can see that the averaged coordination number is not sensitive to the variations of p and
d and is very close to the value found by Meakin [6].
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TABLE 11. Averaged coordination number for the clusters of color B (upper value), and its esti-
mated error (lower value).

p 0.1 0.2 03 0.4 05
d
9 2182 2.189 2.184 2.186 2.180
1128 x 10-3 | 2.350 x 103 | 2.998 x 10-3 | 2.098 x 10~% | 1.246 x 10-3
10 2.186 2.181 2.189 2.184 2.189
2274 10~% | 2.188x 103 | 1.739 x 10~3 | 2.298 x 10~% | 1.512 x 10~3
40 2.185 2.186 2.185 2.183 2.185
1.479 x 10-3 | 1.836 x 10~3 | 2.050 x 10~% | 2.460 x 10-3 | 1.196 x 10~?
100 2183 2.184 2.185 2.185 2185
1784 x 103 | 2.349x 10-3 | 2,589 x 10~% | 2.048 x 10~? | 1.148 x 10~3
5 g
4 —
l:? §
g | &
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FIGURE 11. Dependence of radius of gyration R, on cluster size N during the formation of the
B-colored cluster of 9132 particles shown in Fig. 6a.

4. CONCLUSIONS

The results presented in this paper pertain to the two-dimensional Colored DLA
model [25]. We have performed intensive computer simulations of two-dimensional two-
colored fractal structures devoting main attention to the qualitative and quantitative
dependence of random fractal aggregates on the two parameters of the model: the dis-
tance d between initial seed particles, and the probability p of a diffusing particle to being



FRACTALS IN TWO-DIMENSIONAL MODEL OF COLORED ... 359

A-colored. A significant instability of the initial stages of the competing cluster growth
was found for small d and p = 0.5 which results in a formation of substantially different
aggregates (Fig. 2). Pictures obtained by the superposition of structures produced for
various d and p provide an additional insight on the cluster growth phenomenon and
confirm, to some extent, the electrostatic analogy developed in [25]. The calculation of
the averaged coordination number of a particle indicate that this important quantity is
not affected by the competing cluster growth of the Colored DLA model. Our experi-
ments with two-colored aggregates of large size have indicated that the fractal dimension
of clusters is also insensitive to the competing cluster formation and is very close to the
value of the original DLA model.

The Colored DLA model can be generalized by introducing a sticking probability of a
particle to a cluster of the same color, by performing computational experiments in higher
dimensions, and by varying a method of particle generation. In the forthcoming paper
we intend to report on the mentioned generalization and present a theoretical study of
the Colored DLA phenomenon. Note that our DLA model with two species is different
from the one recently presented in Ref. 28.
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