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ABSTRACT. The Schrédinger equation for a charged particle in the field of a magnetic monopole
and a Coulomb potential is solved making use of the spin-weighted spherical harmonics. It is
shown that the separable solutions obtained are eigenfunctions of the z component and of the
square of the total angular momentum.

RESUMEN. Se resuelve la ecuacién de Schrédinger para una particula cargada en el campo de un
monopolo magnético y un potencial de Coulomb usando los arménicos esféricos con peso de espin.
Se muestra que las soluciones separables que se obtienen son eigenfunciones de la componente z
y del cuadrado del momento angular total.
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1. INTRODUCTION

The spin-weighted spherical harmonics are very useful in the solution of systems of partial
differential equations for vector, tensor, and spinor fields by separation of variables. The
first systematic treatment of these functions was given by Newman and Penrose [1],
though equivalent sets of functions were previously introduced in various problems of
quantum mechanics and general relativity.

In this paper the Schrodinger equation for a particle in a Coulomb field and the field
of a magnetic monopole is solved applying the method of separation of variables with the
aid of the spin-weighted spherical harmonics. The Schrédinger equation for a particle
in the field of a magnetic monopole alone has been solved making use of certain ad hoc
angular functions, which are equivalent to the spin-weighted spherical harmonics (see,
e.q., Refs. 2 and 3).

In Sect. 2 the basic notions about the spin-weighted spherical harmonics are presented.
In Sect. 3 the Schrodinger equation for a particle in the combined field of a point charge
and a magnetic monopole is solved and it turns out that the interaction with the monopole
is taken into account by assigning a nonzero spin weight to the wave function. In Sect. 4 it
is shown that the separable solutions thus obtained are eigenfunctions of the z component
and of the square of the angular momentum of the particle and the electromagnetic field.
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2. SPIN-WEIGHTED SPHERICAL HARMONICS

The spin-weighted spherical harmonics, ¢Y;,(6,¢), are defined, up to a normalization
factor, by [1,4]
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The operators 3 and 9, acting on an arbitrary function 7 with spin weight s, are given by
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0 raises the spin weight in one unit, 8 lowers the spin weight in one unit, and Y}, has
spin weight s. From the definitions (2) it follows that
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where s is the spin weight of 7 and that
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The functions (Y}, are normalized according to
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and the phase of these functions is chosen in such a way that
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0Yjm are the usual spherical harmonics Y. The indices s, j and m of sYjm can take
the values
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When s is an integer, j and m are integers and when s is a half-integer, 7 and m are also
half-integers. As a consequence of Egs. (1), for a given value of s, the functions sYjm are
orthogonal, thus
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Furthermore, the set of functions ,Yj,,, with s fixed, is complete in the sense that any
quantity with spin weight s can be expanded in a series of the oY, [1]:
Using Egs. (1) and (2) one can show that [5] (¢f. also Ref. 3)
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where P, are the Jacobi polynomials,

a=|m+s|, B=|lm—-s, n=j- %(a+ﬂ) = j — max {|m|,|s|}, (9)

and (' is a normalization constant. Owing to the restrictions on the values of the indices
J, m and s, n is always an integer.

3. SOLUTION OF THE SCHRODINGER EQUATION

The time-independent Schrodinger equation for a particle of mass M and electric charge
e in the presence of an electromagnetic field produced by a point charge —Ze and a
magnetic monopole g placed at the origin is given by
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where the electromagnetic potentials can be taken as
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With the positive sign, the vector potential A is singular on the negative z axis, while
with the negative sign, A diverges on the positive z axis. Thus, we shall consider both
signs in Eqgs. (11) in order to find a well-behaved solution of the Schrodinger equation
everywhere. As shown in Ref. 3, the solutions corresponding to the two choices of A can
be joined to form a section on a line bundle provided that
eg N
e = B (12)
where n is an integer. Condition (12) is precisely the well-known Dirac’s quantization
condition [6]. It what follows, we will consider the wave function as an ordinary function,
without mentioning its relationship with a line bundle.
Making use of the expression for the Laplace operator in spherical coordinates
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and since the vector potential given in Eq. (11) satisfies

V-A=0, (14)
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the Schrodinger equation (10) takes the form
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where we have introduced g = eg/hic which, according to Dirac’s quantization condition
[Eq. (12)] can only take the values g =n/2, n =0, £1, £2, ...
Making use of Eq. (4), Eq. (15) can be rewritten as
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provided we assign a spin weight ¢ to the wave function W. In order to solve Eq. (16),
we look for a separable solution of the form

¥ = R(r)e™? Y;m(6, ¢) (17)
with j = |ql,|g| + 1,[g] +2,..., and —j < m < j [see Eqgs. (6)]. Substituting the solution
(17) into Eq. (16), with the aid of Eqgs. (1) we obtain the radial equation
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Thus, the only effect on the radial equation of the presence of the magnetic monopole is
to replace the factor [(I + 1), where [ is the orbital quantum number, by j(j + 1) — ¢2,
where, by contrast with the quantum number [, j can take half-integral values. It should
be clear that a similar result applies if one considers any central potential in place of
the Coulomb potential (cf. Refs. 2 and 3). (The meaning of the quantum numbers 7
and rn will be given in the next section.) Hence, the solution of the radial equation (18)
can be obtained from that corresponding to the hydrogen atom by simply replacing [ by
-5+ /(7 +1/2)2 — ¢2 [which comes from the identification {l+1)=34(+1)—¢?%. In
this manner (assuming E < 0) we conclude that (see, e.g., Ref. 7)
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where
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and L}, denotes the associated Laguerre polynomials (the subscript n corresponds to the
degree of the polynomial L). The energy eigenvalues are given by
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with nn, = 0,1,2,.... Thus, by contrast with the hydrogen atom, the degeneracy of each

energy level is 27 + 1, since m does not enter into Eq. (21). In the case where q vanishes,
Eq. (21) reduces to the well-known expression for the energy eigenvalues of the hydrogen
atom, identifying n, + 7 + 1 with the principal quantum number n and 7 with [.
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4. CHARACTERIZATION OF THE SEPARABLE SOLUTIONS

The quantity r x (Mv) — “2X is a constant of the motion for a particle of mass M and
electric charge e in a central force field superposed to the field of a magnetic monopole
g at the origin; the term — —31‘: is the angular momentum of the electromagnetic field
produced by the charges e and ¢ (see, e.g., Ref. 8). Taking into account the relation
p = Mv + eA /¢, the operator
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must commute with the Hamiltonian (cf. Ref. [3] and the references cited therein). In
fact, making use of Eq. (11), one finds that
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These operators commute with e¥99 §3et? and satisfy the commutation relations
{.L‘, Jj} == iftEijk.Ik (See, €.9-; Ref. [4])
Similarly, it can be shown that the square of the operator J can be expressed as
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where L = —ifir x V. Hence, by virtue of Eq. (4), J? can also be written as
J? = eFn? [q(q + 1) — B3] e*17?, (25)

assuming that this operator acts on functions with spin weight q.
Then, from Egs. (1), (23) and (25), it follows that for the separable solution (17)

JU = (5 + )20, J30 = mhd, (26)

which means that the separable solution (17) is an eigenstate of the z component and of
the square of the total angular momentum (which includes the angular momentum of the
electromagnetic field) with eigenvalues mh and j(j + 1)A?, respectively, which explains
why j can take half-integral values.
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