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ABSTRACT. A review of the experimental and theoretical situation in coalescence and fragmenta-
tion studies of binary liquid-drop collisions is given, putting in perspective our own contributions,
which include experiments with mercury and oil drops and the application of a nuclear reaction
model, specifically modified by us for the macroscopic case.

RESUMEN. Se presenta una revisién de la situacion actual de los estudios, tanto tedricos como
experimentales, de colisiones binarias de gotas, poniendo en perspectiva nuestras propias con-
tribuciones en este campo, las cuales incluyen experimentos con gotas de mercurio y de aceite,
asi como la aplicacién de un modelo para reacciones nucleares modificado especificamente para
el caso macroscopico.

PACS: 47.10+g; 03.20.+i; 25.70.-z; 47.90.+a

1. INTRODUCTION

We are engaged in establishing a bridge between fields where macroscopic liquid-drop
collisions are important, and nuclear reactions modelling, particulary with those theories
in which the quantal effects can, somehow, be switched off, allowing a direct access to
the bare liquid-drop aspects. Besides providing an interesting testing-ground for those
sophisticated models, this represents the opportunity of applying them to fields like me-
teorology and spray research, where the theoretical situation is less developed. In order
to introduce the reader into this area of research, here we present a review of the current
experimental and theoretical situation concerning binary liquid drop collisions, including
our own findings using mercury and oil drops. These experiments have interested theoret-
ical nuclear dynamisists to the point of establishing a fruitful collaboration with us which
lead to the modification of a nuclear reaction code, developed by N. Carjan, A. Sierk and
R. Nix [1], which allows the simulation of macroscopic liquid-drop collisions. Thus, we
also include a brief review of what we have learned so far in this line of research. A
particular subject which recently cought our attention was the predictions [2] of nuclear
fluid-dynamic simulations concerning the possibility of multifragmentation mechanisms
proceeding via the formation of exotic nuclear shapes (sheets, bubbles, donuts, etc.).
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Since similar predictions have also been reported for macroscopic systems [3], we carried
out liquid-drop collision experiments at the relative velocities where those exotic shapes
were expected to appear. The first results of that quest are also included.

This paper is organized as follows: Section 2 defines terms which are used in the rest
of the text. Section 3 reviews the experimental techniques, including ours, and the results
obtained for all liquids are reviewed and compared in Sect. 4. The theoretical formulations
and their predictions are reviewed in Sect. 5. The conclusions are summarized in Sect. 6.

2. DEFINITIONS

Since the pioneering works of Plateau [4] and Rayleigh [5], collisions among pairs of
liquid drops (henceforth simply referred to as “drops”) have been investigated extensively
by meteorologists (e.g., Ref. 6) and atomization and spray experts (e.g., Ref. 7). The
evolution of this research until 1970 was thoroughly reviewed by Park [8], himself a
major contributor, and until 1978 by Pruppacher and Klett [9]. More recently, the works
of Podvysotsky and Shraiber [10], Ochs et al. [11], Ashgriz and Givi [12], Brenn and
Frohn [13], Ashgriz and Poo [14], Salita [15], Jiang et al. [16], and Menchaca-Rocha et
al. [17] are good examples of the continued interest in this field. Reviews of the important
works written in russian may be found in the books of Vasenin et al. (18] and of Sterninn
and Shraiber [19].

To this date, most quantitative experimental studies on “direct” collisions (those in
which liquid contact is established) have been aimed at determining the boundaries be-
tween two possible outcomes: “coalescence” (one final drop) and “fragmentation” (more
than one final drop) as a function of the initial collision parameters, i.e., the relative
velocity vy, the “impact parameter” b (measuring the centrality of the collision) and the
type of liquid. Since our purpose is to further the understanding of the evolution and
possible fragmentation of liquid masses formed in direct drop interactions, the term “col-
lision” here will exclude “bouncing,” a mechanism in which direct contact is prevented
by the intermediate air film. Although interesting in its own right, for our aim, this gas-
drainage effect will be viewed as a complication, rather than as a source of information.

The most relevant parameters determining the outcome of this type of drop collisions
in air have been found [8] to be: the initial drop masses m; and my, the corresponding
diameters D; and Dj, the relative speed |7,.| (or simply, v,), the impact parameter b
(Fig. 1), and the liquid’s physical properties: density p, surface tension o and viscosity
v. The following dimensionless parameters can thus be defined: the diameter ratio
A = D;/Dy, the reduced impact parameter B = b/D, where D = %(Dg + Dy), and the
Weber number We = pdv? /o, where d represents a particular choice of diameter (D,
Digotir f)). When dealing with asymmetric systems (D; # D), we shall use the d = D,
convention, adopted by most authors in this field [9]. Except for the recent work of Jiang
et al. [16], who dealt with water and a variety of hydrocarbon compounds, little is known
about the v dependence of liquid drop collisions. We chose to compare our results (see
Sect. 4) with those reported for liquids of similar viscosity so that, other factors being
fixed, parameters depending explicitly on 1/, such as the Reynolds number R, = pduv,. /v,
are not expected to vary significantly.
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FicURE 1. Definition of the relevant geometric collision parameters.
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FIGURE 2. Schematic view of our high energy liquid-drop collider.

3. REVIEW OF EXPERIMENTAL METHODS

The observation of collisions between pairs of drops moving in air involves two main
techniques: the controlled production of fast moving drops, and the registration of a
sequence of images from which the detailed analysis of the action can be made. To this
date, the most popular methods to generate drops for these type of experiments can be
viewed as modern versions of the one proposed by Rayleigh [5], who produced a fairly
uniform stream of equally-spaced, equal-size drops by breaking up a water jet from a
capillary mechanically excited using the vibrations of a tuning fork, later replaced by an
electronic device. Since then, drop collisions have been observed by aiming two of those
drop streams against each other. This technique produces drops with relative speeds in
the 0.1 m s~ < v, <10 m s~! range.

Faster (v, < 50 m s~!) drops of similar sizes have been obtained by Podvysotsky and
Shraiber [10] and by Menchaca-Rocha et al. [20] using a technique based on capillaries
soldered radially to hollow cylindrical shafts. The motor-driven horizontal rotation of
those shafts causes a centrifugal flow of liquid through the capillaries leading to the pro-
duction of droplets in the plane of rotation. A stream of well separated liquid drops is
then produced by selecting those moving in a given direction with the aid of a collimator.
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The high relative velocity experiments reported here were carried out with a device of
this type, which is schematically described in Fig. 2. In it, the drop-drop collisions are
observed with the aid of fast stroboscopic lamps which are triggered by signals generated
when a narrow handle, fixed at the bottom of the rotating shafts, points in a given direc-
tion. A variable delay unit permits the observation of different stages of the collisions.
So far, our observations with this instrument have been limited to visualizations of the
time evolution of the shapes assumed by colliding systems. Thus, on this respect, we
shall limit ourselves to a qualitative comparison of the observed shapes with what has
been predicted by both, nuclear [2] and macroscopic [3] hydrodynamic calculations.

All of the above mentioned techniques produce small (D < 0.5 mm) drops. Individual
collisions involving larger (1 mm < D < 5 mm) drops were observed by McTaggart-Cowan
and List [21] through the use of vertical droplet accelerators combining gravitational and
gas propulsion stages.

Collisions have been observed for drops approaching each other along a whole variety
of relative orientations € (see Fig. 1), from parallel (6 = 0°), to antiparallel (6 = 180°).
Since the influence of terrestrial gravity causes all trajectories with horizontal components
to have a parabolic shape, most experiments aim at reducing the local curvature to
justify a straight-trajectory approximation. Under those conditions, the velocity vectors
7y and ©, define the collision plane. Thus, the initial collision parameters v, and b
are usually deduced from an analysis of images taken from a view perpendicular to
that plane. Those images are obtained using fast photography, video- or cine-cameras.
In the techniques used so far there is a coupling between the drop formation and the
acceleration stage preventing a direct evaluation of the initial drop masses m; and m;.
Thus the experimenters rely on values which are estimated by two methods: (a) dividing
the amount of liquid collected from each droplet generator over a period of time by
the number of droplets produced during the same period (e.g., Ref. 14); (b) using the
apparent drop-size from pre-collision images (e.g., Ref. 22). The size of the collision
residues (the final or “residual” drops), have also been obtained from photographic images
(e.g., Ref. 21).

The accuracy of these measurements demands on a number of conditions, difficult
to fulfill. In the case of m; and m,, method (a) requires that the mass spectrum of the
droplets has a narrow distribution, while in method (b) the distance from the droplet
streams to the image-taking device should not change from drop to drop. Since the
precise instant at which the initial drops come into contact is seldomly registered, the
determination of B is based on the assumption [8] that the drop trajectories are smooth
and that the line of sight of the camera is strictly perpendicular to the collision plane.
A problem common to small v, measurements is that the droplets are often observed to
approach each other slowly while falling in air at large speeds. In those conditions, not
only their motion occurs in turbulent air, but the interaction between the droplets’ wakes
introduces distortions on the trajectories [11].

Important progress has been made to understand and reduce these sources of un-
certainty in the determination of initial conditions. Examples of this are the works of
Park and Crosby [23] and Brenn and Frohn [13] concerning the influence of the liquid
flow-rate and the capillary oscillation frequency on the width of mass distributions of
Poo and Ashgriz [24] on the influence of air-drag on the drop stream, of Vassallo and
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FIGURE 3. Schematic view of the low energy liquid-drop collider.

Ashgriz [25] on the formation of satellite drops in the breaking up of the liquid jet, and
of Adam, Lindbland, and Hendricks [26] who proposed a modification to the Rayleigh
method in which the influence of the ambient air dragged along by the droplet streams is
eliminated by electrostatically selecting out of the streams the individual droplet pairs to
be observed. So far, however, little has been done to reduce the uncertainties associated
with the determination of final parameters where, for example, the size of drops just after
the collision is difficult to estimate from photographic plates since, in general, they are
oscillating and rapidly moving away from the focal plane of the image-taking device. To
our knowledge, collecting the individual residues for a direct evaluation of their size had
not been attempted before our work.

Some of the problems just described would be solved if a technique could be developed
in which: (a) the mass of all droplets (initial and final) could be measured accurately, and
(b) the position of all droplets could be followed in space as a function of time. One such
technique is now described which is based on observing the interactions of mercury drops
moving along a specially treated horizontal glass surface. We have built a liquid-drop
collider to observe the interactions of mercury drops moving along a flat, horizontal, glass
surface, in which the drag induced by wetting is minimized by a roughening procedure
which greatly reduced the mercury-glass contact (Fig. 3). As described in detail else-
where [27], this procedure results in a five-fold gain in the mobility of the mercury drops.
Collision experiments involving mercury drops moving on solid surfaces have also been
reported by Salita [15]. However, this interesting work was limited to 30 collisions, allow-
ing only a rough determination of the coalescence-fragmentation transition, and giving
no quantitative details about the fragmentation process.

In our low energy liquid drop collider the initial drops of pre-determined masses m;
and m,, are “accelerated” to velocities v} and vy with the aid of plastic ramps fixed on
two extremes of the glass surface (Fig. 3). A groove on each ramp surface guides the
drops down the slopes and smoothly into parallel trajectories separated by an impact
parameter b. In this way, the outcome of the drop collisions can be studied as a function
of b, U, and A. The position vs. time information, needed to determine the initial
parameters v, and b, as well as the speed v; and direction of motion 6; of each final drop
i, is obtained by recording the action with a fast-shutter-speed (1/10000 s) video system
having a 30 frames/s recording frequency. The final number of drops, the “multiplicity”
(Ny), is measured by counting the number of residual droplets; however, since secondary
scattering (often leading to coalescence) among the primary fragments is not infrequent,
a “primary” multiplicity (N,) can also be extracted by replaying the video images. The
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FIGURE 4. Time evolution of symmetric mercury drop collisions. Central coalescence in (a) and
peripheral coalescence (b). Small-B two and three body central fragmentation in (c) and (e),
respectively. Large-B two and three body peripheral fragmentation in (d) and (f), respectively.
The drops move initially against each other in the horizontal direction, the time runs from left
to right with At = 1/30 s from frame to frame. The [We, B] values corresponding to each time
sequence are: [48.9, 0.02] for (a), [15.2, 0.58] for (b), [44.7, 0.1] for (c), [25.0, 0.82] for (d), [83.6,
0.01] for (e), and [34.8, 0.62] for (f).

initial and final masses are measured with a 0.1 mg precision analytic scale. For technical
reasons [27], the gotatron is limited to observe collisions of mercury drops having masses
and velocities in the range 0.2 g < m;s < 2.0 g, and 5 cm s7! < s < 50 cm s,
respectively. The action of every drop-collision experiment lasts, typically, 1 s (i.e., 30
frames). Therefore our data is based on the analysis of approximately 30 000 frames. The
image information on each frame consists of 620000 color pixels. For simplicity, in the
present study this volume of information is reduced to the drop contours on each frame,
using standard image processing techniques. Figure 4 Shows typical image sequences
taken during coalescence, and fragmentation collisions. More details about the drop
“acceleration” procedure used may be found elsewhere [27].

The main advantages of the gotatron are: (a) it decouples the drop formation and
the acceleration stages, permitting a precise measurement of the initial masses before
acceleration; (b) because the motion is restricted to the horizontal plane, the final drops
travel a finite distance along the glass surface and then stop, allowing us to collect
them and weigh them individually; (c) restricting the motion to a plane eliminates the
ambiguities introduced by out-of plane components in three dimentional motion, allowing
more accurate determinations of the collision parameters from images taken from a fixed
view; (d) the lack of vertical motion minimizes the velocity of the drops relative to air
which, as mentioned before, is particularly important for small We measurements, and
(e) compared with other liquids (water, glycerin, etc.), our larger D (=~ 5 mm) and higher
density-to-surface tension (p/o = 0.03) drops allow observations at lower v, values for
the same We number, further reducing the influence of the ambient gas. As we shall
see, measurements with larger drops also allow us to test the generality of the scaling
variables used in this field.
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The main disadvantages of this instrument are: (a) the mercury-glass interaction
affects the drops’ motion, (b) these, relatively large, drops oscillate around a non-spherical
mean shape, (c¢) the drops “roll” [27] (rather than slide) along the glass surface, and (d)
compared to collisions among free-moving drops where the dynamics of the most central
(small B) ones involve important out-of-plane components, in our case those components
are strongly damped. In spite of these complications, the next Section shows how the
quantitative features we observe for mercury drops remain similar to those reported for
collisions between free-moving drops.

4. RESULTS

The measurements presented here involve collisions of liquid drops in two rather different
regimes, low energies, where coalescence (fusion) and few-body fragmentation compete,
and higher energies, were most collisions produce a large number of residues (multifrag-
mentation). Thus the results will be presented and discussed separately in the next two
subsections.

4.1. LOW ENERGY MEASUREMENTS

The data corresponding to mercury drops result from the analysis of 1000 collisions,
half of them symmetric (m; = ms; = 1 g) and the rest for asymmetric (m; = 1.5 g,
ms = 0.5 g) pairs. Since these drops are non-spherical, we shall use the horizontally-
projected diameter to allow the comparison with collision data from spherical drops. This
corresponds to D = 4.9, 6.5, 8.1 mm for m = 0.5, 1.0, 1.5 g, respectively [27]. Hence,
for asymmetric systems we shall use A = 1.65. The collisions were measured within
the 20 em s™! < v, < 90 cm s~ ! range. No systematic v, < 20 cm s~! measurements
were done since that region is dominated by permanent coalescence. The maximum of
v, = 90 cm s~! corresponds to the operational upper limit of the collider [27]. Some
of the figures in this Section contain theoretical predictions which will be presented in
Sect. 5.

Figures 4a—4f illustrate the time evolution (from left to right) of typical coalescence
[rows (a) and (b)], two-body [rows (c) and (d)] and three-body [rows (e) and (f)] frag-
mentation, A = 1, collisions. Rows (a), (c), and (e) correspond to central (B =~ 0) and
(b), (d), and (f) to peripheral (B = 1) interactions. In our experimental situation, where
aerodynamic effects (such as bouncing) are small, below certain critical We all central
collisions lead to coalescence. The top sequence [row (a)] is an example of a coalescence
interaction observed just below that limit. Upon contact (between frames 1 and 2) a
neck-like structure is formed. Eventually (third frame), incompressibility forces a flow
perpendicular to the incident direction. This flow forms cylindrical shapes. Below the
limiting We condition, those cylinders develop an intermediate neck (fifth frame) strong
enough to support the flow-driven stretching. The subsequent evolution (frames 6 and
beyond) show a damping oscillatory motion with maximal elongations alternating be-
tween being parallel and perpendicular to the incident direction. As shown in row (b),
off-center coalescence interactions also form stretching cylinders, now rotating (frames
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FIGURE 5. Schematic representation of the important boundaries and critical points defining the
limits of coalescence in the B vs. We plane.

3 and 4), eventually developing intermediate necks (fifth frame) which, below a certain
B-dependent limiting We, are strong enough to support the inertial pull of the outer
liquid-masses. After reaching a maximal stretching stage (between frames 5 and 6),
the shape evolution consists of a combination of (damping) vibrational and rotational
motions. The initial stages of B =~ 0 two-body [row (c)] and three-body [row (e)] frag-
mentation are similar to the lower We central coalescence interactions [see row (a)], with
an initial perpendicular flow, forming stretched cylinders on which now one or two (or
more) unstable necks evolve, eventually leading to the formation of two, three (or more)
residues. Peripheral fragmentation [rows (d) and (f)] also evolve initially in a way which
is qualitatively similar to the lower We case [row (b)], except that stretching now leads
to the formation of one or two (or more) unstable necks which break up into two, three
(or more) residues.

The time sequences shown in Fig. 4 are qualitatively similar to what has been reported
(e.g., [8]) for collisions of drops moving in free space in the same We regime, with the
existence of critical limiting We values for both peripheral and central interactions and
the formation of stretched cylindrical configurations which, depending on B and We,
can break into two, three or more fragments. As mentioned before, the most important
difference occurs for B = 0 collisions [rows (¢) and (e)]. In free space, the outward flow
(along the contact plane) leads to the formation of disk-like structures which eventually
collapse forming the unstable cylinders [28]. Thus, the residues are emitted in a direction
parallel to the incident one. In our case, however, the initial flow is constrained by
gravity to the horizontal plane, thus forming the unstable cylindrical configurations in
the initial outward-flow stage (not in the subsequent collapse). Consequently, our B = 0
fragmentation residues are emitted in a direction perpendicular (instead of parallel) to
the incident direction.

The existence of a well defined boundary between coalescence and fragmentation (the
limiting We) was first established by Adam et al. in 1968 [26]. As shown schematically
in Fig. 5, in the We vs. B plane this C-F boundary begins at a critical We, value, below
which all collisions (in which liquid contact is stablished) lead to permanent coalescence.
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Beyond We,, the C-F boundary typically adopts a B, x We /2 dependence, which we
shall call the “upper” C-F branch. Some experiments indicate that a second critical value
We, appears at B = 0, beyond which fragmentation also occurs. As We is increased,
this fragmentation mode extend towards non-zero impact parameters following a (not
well established) increasing function of We, which will be called the “lower” C-F branch.
When observed, this branch is reported to merge into the upper branch at B ~ 0.2. Such
crossing defines another important critical value, We,,, beyond which coalescence ceases
to be observed.

Since, as explained in Sect. 5, the mechanisms determining the upper and lower
C-F branches are generally thought to be different, the present discussion will be made
separately for the upper and lower C-F branches. The C-F boundary extracted from our
mercury-drop experiments is shown in Figs. 6a and 6b, for the A =1 and A = 1.65 data,
respectively.

The B vs. We data sets from other authors are shown in Figs. 7a-7f and 8a-8d,
for symmetric and asymmetric collisions, respectively. As can be observed, there is a
qualitative similarity between them, showing a typical

Be = We,/We'/? (1)

dependence (solid curves), where We, is the value of We at B, = 1. The common shape
of the upper C-F branch allows us to reduce the comparison to the relative values of one
parameter, We,, obtained from a fit to the data using Eq. (1). In Sect. 7 we see how
the deviation from this systematics found in the low B (high We) region of the mercury
data can be understood as due to “rolling” (solid curves in Fig. 6). Note that, at B = 1,
both predictions (dashed and solid curves) are very similar. In Fig. 9a we plot the We,
values obtained for all the A = 1 data as a function of D, while in Fig. 9b we show how
that parameter varies with A. The solid lines in these figures are, in Fig. 9a, the mean
experimental value and in Fig. 9b the prediction of the model [22] which provides the
best description (see Sect. 5).

Figures 9a and 9b, show that the We, values measured from mercury-drop exper-
iments are consistent with those found for other liquids using standard experimental
techniques. Although there is an important dispersion, the data also indicates the ad-
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FiGure 7. Comparison of available B vs. We, A = 1, measurements. In (a) the data of Adam et
al. [26] for D = 120 and 600 pum water drops; in (b) the D = 200-1000 um the data deduced (see
Sect. 6.1) from the water data Ashgriz and Poo [14]; in (¢) the D = 300-1500 um data of Ref. 22;
in (d) the D = 72, 100, 160 and 200 pm propanol data of Ref. 13; in (e) the D = 300 um water
data of Ref. 16; and in (f) the D = 200 and 700 pm data deduced from the water measurements
of Park [8]. The o’s correspond to upper C-F data, while the A’s are lower C-F data. The solid
curves represent a B, = We, /We'/? fit to the o’s, leaving We, as a free parameter. The dashed
lines are drawn through the A’s to guide the eye.
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Ficure 8. Comparison of available B vs. We, A > 1, (all water) measurements. In (a) A = 1.33
data deduced (see Sect. 6.1) from the measurements of Ashgriz and Poo [14]; in (b) the A = 1.75
data of Brazier-Smith et al. [22]; in (c¢) the A = 2 data deduced from the data of Ashgriz and
Poo [14], (full symbols) and the data of Park [8], (empty symbols); and in (d) the A = 3 data of
Park [8]. The ’s and o’s correspond to upper C-F data, while the A’s are lower C-F data. The
solid curves show the fit to the o’s using Eq. (1) leaving We, as a free parameter. The dashed
lines are drawn through the A's to guide the eye.

equacy of We as a scaling variable for A = 1 collisions. Note that our mercury data
allowed us to extend this verification almost two orders of magnitude in D.

As mentioned before, in central collisions a second critical value We; defines the limit
for B = 0 coalescence. From that point in the B vs. We plane fragmentation extends to
the small (non-zero) B region following an (as yet undefined) direct function of We: the
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data by Ashgriz and Poo [14], the A = 1.65 is our mercury data point, A = 1.75 is data from
Brazier-Smith et al. [22], the A = 2 is an average from the corresponding data of Park (1970) and
of Ashgriz and Poo [14], and the A = 3 is data from Park [8]. The lines represent the predictions
of models by Brazier-Smith et al. [22] (solid), by Schmidt and Lutz [35] (dashed), by Park [§]
(dotted), and by Arkhipov et al. [31] (dot-dashed).

lower C-F branch. Thus, the point where the upper and lower C-F branches cross define
We,,, the highest We for coalescence (independent of B).

Although our experimental method introduces a distorting effect in the low B region
which prevents us from drawing conclusions on this aspects from the present mercury
drop data, we would like to comment briefly on the situation concerning the available
data from collisions in space.

First, the values of the zero-impact-parameter limit We; vary widely. For example,
in the case of A = 1 water systems, Ashgriz and Poo [14], as well as Park (8], report
We; < 20, while Adam ef al. [26] found values in the We; = 60-100 range.

Secondly, the situation concerning We,, is also intriguing. The only measurements
showing this limit, those of Adam et al. [26], yield We,, = 100 for small (D = 120 pm)
and We,, = 450 for larger (D = 600 pm) drops. This result would indicate that, contrary
to intuition, the temporary system formed by two small drops is less stable that formed
by bigger ones. It should be added that no other measurements, including those of Brenn
and Frohn [13], reaching We ~ 480, for D = 160 pm propanol drops, have established a
high We limit for coalescence. Clearly this situation deserves further investigation.

Among the other drop-collision parameters which have received some attention is the
residue’s mass, and multiplicity (N,), distributions. The Nj-dependence of the (We-
and B-integrated) frequency distribution of the residues’ mass m; (normalized to the
total mass of the system m; = m; + m,) from mercury drop collisions is shown in
Figs. 10a-10d and Figs. 10e-10h for A = 1 and A = 1.65, respectively. In both cases,
fragmentation is found to produce two masses similar to the initial ones (the “quasi-
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respectively.

initial” residues), accompanied by tiny (“satellite”) drops. This figure shows that the
increment in multiplicity is linked to an increasing number of satellite drops, but seems
to have little impact in reducing the gap between the different mass groups.

This behavior can be compared with measurements for A > 1 by List et al. [29],
McTaggart-Cowan and List [21], and Bradley and Stow [30] for water drops and by
Arkhipov et al. [31] for water-glycerine solutions. As in our case (e.g., compare Figs. 10e—
10h with Fig. 6 of List et al. [29] and Fig. 1 of Bradley and Stow [30]), the fragmentation
of asymmetric systems is characterized by a three-peaked residue-mass distribution, two
of the groups corresponding to the quasi-initial masses, and the third group to smaller
satellite drops.

4.2. HIGH ENERGY MEASUREMENTS

Concerning our search for exotic shapes formed in the collisions of liquid drops at higher
We’s, Fig. 11 illustrates the kind of pictures we observe. For central collisions, once
the two drops touch, incompressibility leads to an ejection (“squeeze-out”) of liquid
along the contact plane forming pseudo-toroidal shapes which, when observed on an
inclined plane, always seem to have a thin liquid membrane filling their central region.
Radial flow induces a rapid increase in the radius of this pseudo-torus, reducing its
cross-section and transforming the system into a thin disc having a somewhat thicker
rim. This bordering rim eventually develops a fingering (“mexican hat”) instability
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FIGURE 11. Typical images from fragmentation water drop collision at We ~ 150. The top
two rows show the time evolution of one collision. The bottom row shows different views of the
“mexican hat” instability (see text).

which initiates the fragmentation process. When compared with the macroscopic fluid-
dynamic predictions (see Fig. 19 of Ref. 3), we see that an important difference lies in
the central liquid film, which the models predict to breakup in the early stages leaving
a true torus which eventually fragments through some form of Rayleigh instability. The
experiments indicate that those central films live longer than the rapidly expanding tori.
This difference with the prediction may be related to the approximate way in which
surface tension is treated in the model. That problem may also be present in nuclear
fluid-dynamic calculations, which have a similar approach to surface tension. Recently,
Moretto et al. [2] described the fragmentation of both sharp (as in macroscopic systems)
and diffuse (as in nuclear systems) surface liquid sheet as due to a geometrical instability
which would tend to reduce the high surface-energy by breaking into a number of cylinders
which, in turn, break into spherical drops via Rayleigh instabilities. Tori (“donuts”™) are
also described by Moretto et al. [2] as unstable shapes which are independent from sheets.
Our observation with macroscopic liquids indicates that true tori (i.e., not having a thin
internal membrane) should be very rare since, among thousands of collisions we have not
identified a single one. Instead, most events show the formation of thin liquid sheets held
by a thicker border. Like soap films held by a bubble-making rings, those liquid films are
fairly stable, fragmenting only after their bordering frame does. The dynamical breaking
of this frame is also somewhat different from the Rayleigh-type instability of a toroidal
liquid mass.

5. COALESCENCE-FRAGMENTATION (C-F) BOUNDARY MODELS

The stability of systems formed when two drops collide has been the subject of extensive
theoretical investigation. The general interest and sophistication of the models vary
enormously depending on the field of application. In meteorology, for example, the
concern is to understand the limiting conditions for permanent coalescence, i.e.. the C-F
boundary, using simple mechanical arguments. Atomization and spray experts, more
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concerned with fragmentation, rely on fluid-dynamic models to understand their data.
At the microscopic scale, molecular and nuclear physicists deal with collective aspects
of clusters and nuclei as if they were drops, having developed sophisticated quantal and
semi-quantal models which include important fluid-dynamic components. As we shall see,
in one of those models the quantal and Coulomb effects can be cleanly “switched off”
allowing us to compare their predictions with experimental data from the mMacroscopic
domain through the appropriate scaling. This Section contains a brief review of those
theories and their predictions.

5.1. THE UPPER C-F BRANCH

Since, as we shall see, most models predict that upper C-F branch should follow (or nearly
follow) the 1/We!/? dependence observed experimentally (Figs. 7 and 8), the goodness
of the predictions in this respect can be better judged by the ability of each theory to
reproduce the mean We, = 7.19+3.24 extracted from F ig. 9a. Another important aspect
to be considered is the A dependence predicted by the models which is compared with
the corresponding data in Fig. 9b.

5.1.1. Neck vs. bulk-motion models

The upper C-F branch for symmetrical systems was first interpreted by Adam et al. [26]
as due to a rotational instability. They observed that, before disruption, large B-value
systems assume a rotating dumb-bell shape, i.e., two large masses joined by an inter-
mediate neck, rotating about the center of mass. Based on this, they made an estimate
for the onset of disruption at B = 1 by assuming that all the kinetic energy transforms
into rotational energy. Under those conditions the stability of the dumb-bell was made
to depend on whether the neck had sufficient strength to stand the centrifugal pull of
the two (equal) external masses. Using an empirical critical neck shape, their predic-
tion [26] corresponds to We, (A = 1) = 2.1, a factor of approximately 4 below the mean
experimental value (Fig. 9).

Park [8] modified the model to predict B < 1, and A > 1, values, by introducing
an idealized B-dependent neck dimension and assuming angular momentum, instead of
energy-conservation. The B vs. We dependence predicted by this model can be calculated
using the expressions

1/2
B ( 12¢ )
TWe

where ¢(B) is the neck variable

oy 1/4
c= {4&2 - [B(l + &) i BA)} }

(1+ A3)(1 + A®) N (1+A4)

A1+ A) 2 2)

These equations underestimate the data by predicting We,, = 0 for symmetric systems
(Fig. 9a), while, as most other models, yielding a A dependence for We,, (Fig. 9b) which
increases more rapidly that observed.
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More recently Ashgriz and Poo [14], arguing that separation occurs much earlier
than the development of any significant rotation, rejected the rotational limitation con-
cept, proposing instead a model in which a fraction of the linear kinetic energy, termed
“stretching energy,” is required to balance the surface attraction of a critical neck. Thus,
as proposed by Adam et al. [26], large B disruption is said to occur whenever the sum
of the linear kinetic energies of the non-overlaping masses and of the overlapping masses
weighted by B?, exceeds the surface energy of the neck, approximated by a cylinder
having the length | = D(1 — B) and a mass equal to that contained in the projected
overlapping volumes. This model results in high order polynomials relating B to We
which, for A = 1 can be reduced to

We(A =1) = 8[3(1 — B)3(1 — 2B)]'/2. (3)

Since, B = 1 implies no volume-overlap (hence, no neck), contrary to the experimental
observations (Figs. 9a and 9b) this formulation predicts We, = 0 for all A values [see
Eq. (32) of Ref. 14).

5.1.2. Energy balance model

Brazier-Smith et al. [22] proposed two models to interpret the upper C-F branch. One
of them avoids complicated shape parameterizations by proposing that the system would
be unstable when the rotational energy exceeds the surface energy necessary to form two
(spherical) droplets out of the (spherical) coalesced system. This lead to the expression

(4)

4.8f(A)] b
We ’

Buz[

where
[L+ A2 = (14 %3] (14 A3)1/3

f(&) = AS(1+ A)?

is a function which varies from 1.3 for A = 1 to 2.2 for A = 1.65. This model [22] has
been used extensively [8] as it provides a reasonable fit to most of the available upper C-F
branch data, predicting a We, = 6.29 for symmetric (A = 1) systems, in good agreement
with the experimental observations (see Fig. 9a). The corresponding prediction for the
A dependence of We,,, being more rapid that observed (Fig. 9b), is the one that provides
the best fit for this kind of data, failing only at the highest A values.

5.1.5. Shape evolution models

The second model in Brazier-Smith’s et al. work [22] is based on the similarity between
the equilibrium configurations of a rotating liquid drop near the limiting angular momen-
tum L. for symmetric breakup, and the last stages of a large B collision. This approach
represents a conceptual improvement over the above-mentioned models because it takes
mto account, not only the change in surface energy, but also the change in moment of
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inertia between the equivalent sphere and the limiting dumb-bell configurations. The
Brazier-Smith et al. [22] estimate corresponds to

B o ((A3+1)13/6
YT A1+ A)Wel2)”

(5)

with ¢ = 4.26. Unfortunately, this prediction grossly overestimates the experimental
values, yielding We,(A = 1) = 91.7 with a A dependence (not shown) more rapid than
observed. These authors [22] also noted that their predicted L. values are factors of 3.5
larger than the experimental values.

This connection between colliding drops and the equilibrium configurations of a ro-
tating mass was studied in more detail by Cohen et al. [32], (see also Ref. 33) who
calculated the total (surface+electric+rotational) potential energy surfaces to determine
the saddle point for the symmetric “fissioning” of an electrically charged rotating drop.
When applied to uncharged masses, the Cohen et al. [32] theory yields a ¢ = 2.78 to
be used in Eq. (3), corresponding to We, (A = 1) = 4.43. This value, being 35% below
the experimental one (Fig. 9) is clearly in better agreement than what Brazier-Smith et
al. [22] estimated within the same theoretical framework. Still, the L. values predicted
by the Cohen et al. [32] theory are, typically, a factor of 2 larger than the experimental
observations (Fig. 9). On this problem, our group [17] used a three-dimension surface
potential model developed more recently by Blocki and Swiatecki [34] to search for the
L values in which the energy pocket disappears. Although this new approach still gave
larger than expected L.’s, we have shown [17] that the overestimation can be reduced
by introducing, in a simplified way, dynamical effects. An interesting way of doing so
was proposed by Schmidt and Lutz [35]. Based on the Cohen et al. [32] saddle point
calculations, they argue that the complex deformations observed in colliding systems
result in shallow potential multidimensional energy surfaces. Thus disruption is said to
set in when the centrifugal+surface energy barrier located at the saddle is overcome by
the total collective energy of the equivalent spherical complex. Schmidt and Lutz [35]
also extended this type of calculations to predict the upper C-F branch. In our notation,
their [35] result can be written as

24 (A3 + 1) ¥,

Bu= |5 Aa+1) We) iF)

5

where Y. = 0.38, what yields We, (A = 1) = 9.19, which lies within the experimental
value (Fig. 9a), however, its predicted A dependence (as all others) increases faster that
observed.

In general, however, the calculations based on-the limit of stability of a rotating drop
assume that the colliding droplets form a rotating system which smoothly undergoes
symmetric breakup as a rotating (equivalent) spherical drop would, with no loss of energy
to either internal or vibrational degrees of freedom. This approach has serious limitations.
First, symmetric two-droplet outcomes are only observed for A = 1 collisions on a limited
Weber number range. Second, the initial stages of the collision induce vibrational modes
which should also play a roll in determining the outcome. Finally, it is not clear why the
loss of energy to non-rotational modes should be negligible. An alternative approach,
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which deals with some of these problems was proposed by Ryley and Bennett-Cowell (28]
who focused on those energy-damping vibrational modes by proposing that the surface of
the temporarily coalesced system oscillates adopting extreme shapes, represented by three
model surfaces (Fig. 4 in Ref. 28). When enough energy is available for fragmentation
to occur, this is assumed to proceed via the formation of a stretched spherically-ended
cylinder (one of the three model shapes) subject to Rayleigh instabilities. However,
their theoretical prediction [28] for the rate of energy dissipation is based on parameters
(the surface area of each extreme shape and the angular velocity) to be determined
experimentally, thus resulting in a model with little predicting power.

One last approach we would like to mention is that of Arkhipov et al. [31] who, based
on the evolution of the surface shapes, used a variational principle to determine the point
in which the effective (surface+rotational) potential between the two droplets losses its
attractive minimum. The corresponding prediction is

B — L 6(1 + A3) v (7)
A3 We

By setting B = A = 1 and solving for We in Eq. (7) one obtains a We,(A = 1) = 12
prediction, 50% higher than the mean experimental value (Fig. 9a). However, against
the experimental evidence (Fig. 9b), this theory predicts that We, should be a rapidly
decreasing function A.

5.1.4. The effect of “rolling”

We now estimate the effect that the “rolling” motion could have on the upper C-F branch
in the present mercury-drop experiments. For simplicity, the calculations will be based
on the energy-balance ideas of by Brazier-Smith et al. [22] which state that the upper
C-F branch reflects the equilibrium between rotational and the surface energies (see Sect.
5.1.2). As mentioned previously (Sect. 3), the “rolling” motion introduces a rotational
energy, not always present in collisions between free-moving drops. Since the liquid
masses rotate in opposite directions, upon contact the connecting neck is subjected to a
“twisting” motion which tends to lower its cohesive strength. We assume that a fraction
F of this rolling energy enhances the breaking up of the system. Thus the equilibrium
condition now becomes

Emt + FEroll = U(Sf = S‘t): (8)

where the left hand side of the equation represent the rotational and the fraction of the
rolling energies, and the right hand side, the surface energy change. Using spherical
shapes to estimate the moments of inertia, and assuming equal linear momentum for
both drops (a good approximation in our experimental situation), the resulting equation
for the upper C-F branch is

8f(A 13
B(We) = %-Fﬁ(&) . (9)
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with f(A) as defined in Eq. (4) and

fay e (1 AB)E3
£1(8) = 016 5575y

Since, as expected, in the Eo; = 0 limit, Eq. (9) becomes Eq. (3), we have used its
parametric form
We, . L2
B(We) = Wef(A) Fi(A) (10)
(leaving F as free parameter), as well as Eq. (4) to fit the data in Figs. 9a and 9b, and
the results are shown in Figs. 6a and 6b as solid and dashed curves, respectively. The
values obtained using the non-rolling approximation [Eq. (4)] are We, = 6.65, for A = 1,
and 8.58 for A = 1.65, while the corresponding fits, assuming rolling (Eq. 10), yielded
We, = 8.32 (with F = 0.43) and 11.02 (with F' = 0.75), i.e, approximately 20% higher
We,’s than the non-rolling case. Although, given the large fluctuations shown in Fig. 9,
both sets of values lie within the systematics reported for free-moving drops, we took
the improved overall fit to mercury drop data as justification for using the rolling values
shown in Fig. 9a and 9b.

5.2. FRAGMENTATION

The few existing theoretical approaches to fusion-fission type fragmentation can be clas-
sified as surface-dynamic and volume-dynamic.

5.2.1. Surface-dynamic model

One example of the surface-dynamic approach is the model of Carjan, Sierk, and Nix [1],
originally developed to simulate nuclear reactions and recently applied to macroscopic
drops by us [36]. In this approach the colliding system is represented by a small number
(K) of collective degrees of freedom while the internal degrees of freedom are treated
implicitly. The shape of the system, assumed to be axially- and reflection-symmetric is
described by the Legendre-polynomial expansion

K
IJE(Z):RE ZQ71P2k(Z/zG)‘ (11)
n=0

where z is the coordinate along the symmetry axis, p; is the distance perpendicular to the
symmetry axis, zo is one-half the distance between the two ends of the shape, R, is the
radius of the spherical drop having the mass of the coalesced system, Py is a Legendre
polynomial of degree 2k, while the g’s (for k > 0) are the K independent symmetric
shape coordinates. Assuming incompressibility, the quantity qo is determined by volume
conservation. The results discussed here are restricted to K = 5.

In these calculations, the potential energy of the system is composed of an attractive
surface, and a repulsive centrifugal term. The collective kinetic energy is given by

T = 1My;(9)did; = 5[M(a)™')i; pips, (12)
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F1GURE 12. Predicted time evolution for a A = 1 mercury-drop collision with B = 0.6 and
We = 75, conditions which are similar to those of Fig. 4f. The initial drops move against each
other in the horizontal direction, while the time runs as indicated, in units of 1/60 s, twice as fast
as the experimental case (Fig. 4f).

where M;;(q) is the shape-dependent inertia tensor. The collective momenta p are related
to ¢ and M;; through

pi=M;i{q)g;. (13)

The internal degrees of freedom are represented by a dissipative force having a mean
component in the ith direction:

F; = _Uij(Q)‘;'j: (14)

where 7;;(g) is the shape-dependent dissipation tensor 7(g).

With the above ingredients, the generalized Hamilton equations of motion were solved
to determine the time evolution of the system. A typical CPU time for one macroscopic
drop collision simulation is 10 s in a CRAY YMP computer.

In Fig. 12 we illustrate what is predicted by the dynamical model for a mercury-drop
collision having the same initial conditions as the event shown in Fig. 4f. A restriction
imposed by the shape parameterization [Eq. (11)] implies that the time evolution pre-
dicted by the model begins and ends when the initial and final necks reach a small but
finite value, i.e., the simulation starts when the drops are already in contact and stops
when the outermost necks reach the limiting diameter. Besides that, and the fact that
the real shapes are more complex, the overall features of the observed time sequence
seem to be well reproduced by the model: there are three bodies in the final state, and
the system separates at a similar angle. There are, however, two important differences:
the predicted interaction time is approximately half of what is observed, and the relative
size of the drops is less well reproduced, i.e., the model predicts neck-particles which are
bigger than the observed ones. The larger mass of the middle drops and the faster time
evolution predicted could be expected to result from the assumption of rigid rotation im-
plicit in the model, placing all the available angular momentum in whole-body rotation.
Thus the system is predicted to rotate faster and stretch longer.
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5.2.2. Volume-dynamic models

The volume-dynamic approach involves the complex task of solving equations of three
dimensional unsteady fluid flow with free surfaces. Solutions of the so called Boltzmann-
Uhleing-Uhlenbeck and the Landau-Vlasov equations have been very successfull in ex-
plaining observables in nuclear reactions [37] and molecular cluster [38] collisions. Unfor-
tunately in these formulations the quantum mechanical aspects are not easily separable
from the purely fluid-dynamic ones.

Concerning macroscopic (non-quantal) systems the problem is generally tackled us-
ing the finite difference method of solving the Navier-Stokes equations in the bulk. The
surface evolution is, then, dealt with in a ad hoc way using iterface tracking procedures.
One such approach, developed by Lafaurie et al. [3], has been used to simulate periph-
eral and central coalescence drop collisions, resulting in shape evolutions which are very
similar to what we observe (compare their Figs. 17 and 18 with our Figs. 4a and 4b).
Unfortunately, due in part to the large CPU costs involved (hours and even days per
collisions), those hydrodynamic codes have not been used to provide detailed predictions
for fragmentation observables (N,, m,, etc.). We would like to mention that faster,
two-dimensional, simulations by Poo and Ashgriz [39], and Lafaurie et al. [3], have been
shown to reproduce well the shape evolutions observed in three dimensional liquid drop
experiments.

6. CONCLUSION

“ollisions of symmetric and asymmetric liquid-drop pairs have been studied experimen-
tally by a number of authors. We reviewed the techniques used in this field concerning
drop acceleration, initial and final collision parameter determination. This work includes
the techniques developed by our group to cover two different relative velocity regimes,
one in which mercury drops of low We are used to study the C-F boundary and the
other in which higher We oil drops are used to study multifragmentation. Concerning
the mercury-drop experiments, the analysis of 1000 collisions showed that the overall
behavior of the resulting data is similar to what has been reported for other liquids, par-
ticularly concerning the shape evolution, upper C-F branch, and the limited information
available concerning the number and size distributions of the fragments. The higher We
oil-drop experiments were used to test recent qualitative theoretical predictions about the
formation of so called “exotic shapes.” The theoretical situation concerning hydrostatic
drop collision models was also given, and the corresponding predictions compared with
the available data. The formulations of Brazier-Smith [22] and Schmidt and Lutz [35]
were found to provide the best agreement with the upper C-F branch data for A =1
systems, while all models were found to fail in reproducing the weak A dependence ob-
served. Concerning fragmentation, a surface-dynamical model, originally developed for
nuclear physics, was described, and shown to reproduce some aspects of the observed
phenomena.
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