Revista Mericana de Fisica 43, No. 4 (1997) 514/-518

Aharonov-Bohm potential via spin weight
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ABSTRACT. It is shown that the shifting of the spin weight of the wave function of a particle,
expressed in terms of the circular, parabolic or elliptic cylindrical coordinates, is equivalent to
introducing the interaction with the field of a thin infinitely long solenoid along the z axis. Using
this equivalence, the Schridinger equation with an Aharonov-Bohm potential is solved in circular
cylindrical coordinates.

RESUMEN. Se muestra que el desplazar el peso de espin de la funcién de onda de una particula,
expresada en términos de coordenadas cilindricas circulares, parabdlicas o elipticas, es equivalente
a introducir la interaccién con el campo de un solenoide delgado infinitamente largo colocado sobre
el eje z. Usando esta equivalencia, se resuelve la ecuacién de Schrédinger con un potencial de
Aharonov-Bohm en coordenadas cilindricas circulares.

PACS: 03.65.-w; 03.50.De

1. INTRODUCTION

In a recent paper [1] it has been shown that, up to a gauge transformation, the interaction
of a charged particle with the field of a magnetic monopole can be accounted for by
simply shifting by ¢ units the spin weight of the spherical components of the particle’s
wave function, where ¢ = eg/he, e is the electric charge of the particle and g is the
magnetic charge of the monopole (see also Ref. 2).

A closely related procedure to reproduce the interaction with the field of a magnetic
monopole has been employed in Ref. 3 (see also the references cited therein), where the
wave function is expressed in terms of a two-component spinor. The three cartesian
coordinates z; can be represented in the form z; = ¢to, €, in terms of the two complex
components of a spinor £ and the Pauli matrices o;; in this manner, the wave function and
the equations governing it can be written in terms of £ and, by assuming a dependence on
the phase of £ through an exponential factor, the interaction with a magnetic monopole
is reproduced. [The spin weight of a quantity is determined by its behavior under the
transformation & — ¢'*/2¢ (see, e.g., Ref. 4).]

Since the spin weight is also defined in connection with cylindrical coordinates (cir-
cular, parabolic and elliptic) [5,6], one can look for the interaction produced by shifting
the spin weight of the wave functions expressed in terms of these coordinates. As we
shall show below, the interaction generated in this way is that corresponding to a thin
infinitely long solenoid along the z axis (Aharanov-Bohm potential). By contrast with
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the spherical case, where the shift ¢ must be integral or half-integral (which is equivalent
to Dirac’s quantization condition), in the case considered here, the shift of the spin weight
(which is related to the magnetic flux inside the solenoid) can be any real number.

In Sect. 2 we briefly review the relationship between a magnetic monopole field and
the spin weight with respect to the spherical basis. Then we consider the effect of shifting
the spin weight with respect to a cylindrical basis and, in Sect. 3, the Schrodinger equation
for a charged particle in an Aharonov-Bohm potential is solved.

2. SPIN WEIGHT AND ELECTROMAGNETIC INTERACTIONS

Let {&p,€,,€,} be the orthonormal basis induced by the spherical coordinatcs. A quan-
tity 7 has spin weight s if under the rotation about &, given by &y +ié, +— e'*(&y +ie,).
transforms as n ~— €'**7. The raising and lowering operators 0 and 9 are defined by [7]

On=—(0p +icsc@d, — scot@)n, On=—(dy —icschd, + scotb)n, (1)

if n has spin weight s. Then 07 and 37 have spin weight s + 1 and s — 1, respectively.

Since the interaction of a particle of electric charge ¢ with an electromagnetic field
given by the vector potential A is obtained by replacing the operator —ihV by —ihV —
eA /c, the replacement of the spin weight s by s+ ¢ in Eqgs. (1) amounts to introduce an
electromagnetic field given by

ot 0
Ay =-TE8  gy—0=a, ©)
€

in some specific gauge. It is easy to see that the magnetic field B = ¥V x A generated by
the vector potential (2) is
qhc e,
B=——, 3
= (3)
which is the magnetic field produced by a magnetic monopole at the origin of charge
g = ghc/e; thus, the spin weight shift g is related to the charges through
(’,’g
= = 4
1= 3 (4)
and, according to Dirac’s quantization condition, ¢ can take integral and half-integral val-
ues only. As shown in Refs. 1 and 2, given the solution of the Dirac or of the Schrodinger
equation, without a magnetic monopole field, in terms of the spin-weighted spherical
harmonics ;Yj,, (which reduce to the usual spherical harmonics when s = 0), the corre-
sponding solution when a magnetic monopole field is added is obtained, essentially, by
replacing s by s + q.

Now let {e,,é4, €.} be the orthonormal basis induced by the circular cylindrical
coordinates p, ¢, z. A quantity n has spin weight s if under the rotation about é. given
by €, + ies — ¢'“(e, + 1€,), transforms as n +— €*“y. In this case, the raising and
lowering operators d and @ are defined by [5]

S

or = L. PO R Y. ;
on = (ap+pd$, p)?}, on = (d,, pd¢+p)u, (5)
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if n has spin weight s and therefore

& = PO | 2is 92
- _ _ 2 - <
Bﬁn—aﬁn—apn+;dﬂn+p 8@? - —=l i —

(6)
The cylindrical harmonics of spin weight s, s Zom(p, ¢), satisfy the eigenvalue equations [5]

80(:Zam) = —a*sZam;  —10p(sZam) = M s Zam; (7)
and (for @ # 0) their normalization is given by

$Zam(p, $) = Zms(ap)e™, (8)

where Z, is a Bessel function [e.g., sJam (0, ¢) = Jmss(ap)e™?].
The change of s by s + g in Eqgs. (5) is equivalent to introduce the interaction with
the magnetic field corresponding to the vector potential
he l
Ay = —~E = A, =0=A4, . (9)

3
g p

From Eq. (9) one finds that B = 0 for p # 0 and that the magnetic flux through any
surface crossed once by the z axis is given by

}‘ -
/B da—s{A dl = -3 dd):f%. (10)

Therefore, Eq. (9) is a vector potential for the magnetic field of a thin infinitely long
solenoid along the z axis containing a flux F given by Eq. (10).

In the case of the parabolic cylindrical or elliptic cylindrical coordinates, u, v, z,
a quantity 7 has spin weight s if under the rotation about e, given by e, + ie, —
¢ (e, + ié,), where {&,,&,,€,} is the orthonormal basis induced by the coordinates u,
v, z, transforms according to n — ¢**“7). Now

1T s 8 :
87] = 4?},‘ |:du + Zdv - E(h‘u + I}L?!)} T”

1 .
67] = —E I:au — 10y + %(hm & ih’,‘u):l T (11)

where h is the (common) scale factor of the coordinates v and v [6]. The change of the
spin weight s by s + ¢ amounts to introduce the interaction with the vector potential

thh " qhe h o
A Ay = ———= A, =0 12
U () hz' b) [ e }?"2 1 -~ 3 ( )

where e is the electric charge of the particle, which again corresponds to the field of a
thin infinitely long solenoid along the z axis.
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3. SOLUTION OF THE SCHRODINGER EQUATION WITH AN AHARONOV-BOHM
POTENTIAL

The (time-independent) Schrodinger equation for a free particle of mass M, written in
circular cylindrical coordinates is

Ll
2M

1 1,
(ap?a,/; 4 ;apw + ;).—za;’«/; - afw) = Ev. (13)
Comparing with Eq. (6), we see that Eq. (13) is equivalent to
=i 2ME
3o + 824 = s (14)

taking into account that 1) is a function of spin weight 0. This equation admits separable
solutions of the form

11[’ == UJ(nn(p-, qb)eikaz = ,]m (ap)eifndﬁﬂikaz (15)

[see Eq. (7)], where m is an integer, and o and k3 are real numbers such that

2ME
3 2
af + k5 = 16
According to the discussion in the preceding section, the wave function
P = gJom(, P)e™* = Ty, (ap)e™Pei®s? (17)

is a solution of the Schrodinger equation for a particle of mass M and electric charge e
with the Aharonov-Bohm potential

F
Ay =—, A, =0=A,, 18
¢ 27rp P ! ( )
where
el
e

It must be noticed that in the spherical case things are not so simple because the
operators d and 0 do not commute and, by contrast with Eq. (7), the eigenvalue of 90
involves the spin weight, which affects the value of the separation constants. In the
present case, a is left unchanged when the spin weight of the cylindrical harmonic in Eq.
(15) is shifted and therefore the separation constant k3 needs not be changed.

The wave function (17) is an eigenfunction of the operators —ihdy, and M. = [r x
(—=ihV —eA/c)]; = —ihdy+hq [see Egs. (18) and (19)], with eigenvalues mh and (m+q)h,
respectively.
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4. FINAL REMARKS

Since, as in the case of the electromagnetic field, the interaction with a non-Abelian
gauge field or with the gravitational field is obtained by replacing the partial derivatives
with respect to the space-time coordinates by the corresponding “covariant” derivatives,
the results of Refs. 1 and 2 and of this paper suggest that one can easily obtain the
interaction with certain field configurations by shifting the spin weight or another weight
related with rotations in the “internal” space.
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