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Evolution and entanglement of Fock states

SHAHEN HAcYAN
Instituto de Fisica
Universidad Nacional Auténoma de Mézico
Apartado postal 20-364, 01000 Mézico, D.F., Mezico

Recibido el 29 de noviembre de 1996; aceptado el 1 de abril de 1997

ABSTRACT. The evolution and entanglement of quantum states are studied for the particular
case of two harmonic oscillators coupled through a quadratic Hamiltonian. A general formalism
1s presented that permits to calculate the elements of the unitary transformation that leads from
an initial product state to an entangled superposition of product states. Two examples are worked
out in details.

RESUMEN. La evolucién y el enredamiento de estados cudnticos se estudia para el caso particular
de dos osciladores arménicos acoplados por medio de un hamiltoniano cuadrético. Se presenta
un formalismo general que permite calcular los elementos de una transformacién unitaria que
conduce un estado inicial tipo producto a una superposicion enrredada de productos de estados.
Se estudian dos casos particulares a modo de ilustracion.

PACS: 03.65.Bz; 03.65.Ca

1. INTRODUCTION

Shortly after the publication of the famous Einstein, Podolsky and Rosen paper (1],
Schrédinger [2] discussed the paradox presented by these authors and reached the con-
clusion that non-local effects in quantum mechanics are due to the peculiar phenomenon
of entanglement. Entanglement implies that two o more systems that once were in inter-
action can no longer be described as individual entities after they separate, even if they
are no longer causally connected. In Schrodinger’s words, entanglement is not “ ... one
but rather the characteristic trait of quantum mechanics” [2].

The entanglement of states in quantum mechanics implies a type of correlation be-
tween separate systems that can not be explained in terms of classical physics. This fact
can be quantitatively established with the use of the Bell inequalities [3].

Bell’s argument in its standard version involves a pair of particles with spin emitted by
a common source. However, entanglement is not necessarly related to the spin. Indeed,
Yurke and Stoler [4] have shown that non classical correlations can also be obtained with
a model involving four harmonic oscillators in interaction.

In order to describe the dynamical aspects of an entangled system, we present in
this paper a general formalism that permits to describe the evolution of two harmonic
oscillators interating through a time dependent Hamiltonian. If the oscillators are initially
in a product state, a finite time interaction between them leads to an entangled state:
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this final state is a superposition of product states and is related to the initial state by a
unitary transformation. As shown in Sect. 2, the coefficients of this transformation can
be evaluated quite generally for any quadratic Hamiltonian describing the system under
consideration; this can be done using a formalism developed by Dodonov, Malkin and
Man’ko [5] in combination with a technique of generating functions. As an application
of our formalism, some particular cases are studied in Sect. 3, where we consider the
entanglement of two harmonic oscillator states with two possible types of interactions;
the first is the interaction proposed by Yurke and Stoler [4] in their study of the Bell’s
inequalities, and the second corresponds to the case of a particle in a Penning trap [6].

2. THEORY
Consider a system of two harmonic oscillators described by a Hamiltonian of the form:
H = gl ympy+-Bigms; + 04w , (1)

where A;;, B;j and Cj; are two-by-two time dependent matrices. Following the formalism
of Dodonov et al. [5], we notice that the system admits constants of motions P and X
that are linear combinations of the position and momentum variables, namely:

P = M (t)p + Aa(t)z, (2)
X = A3(t)p + Aq(t)z, (3)

where p and z are column vectors with elements p; and z;, and A; are two-by-two matrices.
Defining the four-by-four matrices

(A1 As
Aij By :
B (B_Iz Cl]) : (L))

and the sympletic metric
0 I
= 6
T (_ ; 0) , (6)

it follows that the classical equations of motion can be written as:

d

—A = ATB, 7

T (7)

which implies in particular that:

ATAT = 7. (8)
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Consider now the Schrodinger equation associated to the quadratic Hamiltonian (1).
The Green function, defined quite generally by the relation

Tz, 23, 8) = [G(a:l,wz,yl,yz,t) (g1, 2, 0) dy dys, (9)

can be calculated with the formalism of Ref. 5, valid for any quadratic Hamiltonian. It
turns out to be:
1

7 1
G(z1,22,y1,Y2,t) = gm exp 3

where 2 and y are column vectors with elements z; and ;.

We have now all the mathematical tools necessary to determine the evolution of a
quantum state. Consider two non interacting harmonic oscillators, with masses m,; and
frequencies w;, that are initially in the product state

(725 Mz +yT M ATy — 22Ty ly)] -

Wi (21, 22) = ta(z1) Pp(22), (11)

at time t = 0. Here 1), are the usual Fock states in coordinate representation,

Pal(zi) = (V2% V2 e 38 H, (&), (12)

where & = (m;w;/h)"/%x;. If an interaction is switched on at time ¢ = 0, the system will
evolve afterwards to the new state

Uap(21,72,1) = Y Uca,an(t) e(21) Yalz2), (13)
cd

where Ugq qp(f) are elements of a unitary transformation.

Quite generally, Eq. (13) describes an entangled state; our aim now is to calculate
the coefficients Uy oq. This can be done by noticing first that, due to the normalization
of the Fock states,

Uab,cd(t) = /@ba(ﬁl)d’b('ﬂ’TZ}G(Il:IZsyhy?:t)lf)(-(yl)wd(UQ)dII dxy dy dys. (14)
More explicitely:

Unped = w127 3l0tberd) (g1 p1 ot g1y~ 2

1 .
x /CXP{ — g5 @i+ T y)Glor o2, y1, 0, 1) |

x Ho (&) Hy(&)He (1) Ha()) dxy dxy dyy dys, (15)

where z and y are column vectors and p is the matrix

g ((m1w1)1/2 0 ) . (16)

0 (maowsy)'/?
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In order to proceed further, we use the technique of generating funtions. In particular,
the Hermite polynomials follow from the standard formula:

{x, r
o't

exp (—az + 2(137) = Z FHH(T) ; (17)

n=0
and this suggests to define the generating function

ot of 55 B8

I(ay, a9, 51, 02) = Z WU@,M,

a,b,c,d=0

or more explicitely

7
I(G]-QQ‘ﬁluﬁQ):m

1 + 1 2 5 2 1 " .
X /exp {- 501 a-g 47 \/;n“u:r: + i/ E{)’T,u.y - ﬁ(mﬂ‘rpzz + 97 ,ugy)
v

- %(z"‘/\;‘mx +yTAAT Ly — Z:ETA;]y)] dzy dzs dyy dya.  (19)
Using now the relation
Tl'"'/2

videt M

valid for any n x n matrix M and n-vector N, we find with some lenghty but straighfor-
ward algebra that

/exp (—.‘L'TM:L' + QNT:E) dE™ = exp (NTM_IN) ; (20)

I( 1. B) 2ih det Ay
oy, g, B, B) = ,
R Cls (mymaowiwn) /2 \/det S

where we have defined the four-vector I'" = (a, a9, 51, 42) and the 4 x 4 matrix

- Aap” o tAsp 7'“'—1
8= ( =i} Afp=t—iAlp) (2)

exp (—%I"I'S_lS*F) ’ (21)

given in terms of the matrices A;. Equations (21) and (22) are our basic result.

3. TwWOo EXAMPLES

Equations (21) and (22) permit to calculate the evolution coefficients U,y .4 through a
series expansion. Although a general formula can be obtained, the result is too cum-
bersome to be of any use, and it is more illustrating to consider only some particular
examples. This will be done in the following.
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1. YURKE-STOLER INTERACTION

Let us consider the Hamiltonian used by Yurke and Stoler [4] for an interacting pair of
harmonic oscillators; it has the form:

H =5 (p} +p3) + 3 (2 + 23) + K (1p2 + 2122) (23)

where it is assumed for simplicity that the two oscillators have the same masses and
frequencies, both taken to be unity (also 2 =1 in the following).
The solution of Eq. (7) is

Ny = Ny = ¢o8 O, Ay = —A3 = sin ¢, (24)

where

as can be checked easily.
Thus, the matrix S defined by Eq. (22) turns out to be in this particular case:

_ [exp(if2t) -1
5= ( -1 exp(iﬂt)) ' 26)

where
: it [cosf isinf
sEplisit) = (i sinf 0039) @
with 6 = kt.
It follows from these last relations that the generating function takes the form
I= e"”exp{eiu [(@181 + aafl2) cos @ — i(a B2 + apf31) sin ) } (28)

A simple analysis of this formula reveals that the only non-vanishing coeflicients Uy 4
are those with @ + b = ¢ + d. Furthermore, this same relation (28) can be simplified by
noticing that it admits a straightforward Taylor series expansion in the coefficients (3.
The result is

E.
Uab.cd =exp HEetEa)t czbrrta (29)
where F, = (%+n) is the energy of a single oscillator and Vy; .4 follow from the generating
function '

(g cos B — iy sin @) (avy cos O — iy sin6)%. (30)

Z af ag (12 V 1
=
, Valbl T

a,b=
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Some of the first few coefficients are:
Voo,00 = 1; (31)
Vo1,01 = Vio,10 = cos 8,
Vio,o1 = Vo1,10 = —isinb; (32)
Voz,02 = Vap a0 = cos? 8,
Vit = Viro0 = —V/2isin# cos 6,
Vao02 = Voz,0 = —sin® 6 (33)

and

Vll,ll = C08 29,

Voz,11 = Vao11 = —V2isinf cos 0. (34)

3.2. PENNING TRAP
As a second example, we consider an Hamiltonian of the form:
H = 3(p] +p3) + 5 (2] + 23) + w(z1p2 — 22p1). (35)

This correspond to a particle (with unit mass) in a Penning trap, such that the cyclotron
frequency is 2w and the frequency of oscilation in the z direction [not considered in

Eq. (35)] is w, = v/2(w? — 1), (see, e.g., Brown and Gabrielse [6]).
The equations of motion for this Hamiltonian admit the solutions

A1 = Ay = R(wt) cost, Ay = —A3 = R(wt)sint, (36)

where R is the rotation matrix defined as

R($) = ( cos ¢ sinqﬁ) . (37)

—sing cos¢

The algebraic procedure to follow is the same as in the case of the Yurke-Stoler
Hamiltonian. It follows that the generating function is:

d = e“exp{e_it[(mﬁl + anfds) cos B + (—aq B2 + agﬂl)] sin 9}, (38)

where now 0 = wt.

Following exactly the same steps as in the previous subsection, it can be seen that
again U,y .q = 0 unless a + b = ¢ + d; furthermore, Eq. (38) can also be simplified using
a Taylor series expansion in the coefficients [3;. It follows that an equation of the form
(29) remains valid, but with the coefficients Vy .4 given now by the generating function

b

oG a
af af , . g ;
E ——l—ZVG;,,,;,,g = (cvp cos O + cry sin @) (ap cos § — vy sin G)d. (39)
gl cld!
a,b=
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Some of the first few coeflicients are:
Voo,00 = 1 (40)
Vo1,00 = Vio,10 = cos 8,
V10,01 = Voi,10 = siné; (41)
Voz,02 = Vao,20 = cos? 6,
Vito2 = Viioo = —V2sinf cos 6,

Vao,02 = Voz,20 = sin’ 6, (42)
and

Vll 11 = COS 29,
Voo, 11 = Vao,11 = V2sinf cos 0. (43)

4. DISCUSSION

The formalism developed in this paper permits to analize the evolution of two harmonic
oscillators in entangled states. The elements of the unitary operator defined by Eq. (13)
were calculated in the preceding section for two particular cases, and some of these
elements given explicitely. In particular, it is easy to check that these elements do satisfy
the unitarity condition:

o0

Y Wabeal* =1, (44)
a,b=0

for all integers a and b. Some of the coefficients given in Egs. (31) to (33) were obtained
by Yurke and Stoler with a different method and for a particular value of the interaction
time: we stress that our result is entirely general.

It is also worth mentioning that the formalism of Ref. 5 is not restricted to the two
dimensional case considered in the present paper. In fact, it is rather straightforward to
generalize formulas such as Egs. (21) and (22) to any number of dimensions; however,
the result is too cumbersome and does not add anyhing fundamental to the discussion
presented here.

Quadratic Hamiltonians with time dependent coefficients have attracted much atten-
tion in recent years in connection with several problems, such as the behavior of particles
in ion traps (see, e.g., Refs. 7 and 8). It is expected that the present formalism may be
useful in studying the important effect of entanglement in these systems.

As shown in a separate publication [9], our formalism is useful in the study of model
sitnations in which quantum correlations are involved. A new application of the Bell’s
inequalities for the entangled states of harmonic oscillators is analized in Ref. 9.
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