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ABSTRACT. Current research on critical phenomena and minimum energy configurations of dipo-
lar particles on a 2D lattice, usually approximates the infinite interaction range through a cutoff
to carry out numerical simulations. In this work we compare the commonly reported procedure
in literature, consisting of truncating the potential function from a given abscissa, to another
proposed method, where the function is vertically shifted to zero after the truncation. We show
that the first procedure renders more mistakes than the second, where mistakes still admittedly
occur but their appearance notably decreases as a function of distance. We also examined the
conditions necessary to consider discrete dipoles as being continuous beyond the cutoff position
and found that the shifted procedure performs better than truncating alone.

RESUMEN. En la investigacién tedrica de los diagramas de fases y de los estados base configuracio-
nales de particulas bajo interaccién dipolar en una red bidimensional usando métodos numéricos,
usualmente se aproxima el alcance infinito de esta interaccién introduciendo una distancia de
corte. En este trabajo comparamos el procedimiento reportado normalmente en la literatura, que
consiste en un truncamiento simple contra el método de aproximacion recientemente propuesto,
en el que se efectiia una translacién del origen del potencial después del corte en el alcance.
Mostramos que con el primer procedimiento el mimero de fallas producidas es mayor, y este
niimero decae para mayores distancias de corte que con el segundo. Estudiamos las condiciones
necesarias para considerar la distribucion discreta de dipolos mas alla de la distancia de corte
como continua y homogénea y verificamos que en el segundo procedimiento dichas condiciones se
cumplen mejor.

PACS: 68.35.Rh

1. INTRODUCTION

There are systems that may be considered interacting elements on lattices, polymers,
alloys, adsorbates, neural networks, etc. When only the interaction among first neighbors
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is considered and the elements have two states, the systems can be studied using the Ising
model. However, if the interaction range is longer, the situation becomes more intricate [1]
as with the adsorption of alkali atoms on metal transition surfaces [2]. These systems
are important for heterogeneous catalysis [3] and termoionic emission technologies [4].
From the theoretical point of view, they are important as two-dimensional systems able
to show phase transitions [5].

There has been an intense discussion about the exact origin of the interaction among
the alkali adsorbates [6-8] that extends from the traditional point of view which claims
that the valence electron is stolen by the metallic substrate (creating dipoles across the
surface) [9, 10], to a more recent view point which considers that the interaction is due to
the alkali internal polarization [6]. In both cases, dipoles perpendicular to the surface will
form [11, 12] that produce long range interaction among adsorbates. This situation makes
it difficult to obtain phase diagrams or to calculate minimum energy configurations.

Monte Carlo calculations [13-15] and Exhaustive Inspection [16-18] are used to look
for phase diagrams or minimum energy configurations. In both procedures, the dipo-
lar potential is approximated by a cut-off followed by a continuous correction beyond
the truncation distance [13,14]. Muller [15] studied the system Cs/Rh(100) using a
Monte Carlo simulation in which the dipolar interaction was truncated to the second
lattice neighbor. The adsorption of Na over W(110) was also studied with Monte Carlo
procedures, truncating after the third lattice parameter [13, 14]. Minimum energy con-
figurations have been studied in fcc(100) and fec(111) lattices with interaction up to
the sixth lattice parameter [16-18]. In the case of Na/W(110), researchers claim that
the particles beyond the cut-off position can be considered to be a continuous homoge-
neous distribution on the surface. This allows them to incorporate their contribution
as an order-independent integral, resulting in the term 276/d., where 6 is the coverage
particles array, and d. the cutoff distance. Finally, in early works on Exhaustive Inspec-
tion [16-18], an energy shift was done in 1/d? (Fig. 1), rendering a 30/d. correction term,
in addition to the cutoff.

The convenience of working with continuous potentials in 1D systems is indisputa-
ble [19]. For this reason it has been applied to 2D systems to eliminate discontinuities that
appear in the truncation distance. It has been suggested that this type of approximation
could be useful in other kinds of procedures; i.e., Monte Carlo calculations for alkali-metal
systems [17].

As far as we know, there is no systematic discussion about the kind of approximation
that could be used for dipolar interaction in these systems, excepting a commentary by
Medvedev [13]. He analyzes 6 = ; orderings in bce(110) for ranges between one to ten
lattice parameters and consider that after three lattice parameters the contribution to the
energy from particles beyond the cut-off would not depend on the specific arrangement
which allows the approximation of their contribution by an integral. This affirmation,
which we will refer to as Medvedev’s conjecture has important effects on Monte Carlo
calculations because the probability of transition among the different arrays depends on
the difference in their energies. Thus, if the contribution to the energy of the particles
beyond the truncation does not depend on their specific distribution, it is not necessary
to calculate this contribution since it will be eliminated when the energy differences in
the Boltzman factor are considered.
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FIGURE 1. Display for Dipolar Potential and its approximations. Broken line corresponds to full
dipolar potential (DP); black line with diamonds is draw to represent truncated approximation
(T); and gray line with squares corresponds to shifted truncated approximation.

When the particles are ordered on a periodic array, the convergence of the sum of
interactions over one particle depends on the form of the potential function as well as
on the dimensionality of the embedding space. For instance, when the dimension is
greater than the interaction’s exponent of decay, the mentioned convergence cannot be
guaranteed and it is necessary to use alternative techniques such as Ewald’s sums (20].
Fortunately, this is not the case here: chemisorpted systems are two-dimensional and the
interaction considered is dipolar (it decays as the cube of the distance).

In this study, we show that the shifted truncated approximation [17] performs better
than the truncation commonly found in the literature. In addition, we explore the validity
of Medvedev’s conjecture when both types of approximations are considered. In Sect. 2
we describe our methods; results are shown in Sect. 3. Section 4 is devoted to the
conclusions.

2. METHODS

When we work with the Monte Carlo method, Exhaustive Inspection or Genetic algo-
rithms, we have to make decisions that depend on the configuration’s energy. The Monte
Carlo method, starts by selecting a configuration with known energy, usually from a
periodic cell. The configuration is then modified at random, thus producing another con-
figuration with its respective energy; if this energy is lesser than the first, we use the last
configuration as an initial one. Otherwise, we use the Boltzman factor to decide whether
the configuration is rejected or not. These steps are repeated many times to bring the
system to and extract information from thermal equilibrium.
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In the procedure described above, it would be convenient to have an ordered list of
energy of all configurations consistent with the periodic cell, in which the energy was
calculated using the full range of the interaction. This list could be named the ideal list
and would provide the necessary information to select different configurations without
having to perform the energy calculations. However the ideal list is impossible to calculate
because we cannot calculate infinite range interactions with a computer. It is necessary
to truncate the range of the interaction and this, of course, lead to change the order of
energy configurations.

We can have a basic idea about the approximation’s performance, counting the
changes in position in the sorted energy list with respect to the ideal list and we will
say that each of these changes is a mistake. Since the ideal list is impossible, we take
1000 lattice parameters to perform our calculations as compared to interaction ranges
reported in the cited papers which are only up six lattice parameters.

To study sets of cases in an orderly way we will use those generated by Exhaustive
Inspection [16-18]. This method was originally developed to find the ground configura-
tional state for particles that interact dipolarly on a lattice in specific area and coverage.
This procedure is based on the fact that in a given area and coverage the number of
different orderings is finite. If we wish to study coverage p/q, with p and ¢ relative
primes, in a tq area, where the particles can only occupy positions on a lattice generated
by the vectors v and w, we build all the different cells generated by vectors A and B
which correspond to linear combinations of v, w, such as |[A x B| = tg. Once all the
possible cells are generated, we place one of the p particles on the vertexes of each cell,
and construct all the possible arrangements by putting the remaining p — 1 particles in
the internal position of the cells. If the minimum energy array is periodic, then this
procedure allows us to obtain the ground configurational state.

In this work this method has been used to generate sets of arrays that allow us to
show that the shifted truncated approximation is more effective than the pure truncation
procedure. For this purpose, we studied square lattice with coverages 1/q, with ¢ ranging
from 2 to 8 and values of ¢ from 2 to 4.

Finally, we analyze the validity of Medvedev’s conjecture by studying the deviations
of energy increments as a function of the truncation distance. If the conjecture were
true, all the configurations having the same coverage would increase their energies in the
same amount for some distance and would therefore cancel the mentioned deviation. As
expected, the value of these deviations are distance-dependent and, more importantly,
this indicator drops faster in the case of the shifted truncated approximation than in the
truncated one.

3. RESULTS AND DISCUSSION

The simpler results correspond to the analysis of minimum energy configurations for each
coverage obtained with all the ranges considered. In Fig. 2a, hollow circles represent
those cases where there is coincidence between the asymptotic behavior for the shifted
truncated approximations and that of the range taken into consideration. Filled circles
stand for those cases where there is no agreement. In Fig. 2b we have done the same
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Ficure 2. Hollow circles correspond to cases where there is coincidence between asymptotic be-
havior and truncated range. Full circles represent those cases where the ground state reported in
the respective cutoff distance is incorrect. Squares indicate degeneration among several configu-
rations at the minimum energy. Fig. 2a is drawn for shifted truncated approximation and F ig. 2b
for the truncated one.

report but for the truncated approximation. As can be seen, the amount of failures
increases with cut-off distances for the latter type of approximation.

In Fig. 3, some of the graphs that correspond to the analysis of the complete data
have been displayed; for each coverage and area we have detected the amount of mistakes
that occur for each range, plotting the ratio of these to the amount of total cases. In
Fig. 3a we show for the shifted truncated approximation (squares) and for the truncated
approximation (diamonds) the rate of failures for coverage fl—s and area 18. For every
range the rate of failure is greater for the truncated case. In Fig. 3b we show the rate of
failures for the truncated potential with coverage é and area 15 (diamonds) and area 20
(triangles); in Fig. 3c we draw the same cases for the shifted truncated potential. Again,
this type of approximation markedly produces less errors and they tend to disappear for
shorter ranges. This behavior is the same for every studied coverage and area.

Finally, in Fig. 4, the evolution of the energy increment deviations in logarithmic
scales are plotted. The plot corresponds to coverage % with an area of 12; the squares
correspond to the shifted truncated approximation and the diamonds represent the devi-
ations of the truncated potential. The slope of the first line has a value of —3.77 + 0.08,
while in the second one, it is equal to —2.55 + 0.02. Even with different slope values,
the deviations in the energy increments of the shifted truncated approximation in all
the studied cases drop faster with the ranges than those of the truncated. Medvedev’s
conjecture is better performed by the shifted truncated potential.

After studying many cases in which mistakes occur in the order of configuration
arrangements, we notice that the crossing of the arrays occur when the potential cutoff
affects the density of the particles within the cutoff radius. We explain this situation
with the example shown in Fig. 5, in which we calculate the interaction of all the array
particles of the array, with the central particle shaded in black. Of all the particles, we
have only drawn four in gray, which are at distance d from the central particle. We can
dissect the energy interaction as E = E; + 4p?/d® + E,, where E; corresponds to the
contribution of the particles which are within the radius d, E, to the contribution to the
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FiGUuRE 3. Comparison between shifted truncated approximation and truncation. In Fig. 3a the
triangles represent the truncated approximation and the diamonds represent the shifted truncated
for coverage é and area 18. In Fig. 3b we draw data only for the truncated approximation with
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FIGURE 5. See text.

particles outside the cutoff radius, and p is the dipolar moment of the adsorbates. Due
to the concavity of the dipolar potential and not dependent upon of the substrate lattice,
we can find a new configuration with greater energy, by bringing half of the particles in
gray Ad closer and moving the other half of the particles by Ad from the center particle.
We have plotted this new situation by representing the particles as hollow circles. Now
we have energy E' = E; + 2p2/(d — Ad)? + 2p2/(d + Ad')* + E,. If we do a truncation
of the interaction at a distance slightly greater than d, we would have for some Ad, an
mverted ordering of the energies. This is due to the fact that two particles disappear from
the E’ calculation. This situation can repeat itself with different distances and distinct
configurations. The latter effect shown is softened by shifting the zero of the potential,
because when 1/d® is subtracted from each particle within the cutoff radius, the energy
£ suffers a more severe subtraction than E'. Since both approximations lead to the same
asymptotic energy value, it is be preferable to use the shifted truncated approximation.

4. CONCLUSION

We examined the effect of different approximations on the behavior of the energy of
particle configurations on a lattice that interacted dipolarly. These approximations are
common when the interaction among the particles is of dipolar character and, calcula-
tions such as the Monte Carlo and Exhaustive Inspection are performed and would be
necessary if the Genetic algorithm where used. We developed Medvedev and Yakovkin
conjecture [13] by carrying out our analysis through thousands of cases generated with
the Exhaustive Inspection method [17] and considering ranges for the potential of units
up to one thousand lattice parameters. We took into account the effect on the value of
the configurational energy when either simple truncation [13-15] or shift and truncation
of the potential [16-19] is made. We found that simple truncation accumulates errors
that can degrade the results obtained and, furthermore, these errors persist for greater
ranges. Since both approximations lead asymptotically to the same values of the energy
(also taking into consideration that the errors source is lattice-independent for the trun-
cation procedure) we conclude that it is preferable to use the proposed shifted truncated
approximation in any kind of spatial array.
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