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ABSTRACT. A new variational formulation of the problem of the scalar wave diffraction on an
isolated inhomogeneity is proposed. The corresponding variational principle is based on the
forward amplitude of the scattering field. An approximate solution of the diffraction problem for
a spherical anisotropic inclusion is obtained with the help of this variational formulation. It is
assumed that the wave field inside the inclusion is a plane wave with unknown amplitude and
wave number. The latter are found from the stationarity of the variational functional of the
problem. The comparison of the exact and approximate solutions in the case of an isotropic
spherical inclusion is presented.

RESUMEN. En este articulo se propone una nueva formulacién variacional del problema de di-
fraccién de ondas escalares sobre una inclusion aislada. El principio variacional correspondiente
se basa en la amplitud de avance del campo de dispersion. Mediante la utilizacién de esta
formulacién variacional, se obtiene una solucién aproximada del problema de difraccién para una
inclusion anisotrépica esférica. Se asume que el campo de la onda dentro de la inclusion es una
onda plana con amplitud y nimero de onda no conocidos. Estos ultimos se obtuvieron a partir
de la condicién estacionaria de la funcional variacional del problema. Se presenta la comparacion
entre las soluciones exacta y aproximada para el caso de una inclusién esférica isdtropa.

PACS: 43.30.Gv; 43.30.5f; 43.20.Fn

1. INTRODUCTION

Diffraction of waves on isolated inhomogeneities (inclusions) in a homogeneous medium is
an important problem of the wave theory. Exact solutions of this problem are known only
for rather simple cases: for instance, isotropic inclusions of canonical forms (ellipsoids
and limit forms of ellipsoids) in an isotropic homogeneous medium [1,2]. Even in these
cases the exact solutions have the forms of series of spherical (or cylindrical) Bessel's
function and Legendre’s polynomials with a poor convergence. It is necessary to keep
about hundred of terms in these series to obtain a reliable result in the region of middle
and short waves [1]. For anisotropic inclusions or inclusions of non canonical forms, only
approximate solutions of the diffraction problem are available. A natural way to build
approximate solutions is a variational formulation of the diffraction problem. Some of
such formulations were considered in Refs. 2-4.



396 SERGEI KANAUN

In this work a new variational formulation of the diffraction problem is proposed. This
formulation is based on the forward amplitude of the scattering field. The corresponding
variational functional differs from the ones considered in Refs. 2-4 and depends on the
wave field and its gradient inside the volume occupied by the inclusion. It is shown that
this functional has a clear physical meaning: it is proportional to the forward amplitude of
the scattering field and its imaginary part coincides with the full scattering cross section
of monochromatic waves on the inclusion. This fact may be used for the correction of
approximate solutions, particularly in the short wave region where exact asymptotics of
the full scattering cross sections are known [1,2].

The proposed variational formulation allows us to construct an approximate solution
of the diffraction problem. It is assumed in this work that the wave field and its gradient
inside the inclusion are plane waves with unknown amplitudes and wave vectors. The
latter are found from the condition of stationarity of the mentioned variational functional
of the problem. Such an approximation is built here for an anisotropic spherical inclu-
sion. The comparison of the exact and approximate solutions for the isotropic spherical
inhomogeneity is presented. In the Conclusion the area of the possible application of the
plane wave approximation is discussed.

2. INTEGRAL EQUATIONS OF THE DIFFRACTION PROBLEM

Let us consider an infinite homogeneous medium with an isolated inclusion ideally con-
jugated with the medium along the interface. We study here the diffraction of scalar
waves of fixed frequency w (monochromatic waves) on such an inhomogeneity. If the
dependence on time t is defined by the multiplier e*! the amplitude u(z) of the wave
field in the medium with the inclusion satisfies the following equation of motion:

ViCyi(2)Vju(@) + pl@)o’ule) = —qlz),  Vi=0/0m;. (1)

Here z(zy, Ty, x3) is a point of 3D space, two rank tensor Cy;(z) and p(z) are param-
eters of elasticity and density of the medium. They are equal to Cp;;, po in the medium
and C;, p inside the inclusion; g(z) is the amplitude of the sources of the field. Here and
further low latin indexes are tensorial, summation in respect to the repeating indexes is
implied.

The functions C;;(z) and p(z) may be represented in the forms

Cij(x) = Coij + Chij(z), p(z) = po + p1(z),
Clzj(I) = ClijV(.'E), .01(-77) —_ pr(g:)’ (2)
Cli; = Cij — Caij, p1L=p— po,

where V(z) is the characteristic function of the area V occupied by the inclusion (V(z) =
lifzeVand V(z)=0ifz ¢ V).
After rewriting Eq. (1) in the form

ViCoi;Vju(z) + powlu(z) = —q(z) - ViCri(2)Vulz) — ; (z)w?u(r) (3)
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one can go to the integral equation for the wave field u(z) in the medium with the
inclusion

u(z) = up(z) +/ ViGo(z — 2')C1i;Vju(z’) dz'’
174

Jergr® ‘/V Go(z — ;C')plu(;c') d.'I:’, uo(z) = /Gg(m . $’)q($')d$'_ (4)

Here G(z) is Green’s function of the homogeneous medium with the elastic constant
tensor Cp;; and density pg. This function satisfies the following equation:

[ViCoisV; + pu?] Go(z) = ~(a), (5)

where §(z) is Dirac’s delta-function, and the “radiation” condition at infinity [5]. The
explicit form of Go(z) for an isotropic medium (Co;; = Codij, d;; is Kronecker’s symbol) is

—1kor
oz} = r=|zl, ko=w,/g—“, O (6)

T 4AnCyr’

Note that ug(z) in Eq. (4) is an “exciting” field which would have existed in the
homogeneous medium (Cj, pg) and the same sources g(x) of the field and the conditions
at infinity.

To obtain Eq. (4) it is necessary to apply the integral operator with the kernel Gy(x)
to the both parts of Eq. (3) and then to take into account the definition (5) of Green’s
function and Gauss’s theorem. The integral equation (4) is totally equivalent to the
original equation (1) and has been used by many authors for the solution of diffraction
problems [2,6, 7].

It is evident from Eq. (4) that the amplitude of the wave field gradient vector £(z) =
Vu(z) in the medium satisfies the equation

() = enl@) — [ Koyle = 2)Cuuer(a’)da’ +* [ ViGolo ~ 2)ute’) o'

Koij(z) = =V,;V;Go(z),  eo0i(z) = Viug(z). (7)
Symbolically the equations (4),(7) may be written in the forms
u =g+ VG- C) e+ w’Gpu, EZEQ—K'C1'E+UJ2VGP1U. (8)

Note that Eq. (8) are in essence the equations for the fields u(z) and (z) inside the
inclusion. The wave fields in the medium can be reconstructed from Eqs. (4), (7) if the
wave fields inside V' are known.

In the case of isotropic medium and inclusion (Co;; = Codyj, Cij = Cé;; and Cy, C are
scalars) the wave field u(z) inside the inclusion of unit radius @ = 1 may be represented in
the form of the series of spherical Bessel’s functions j,, (kr) and Legendre’s polynomials
Py, (cos ) of order m [2, 5]

ulz) = ulr, @)= Z G B Pulcosd), &= w\/g,

m=0
- (2m + 1)(—2)™+1Cy o .
™ FolCokojm (R) i (ko) — Okt iR () = Im () = im(2)- (9)

Gy
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Here y,,(2) are spherical Bessel’s functions of the second rank, f'(x) = df /dz; (1,8, ¢)
are the spherical coordinates in 3D-space with the origin in the center of the inclusion
and the polar axis directed along the wave vector ky of the exciting field ug(z). The
latter is a plane wave with the unit amplitude (u,(z) = e~"07),

3. A VARIATIONAL PRINCIPLE OF THE DIFFRACTION PROBLEM
Let us rewrite the integral equations (4),(7) of the diffraction problem in the form
u(z) = w(z) +u’(z),  e(z) = eo(z) + (),

w(z) = fv VGo(z — ') - C1 - e(z') da’ + w? fv Golz — ') prule’) de, (10)

e8(z) = - | Kolx—2')-Cy-e(z')de’ +w? | VGo(z — z')pru(z’) dz’.
Vv v
Further the exciting fields ug(z) and £y(z) are assumed to be plane waves with the
wave vector kg of the medium:

—ikp-x ikg-x
) )

up(z) =e gg = —tkge ko = kom, ko -z = kom,z;. (113

The fields u®(z) and £%(z) in the right hand sides of Eq. (10) may be intepreted as
the wave fields scattered on the inclusion. In the case of an isotropic medium the main
terms of these fields in the far zone from the inclusion(r = |z| 3> d, d is a characteristic

linear size of the inclusion) have the forms

_ efikgr e—ikgr T
ué(j’) = ¥ Fu(n), Ss(‘r) = 7‘ FE(n): FE(n) = —’l;k()IlFﬂ(l'l), n= F’
Fy(n) = — [ikgn-/ C - e(y)ettomy) dy+w2/ pru(y)eo ™) gyl (12)

47'('00 v Vv

To obtain these expressions we use the following asymptotic representation of Green’s
function and its derivative in the far zone (Jz — y| = || — n -y in this zone):

e-viku|:r| e—ika|x]

B 471’0{)

oiko(ny)

el kon)etko(ny)
47 Cly J (ikan)e

Go(z —y) = VGo(z —y) =
Let us consider the amplitud F,(n) of the scattering field in the direction n = m
(the direction of the exciting field propagation). Fy(n) is called the forward scattering

amplitude. Taking into account Eq. (11) one can represent F,,(m) in the form

%

i) = 47 Cy

-C1em) +Fomm)], (1) = [ f@p@dz  (13)

Here and further the line over functions means the complex conjugation; the last
integral includes the convolution if f and ¢ are tensor functions of the same rank.



A VARIATIONAL PRINCIPLE OF THE SCALAR WAVE ... 399

It is known (see, e.g., Refs. 1 and 2) that the imaginary part of the forward scattering
amplitude is connected with the normalized full scattering cross-section ) of the inclusion
by the relation

Q= ——Im [Fy (m)]. (14)

Here Sy is the maximal area of the intersection of the inclusion V by the plane
orthogonal to the direction m. Note that the short wave asymptotics (w, kg = o0) of @
is equal to 2 (the exctinction paradox [1,2]).

In the case of a spherical isotropic inhomogeneity of a unit radius the field u(z) inside
the inclusion has the form (9) and form Egs. (13), (14) we get the following expressions
for F,(n) and Q:

= 0 Z i oy [ Ol = f)_;gm] Pm(COSQ),

m=0
4 Ch
= —koIm
Q= gholm
where 6 is the angle between the vectors n and m, the functions H, and H, are defined
by the series

Helk ko) = 2L, , ko)] (15)

1 . (e o]
H, = v /Vu(m)e’k"'x dr = Z i B Gm,

H, = kQVkO / Vu a:)e’k"rd:z: = Z £ 1, (16)

m=0

3 ; : : . 3 . :
w2 2 kim+1(K)jm (ko) — kojm+1(ko)jm(K)l,  g1m = E;Jm(k).y:'n(kﬂ) + 9m;
0

Om = E
and «y, has the form (9).
Let us express ug and £ through u and ¢ using the original equations (8) and sub-
stitute the result in Eq. (13). For the function F,(m) we get the following expresion:

Fulm) = = |- (C%.¢) - (Cre. K- C1 - €) +w? (T, VGapr)

47]'00
+w*(pra, u) — w? (P14, VG - C) - €) — wi (P17, Gopm)] W v

Let us introduce the functional JQ(u,¢):

JQ(u,e) = [— (m, S) — (m,K - -E) + w? (51——5, VG'gp]u)

Vv
koCo Sy
w? (p1u, u) — w? (P18, VGy - Cy - £) — w' (A1, Gopru)

+ (Cl -5,59) — i (P14, up) + (C1 - €,50) — w? (plu,ﬁg)] . (18)
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Because of Eqs. (13) and (17) the value of this functional on the exact solution of the
system (8) is proportional to the forward scattering amplitude F(m)

4
koSo

47
koSp

JQ(u,€) = — |Fu(m) — Fy(m) — Fy(m)| = —— Fy(m). (19)

It is evident from Eq. (14) that the imaginary part of J@Q coincides with the full
scattering cross section ) of the given inclusion [Im (JQ) = Q].

On the other hand the variational equations

6(JQ) _ 6(JQ)

ou 0 b 0 (20)
are equivalent to the original system of the integral equations (8). Really, the first
equation (20) may be written in the form

(P9, 52) = —utp (- VG001 & - 2Gaprt 50

=+ ((’U-—VG[)'Cl 'E—szgpl‘b‘,*uU),E)] == [y (21)

Here we take into accout that €] is a two rank symmetric tensor and the kernel Go(x)
of the operator Gy has the property Go(—z) = Go(z) that follows the expression (6) for
Go(z).

The real Re (Ju) and imaginary Im (du) parts of the variation du of the wave field in-
side inclusion can be considered as independent. Thus the last equation may be rewritten
in the form

[(Re (u) — VGg - C1 - Re(€) — w?Gopy Re (u) — Re (uo)) , Re (6u)]

+ [(Im (u) — VG - Cy - Im () — w?Ggpy Im (u) — Im (uo)) ; LTk (511)] =0. (22)

After putting the multipliers in front of Re (du) and Im (du) equal to zero and joining
these equations into the one we get the first equation of the system (8). At the same way
it may be demonstrated that the equation §(JQ)/de = 0 gives the second equation of
the system (8). Thus the solution of Egs. (8) is a stationary point of the functional (18).

Variational principles based on the forward amplitude of the scattering field in appli-
cation to the diffraction problems were considered in Ref. 2 (See Chapters 9.4 and 12.3)
and Ref. 4. If one changes the complex conjugated function in Eq. (18) for the original
ones the resulting functional will olso have a stationer value on the exact solution of
Egs. (8). (For the problem of the elastic wave diffraction the similar funtional was pro-
posed in Ref. 3.) But by such a definition the functional J() loses its mentioned physical
meaning (to be proportional to the forward amplitude of the scattering field and to have
the imaginary part equal to the full scattering cross section @ of the given inclusion).
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4. AN APPROXIMATE SOLUTION OF THE DIFFRACTION PROBLEM

In order to build an approximate solution of the diffraction problem let us assume that the
wave field u(z) and e(z) inside the inclusion are plane waves with unknown amplitudes
b and B and a wave vector 1:

u(z) =be ", e(z)=Be T, zeV. (3}

For simplicity the medium is assumed to be isotropic with the dynamic properties
equal to one (Cy = 1, pg = 1) and the inclusion is a sphere of a unit radius a = 1. (The
dimensions are of no importance for the present analysis)

In orden to obtain the amplitudes b and B in the representation (23) let us substitute
u(z) and £(z) from Eq. (23) into the functional JQ (18). As a result JQ will be the
function of three variables

Ji2=J(bB;1), (24)

where b is a scalar, 1 and B are vectors. According to Ritz’s scheme the equations for
the amplitudes b and B follow from the condition of stationarity of JQ [8(JQ)/db = 0,
Jd(JQ)/9B = 0] and take the forms

b— w?p1g(ko,1)b — G(ko,1) - Cy - B = F(|ko — 1)),
B + K (ko,1) - Cy - B — w?p G (ko,1)b = —iko F(|ko — 1]). (25)

Here g(ko, 1), G(ko,1), K (ko,1) are the following integrals:
a(ko,1) = [ Gola)e"*f (x) d,
Gk, 1) = [[VGo(@)e'*f(z) de, (26)
K(ko.) = - [[V @ VGo(@)e"*f(2) ds,
where the function f(z) has the form

13l + felal®, Jel=2

0, ol sy oW

£(@) = 1{lal) = 3 [ V@V +y)dy = {

Here V(y) is the characteristic function of the spherical are V of radius a = 1 with
the center at point y = 0.
The function (k) on the right hand sides of Eq. (25) has the form

R 1 ikz ;. _JJ("') — 1
F(k) = /‘e dz = ==, el =k, (28)

where j7; (k) is the spherical Bessel’s function of the first order.
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The Egs. (25) may be obtained also according to Galerkin’s scheme if we substitute
the representation (23) into Eqgs. (8), multiply both parts on e“'I and then average the
result over the volume of the inclusion.

Note that for 1 = 0 (the long wave limit) the equations similar to Eqgs. (25) were
proposed in Ref. 7 for the solution of the problem of the elastic wave diffraction on a
spherical inhomogeneity.

After using Gauss’s theorem and integrating over the unit sphere the integrals (26)
take the forms

go(ko,1)
Co

G (ko, 1) = /GO(E)V[e“'If(:c)] e —Ciola(ko,z),

2 ;
g(ko, 1) = , gu(ku,z):/e-"fﬂff(r)jo(lr)rdr, =1 1=le,
0

2 ;
Gko,1) = [0 ekoT [ (r) i (i) + 7 £ (r)o(Ir)] dr, (29)
K (ko 1) = — [ Go(2)V @ V] f(z)] de = GiUgK(U(kO, DI+ KO (ko l)e @ €],

KO0 = [Fe ety ar, W) = £V + ) = PO
8@ (r) = —[rf"(r) - f'(")jalir) — 2rf(r)s (r) T (PP lir).

Here I is the two rank unit tensor. Note that all these integrals can be calculated in
the explicit forms (see Appendix).
The solution of the system (25) has the form

1+iR; - DD—1 srs 1 2. p-!
- Fk—l, B = —iD;! - koF(Jko — 1|) — R?-Dj'b,
= R Do P 1) ! koF (o — 1) ;
do=1-k3"g, Do=I+K-C, R =iGl-C;, Rp=ik{Gl.  (30)
£0

After substituting (23), (30) into the functional JQ (18) the latter take the form

4
JQ = 3ko kg« - B+zlb F(ko - 1)). (31)

_c k2

In order to check the quality of this approximation let us compare the values of the
functional JQ (18) on the exact solution of the Egs. (8) and on the approximate solution
[(13), (30)] in the case of an isotropic inclusion. It is natural to assume that the directions
of the wave vectors kg and 1 are the same for the isotropic inclusion:

k(] = k[)m, 1=Im.
In this case b and B are represented in the forms

b= Hplko,l), B = —ikgHel(ko, 1), (32)
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, Res) , ImJQ)

(a) (b)

FiGure 1. The dependences of the real (a) and imaginary (b) parts of the functional J@Q on
the wave number k¢ of the medium for a soft and light inclusion (p = 0.1, C' = 0.001; py = 1,
Co = 1). Solid lines correspond to the exact solution of the diffraction problem; lines of pluses
(+) and minuses () correspond to the assumption that the wave number [ of the wave field
inside inclusion provides stationary to the functional J(J; lines of squares (J) correspond to the
assumption [ = kg; lines of circles (o) are obtained from the condition that [ is real and provides
a maximum to the real part of the functional J@Q.

where the scalar functions Hp and He are defined by the following relations:

~ 1 C
Hp(ko,1) = ———— | De — ZLkoG(ko, )| F(|ko -1
plio.D) = Fr—y [ Dellond) = GhtkaG ko, D] F(lkn ~ 1),
7 1 P1
Helkg,l) = ———— |de ) ko, )| F(|k
clko. ) = 57 [ delbo,) = EholGlko, )] F(lkn, 1), (33)
8 ,
A(ko,1) = De(ko, l)de(ko, 1) + 2L k212G (ko 1),
poCo
De(ko,l) =1 —&[K“)(fm,t)+K(?>(k0,z)]. de(ko,l) = —i—lkgg(ko,t).
0 0
The functional J@ for this case takes the form
4 i 5
JQ(ko,l) = ko 9HC(I’CUJ) —~ p—lHﬂ(koJ) F(|ko,1]). (34)
371Gy Po

The solid lines on Figs. 1a and 1b are the exact dependences of the real and imaginary
parts of functional J(@Q on the wave number kg for the soft and light inclusion (C' = 0.1,
p = 0.01). The same dependences for the hard and heavy inclusion (C = 1000, p = 10)
are presented in Figs. 2a and 2b. In order to build these dependences the equations (19),
(15), (16) were used. (Note that Im (JQ) coincides with the full scattering cross section
(2 of the inclusion).
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Re(JQ)

(a) (b)
FIGURE 2. The dependences of the real (a) and imaginary (b) parts of the functional J@ on the

wave number kq of the medium for a hard and heavy inclusion (p = 10, C = 1000; p = 1, Cp).
The denotations of the lines are the same as in Fig. 1.

In order to build the approximate dependences of J@Q on kg it is necessary to find
the wave number [ of the wave field inside the inclusion. Let us assume at first that
the wave number [ coincides with the wave number kg of the medium. The dependences
of Re(JQ) and Im (JQ) on ko for this case are presented in Figs. 1 and 2 (the lines
with squares). It is clear that this approximation serves only in the long wave region.
In the short wave limit when kg,w — oo it gives for @ =Im (JQ) the asymptotic value
32/9 ~ 3.55... instead of 2 (the exact limit of Im (JQ)).

In order to correct the approximate solution in the short wave region let us consider
the functional JQ (34) as a function of the wave number [. According to the logic of the
calculus of variations one should chose [ from the condition of stationary of JQ(I). It
turns out that in in the limit ky — oo the functional J@Q does not depend on the dynamic
properties of the inclusion and is only a function of the difference z = [ — kg. The limit
expression JQoo(2) of the functional J@Q has the form (see Appendix)

B 1922252(z)
T 825 4 3i(e?iz — 1) + 6z(e?z —iz)’

The dependences of the real (solid line) and imagynary (dashed line) parts of the
functional JQ.(2) on z (z are real) are presented in Fig. 3a. The line with triangles is
the dependence of the modulus of the derivative | JQ,(z)| on z. It is evident from Fig. 3a
that for real z in the region where Im (JQ ) is closed to 2 there are no stationary points
of JQoo(2). (The derivative JQ% (z) is not equal to zero in this region.)

Let us consider JQs(2) as a function of the complex variable z = ¢ +in. In turns out
that there are two stationary points z;. and z_ of JQx(z) in the region where Im (J Q)
is close to 2 (JQ..(z) = 0 at these points):

2y = £2471 —42.129,  JQ(zi) = +0.485 + i1.468. (36)

(35)

kii_r)n JQ(ko,l) = JQo (7
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JQ(z) Jaz)
4 4

FIGURE 3. The dependences of the real (solid lines) and imaginary (dashed lines) parts of the
functional JQo on z = [ — kp. The lines with triangles (A) are the modulus of the derivative
|JQ.,(z)|. (3a) is these dependences for real z, (z = ¢ + 17, n = 0), (3b) is the same dependences
for z = ¢ —i2.129.

The dependences of the real (solid line) and imaginary (dashed line) parts of functional
JQo(z) on ¢ for n = —2.129 are presented Fig. 3b. The line with triangles is the
dependence of the modulus of the derivative |JQ.L,(2)| on ¢ for this 7.

Let us consider the roots of the equation

9[JQ(ko, )]

2 = (37)

in the region of short and middle waves if [ is a complex variable. Here J(Q is the complete
functional (34). There are two branches of these roots that correspond to two roots (36)
of the Eq. (37) in the short wave region. The first branch where Re () < kg if kg — oo
we denote as (-) and the second branch (Re (I) > ko if kg — oo ) as (+). The lines of
pluses and minuses on Figs. 1 and 2 correspond to these branches of the solution of (37).
In turns out that (+)-branch for soft inclusion and (—)-branch for hard ones break off in
the long wave region. Note that the short wave limit of @ =Im (JQ) is equal to 1.468
but not 2 for this approximation.
One can accept that

Q = Im [JQ(2)] = 2 (38)

and consider this equation as an additional conditional for the variational problem in
the region of very short waves. This equation defines a line on the complex plane (g, 7).
In the physically acceptable region (7 < 0) the functional JQ(z) does not have any
stationary point on this line but maximun and minimum of the real part of this functional
are achieved on the real axis (¢ = £1.561, n = 0). As it can be seen from Fig. 3a that
these points are close to the stationary points z = +1.579 of the real part of the functional
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JQoo(2) on the real axis (n = 0). Note that
JQoo(£1.579) = £1.856 +71.759

and Im (JQ) is close to 2 at these points.

One can use this fact in order to obtain the dependence | = [(kp) in the region of short
and middle waves from the condition of stationary (maximum) of Re [JQ(ko,!)] for real
I. The corresponding values of the functional J( are the lines of circles in Figs. 1 and
2 (The choosing [ from the condition of the minimum of Re[JQ(ko,!)] does not change
practically the imaginary part of JQ for all kg but the real part of JQ will have another
sign in the short wave region.) As it can be seen this approximation allows us to describe
better the dependence of the full scattering cross-section @ = Im (JQ) on kg then the
same dependence of Re (JQ).

As it the follows from the Egs. (12) and (23), the amplitude F,(n) of scattering field
in the plane wave approximation takes the form

- kg [ P1 (
Fun) = 3 [Cokon C,-B o F(|kon — 1), (39)
where b and B are defined in Eq. (30).
The differential cross-section DQ(n) of the inclusion is defined by the relation

DQ(n) = |Fy(n)[? (40)

and characterizes the friction of the energy scattered in n-direction. The comparison of
the exact [(15), (40)] and approximate [(32), (39), (40)] differential cross-sections for the
hard isotropic inclusion is presented in Fig. 4. The wave numbers ! of the wave field
inside the inclusion for various ko were choosen from the maximum of the real part of the
functional JQ [Eq. (34)]. The discrepancy between the exact and approximate solutions
for soft inclusions has the same character.

5. DIFFRACTION ON AN ANISOTROPIC INCLUSION

Let us consider the diffraction of a plane monochromatic wave on an anisotropic spherical
inclusion when C is a two rank symmetric positive tensor. We assume again that the
wave field inside the inclusion is a plane wave with unknown amplitude and wave vector
1. For the anisotropic inclusion the direction of the vector 1 does not coincide with the
wave vector ko of the exciting field in general case.

Let e, €2, e are the principal vectors of the tensor C; = C — Cp and ¢y, ¢, c3 are
the corresponding principal values. We assume for simplicity that the wave vector ko is
located on the plane of the vectors ej,ez:

ko = kg(m1e1 + 711282).

It follows from the symmetry of the problem that the vector 1 is located on the same
plane:

l1=1,e; + lzes.
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FiGURE 4. The differential cross-sections of the isotropic spherical inclusion (Cy = 1, p = 1;
C = 1000, p = 10; a = 1) for different wave numbers kg of the exciting field. Solid lines are exact
solutions, dashing lines are the results of the plane wave approximation.

The components [y, [2 of this vector should be found from the condition of stationary
of the functional J@ (31). Here as in the case of the isotropic inclusion we find the real
numbers [y, s from the condition of the maximum of the real part of J@Q. The graphs of
the differential cross section of the hard anisotropic inclusion (¢; = 100, ¢3 = e3 = 10,
p = 10) in the isotropic medium (Cy = 1, p = 1) are presented in Figs. 5. Polar angles
on these graphs are the angles between the wave vector kg = kom of the exciting field
and the direction vector n of the point (e, e;). The direction of the exciting field wave
vector m was chosen in the form

1
m= —(e; +e3).

V2

For the given values of the wave numbert £ of the medium the corresponding values
of the components [y, [5 of the vector 1 are:

ko =01, I =0.071, Iy = 0.071,
ko = 1, I = —0.638, Il =1.307,
ko = 5, I, = 2.437, Iy = 4.111,
ko =10, I = 6.451, I, = 7.942.

Note that in the long wave region (k¢ < 0.5) maximum Re (J@Q) disappears and we
chose kg = 1 for ky = 0.1. In the short wave region the direction of the wave vector 1
turns to the direction of kg when ky — oo.
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F1GURE 5. The differential cross sections of the anisotropic spherical inclusion (Cp = 1, po = 1;
¢; = 100, ¢2 = 10, p = 10; a = 1) for different wave numbers ko of the exciting field.

6. CONCLUSION

The approximate solution of the diffraction problem which has been built in this work
may be called the plane wave approximation. This approximation gives us the correct
asymptotics for the full scattering cross-section of a spherical inclusion in the long wave
region and it is close to the exact result in the short wave region. The formulae for the
calculation of the differential and full scattering cross-section of the spherical anisotropic
inclusion in the framework of this approximation consist of some combinations of expo-
nential functions and polynoms of finite powers (see Appendix). The numerical calcu-
lations according to these formulae are more simple that the summation of the series of
the exact solutions similar to Eq. (9), particulary in the short wave region. Of course
with the help of only one plane wave it is difficult to describe a rather complicate wave
field inside the inclusion in the region of the middle and short waves. In the middle wave
region this approximation describes only a general trend of the dependence of the full
scattering cross-section on the frequency of the exciting field. But in many cases such a
description is very close to the exact solution. Note that in the long wave region (ko < 1)
an agreement with exact solutions can be obtained in the assumption that ko =1 (the
wave vector inside the inclusion coincides with the wave vector of exciting field). In the
region of the middle and short waves one has to find the wave vector 1 from the condition
of the maximum of the real part of the functional J@Q (31).

It is worth to emphasize that the plane wave approximation may be applied to the
solution of the diffraction problem for inclusions of noncanonical forms. This approxi-
mation on the base of the corresponding varactional principle may be also used in the
problems of the elastic and electromagnetic waves diffraction on isolated inhomogeneities.
A possible area of applications of this approximation is the problem of wave propagation
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through the medium with a random set of inclusions. For this problem an exact account
of details of the scattering field from every inclusion is not necessary because of further
averaging the result over the sizes of the inclusions and their spatial positions. That is
because using some simple approximations of the diffraction problem is more preferable
then to operate with the huge series of the exact solutions no to say of the cases when
such solutions are not available. For instance the plane wave approximation is simple
enough to be used inside self-consistent schemes for the calculation of effective dynamic
properties of composite materials [7, 8].

APPENDIX

For the calculation of the integrals (29) it is necessary to take into account that the spher-
ical Bessel’s functions jg, ji, j2 may be represented as combinations of trigonometrical
and power functions

sin(z) sin(z)  cos(z) _ 351(2)

Jo(z) = - Ji(z) = p g ! J2(2) = - - jo(2). (41)

The function f(r) in Eq. (29) and its derivatives are also power functions:
fr)=1-gr+gr, f)=-}+&? =} (42)

That is because the integrals (29) may be represented as linear combinations of the
integrals I,,(¢) of the following type:

2 )
Ede) = /[; re' dr, n=-3,-2,-1,0,1,2,3 (43)

For negative n these integrals diverge. But it is necessary to take into account that
the integrand functions in the integrals (29) are bounded when r = (. That is because
these integrals can be understood as the following.

If n < 0 let us substitute instead of 0 in the low limit of the integrals (43) a small
numbert § and take into account only the terms that have the order of 1 in comparison
with..., 67!, In(8), &, etc. The other terms should disappear when 6 — 0 in the full
expression of the integrals (29). As a result one should understand the integrals (43) for
negative n, (n = —m, m > 0) as following

1 plie : (z-c)m—l _
I rafe) = — o 7 —icl_(m-1)(c)], T TR 8
m—1 (2 (m—1)! (44)
If m =1 this integrals is
T oc o=zt
I 1(c) = —E1(—2ic) — In(c) — v + ia, Ei(z) = / - ; dt, (45)
1 :

when v is Euler’s constant.
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For positive n the integrals (43) converge and have the forms

Tile)— ,l(em —1); Inl(6) = 1 [ZRGZiC - nIn_l(c)] ; fi =00 (46)

ic ic
Let us turn to the integrals (29). After substituting Egs. (41), (42) in Eq. (29) we get
go(k,1) = jO(k,1,1) — 350(k,1,2) + %30k, 1, 4),

} , . 3 .
Gk,1) = jO(k, 1, 1) = 3300k, 1,2) + F550(k, L, 4) = 710k, 1, 1) + 2 i10,k,3),

161
K (k,1) = KWO(k, 1) + KD (k,1) = —30(k,1,0) — 12j0(k,1,1) + 2j0(k,1,2)  (47)
: . 3 §
+ 31250(k,1,2) — &1%50(k,1,4) + 7910k =1) + 1l (k, 1,1)

+ 351k, 1, 1) = 2151(k, 1, 3) — 252(k,1,0) — 252(k,1,2).

Here jm(b,a,n) are the following integrals
2 ;
jmklin) = f r”eﬂk"jm(lr) dr, m=0,1,2; n=-1,0,1,2,3
0

and j,,(z) are spherical Bessel’s functions (41).
The integrals jm(k,l,n) may be represented in the forms which follow from Eq. (41):
A : 1.z 1
jO(k‘,l,ﬂ) = IIn—l(kal)a Jl(kalan) = l_2 nfl_(kJ) - ?In—l(kal)a
2 3 s 3 e 1 ] ¢
#olk,lm) = B o _a(k,l) — l_glnﬁ‘z(kﬂl) - BInfl(b,a), (48)

where

2 ! 1
(k1) = /0 e sin(lr) dr = —{I( — k) = Tn(~k = D),

1
2 : 1
I,c= f rhe k" cos(lr) dr = §[In(l — k) + In(—k - 1)], (49)
0

and integrals I,(c) have forms (43)—(46).

The explicit expressions of the integrals (29) are rather huge. We wrote here only the
asymptotics of these integrals for long and short waves.

1. The long wave asymptotics [(k,]) ~ w; w — 0]

G(kl) = &2 — EP+(E - &1 — £+ 0", (50)
K(k1) = -+ = 202 +i(5 — £k — 2K + O(w").
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2. The short wave asymptotics (z =k —[; k ~w — 00)

_ L ez %z _ 3 =9
go(k,2) = T [3i(e 1) +6(e iz)z + 82°] + O(k™°),

= l 30 i 2iz i] =
Glk7) = 7 [(1624 4 823) (%2 ~ 1) + | + 0k, (51)
K(k,z) = . [3i(1 — e¥2) — 62(®* — iz) — 8z3] | +

’ 1624 4
37; Az 3 21'2. o 333 el 42 =51
67 1+ gal ) + =g O

The Eq. (35) for JQu(2) is the consequence of these expressions.
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