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ABSTRACT. A statistical topography of fracture surfaces is discussed. Theorctical models of
fractuTe surfaces and experimentallllcthods of fractal measurements are analyzcd. Thc theoretical
ideéL"i \\'hich allow to understand the stwng contradictions between rcstllts obtained by different
iluthors in studies of fracture surfaces lIlorphology are presented. 51lggcstcd thcofctical COIlcepts
are discllssed with respect lo experimental obscrvations reportcd in the litcraturc. A fractal
ilualysis of brittlc fracture surfaces in stecl typc 1045, fractured at difrerent temperatures, is
re¡>orted.

R ESUl\lEN. Este trabajo present.a la t.opografía estadística de las superficies de fractura por medio
del amílisis de modelos t.eóricos y métodos experiment.ales de medición fractal. Son presentados
tamhién los argumcnt.os teóricos que permiten entender las fuertes contradicciones en diferentes
estudios de superficies de fractura ohtcnidas por diferentes autores. Los cOllceptos teóricos sugeri-
dos son discutidos con referencia a la."iohsen'aciones experimentales reportadas en la literatura.
Finalmente se presenta un análisis fractal de las superficies de fractura frágil para el acero 1045
a diferentes t.emperaturas.

I'ACS: 62.20~lk; 05.45.+b; 47.53.+ll

l. INTHODUCTION

Fracture surfaces lIlorphologics represent a complex masaie of microstrllclllral artifacls,
lile fealllres of which are characlcrislic ol' tllc particular fracture JIlode and microslrllctllre
alld lIlay range in size frolll the at.olIlic dilIlCllsiolls of dislocat.ion slip sleps t.o the macro-
scopic: dimcnsions of graill sizc [1~4J. AH llnderstanding of this Illorpltology reqllires thc
decon\'Olntion of these eharaeteristic dilllellsions, whieh togcther forlll the bnilding block s
of tlle fracture surface. Characteristic fracture dimcnsions are related lo significant rni-
crostrllcturallcngth which inflllcncc tlle specific local micromechanisms of fracture [2-7].
For t.his reason, in recent ycars, t}¡c qllantitativc analysis of fractllred surfaccs has becmne
all integral part of the study of deformatiou and rupture of materials [1-:1]. Such surfaee
:tllalysis often providc informatioll ahollt surfare lIlorphology which is complementary to
that oht.aine<1 by other metallurgieal met.hods. Starting fmm the pioneer work of Man-
de1hrot el al. [8] there llave hecn IlIl1I1erOllSillvestigations focllsing OH lile crack faces
morphology cl",.raeterization within a fralIlework of fractal geolIletry, that is believed to
giv(~a prolllising paramcters in (!stahlishillg a property-structllre re1atiotlsliips (scc, for
t'('view flefs. :)-:12 and referenees therein). lt is now clearly estahlished that at the !irst
vi('w t Ile randülIl fracture patt.erlls can he treated as fractal ohjects.



546 ALEXANDER S. BALANKIN AND FRANCISCO .l. SANDOVAL

The applieation of fractal geometry provides an effective tool in the study of highly ir-
regular fracture surfaees. Many different materials have been investigated, with differcnt
fracture behavior from duetile to brittle, at a vcry differcnt seales from nanometer seale
using atOInic force 01' scanning tunneling microscopy [3,33], microrneter tn centimeter
scale using profilOluctry nlCasurerncllts 011 a varicty of materials [3,34], image analysis
teehniques [3,8,35] or other teehniques [3,36], meter [37] and up to kilometer seale [18]
for geologieal faults. The initia! hope in measuring the surfaee topography was to relate
this geometrieal information to meehanieal properties, sueh as toughness [3,9,10,39,40],
cncrgy relcase ratc [9, 10,41], tensile strength [3,42], impaet energy [3,8], fatigue thresh-
old value of t1K'h [43]' ductility [42,44,45], amI \Veibul's moduli [6,46-48], or to material
eharaeterization [1-3,42]. However, some teehnieal diffieulties are related to the deterllli-
nation of the fractal properties of real fracture surfaees whieh are statistieal1y self-affine
rather than statistieal1y self-silllilar (see Refs. 9, 10 and referenees therein). Beeause of
this, some colllmonly used tools whieh were developed for isotropie fraetals lead to bi-
ased rneasurcluents. As a rcsult \Ve have strong contratiictioIlS uetwecn reslllts obtaincd
in different studies (see, for cxample, Refs. 9, 10, :33, 49-51 and referenees therein). In
practicc, thcse contradictions give argllmcllts tú thc traditional metall11rgist conccrning
the non-utility of using fractal geometry eoneepts to deserihe fracture in materials.

The main goal of present study is to understand the reasons and the nature of the
aforcmcntioncd contradictions in rc~mlts of different illvestigations. For this pllrpose
the previously published data on fractal eharaeterization of fracture surfaees as wel1 as
different experimental techniqllcs are allalyzed.

Some ncw cOl1cepts are also suggested to fractal characterization of fracture surfaccs.
These eoneepts are validated by the analysis of different fractal patterns. Furthermore, 'L'
'In example, the fractal properties of brittle fracture surfaees in steel type 1045, fraetured
in standard meehanieal tests at different temperatnres, are also studied.

2. STATISTICAL TOPOGRAPHY OF FRACTURE SURFACES

The quantitative charactcrization and Illodeling of fracture surface roughllcss is au impor-
tant problem for both theoretieal and applied fracture meehanies. Traditional teehniques,
based on the idea of isolated deviations from planar surí"ee gcometry (e.9., a faeet of
an elemental solid with oeeasional steps amI kinks), faee the diffieulty of identifying a
smal1 number of struetural parameters that can describe the roughness for a wide va-
riety of purposes. Typieal1y they depend on a multitude of model-speeifie parameters
diffienlt to aeeess in praetiee. Fractal geometry, developed by Mandelbrot [52]' al10ws
the deseription of sneh irregular fonns whieh are lIlore eomplcx than Euclidean shapes.
More reeently there have bccn extensivc researeh ancl great development in statistieal
topop;raphy whieh now aets as an integral part of the quantitative fraetography [1-3].

The term "statistieal topography" was introdueed by Ziman [53] for the t.heory of
the shapes of random fields, with speeial emphasis on the eontour lines and surfaee, of
a randOIll potential. A mathematical survey of the statistical topography of Gaussian
random ficlds was given by Adler [54]. The descriptiollS 01'scalillg invariance are of crucial
inlportance for statistical topography.
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The most compelling example of statistical topography is presented by the diverse
ami whimsical patterns of natural coastlines and islands. The geographical considera-
tions apparently inspired Mandc!brot [52] to introduce the concept of fractals. Generally
speaking, the fractal analysis provides a description of how space is occupied by a par-
ticular shape or curve. Specifically, the fractal dimension (which is commonly fractional
in the contrast to the topological dimension which can be only an integer) measures the
rclativc i:lIllount of detail al' "roughness" occurring aver a rauge tueasurelnent intervals.
The more tortuous, convoluted and richer in details the shape, the higher fractal (metric)
ditnensioll.1

In mathematics, "fractal" and its fractal (metric) dimension, D, uoth are defined in
terms of an embedding metric space. Some of the most important definitions of the metric
dimension are given in Table 1. Intuitivc!y one can interpret metric (fractal) dimension,
D, as the smallcst non-negative real number [01' which (me can define a VOhUllC form OIl

n-dimensional Euclidean space which is not identically zero; such a volume form ueing
entirely described uy the metric dimension or capacity. Underlining this approach is
the recognition that one and two-dimensional structures are in effect three-dimensional
portions of space, two or one of their characteristic scales ueing very smal!.

Another fundamental property of fractals, which distinguishes them in a uasic manner
from hOlIlogeneolls euc1idcan objccts, is thc scalillg invariancc. SpecificalIy, many fractals
are nlade up of parts which are, in SOIllCway, similar to thc wholc, slIch a,.o;¡ sclf-similar
fractals constructed uy iterative procednres shown in Figs. 1-3. Notice that every piece
of a self-similar structnre holds the key to the whole structure. In other words, if we
look at thc fradal strllcturc frorn afar, it appears the saIne as it dObS in a close-llp vicw,
in terms of its details. The length (area, volume, hyper-volume) scaling of a regular
(self-similar) fractal is determined uy the unique scaling exponent called the dimension
of similarity, Ds (see Table 11). Furthermore, for such a structure, all definitions of the
metric (Taule 1) and fractal (Table 11) dimensions lead to the same metric dimension
numuer, D, which is equal to the similarity dimensiono The latter is determined uy the
geometric parameters of structure (see Table 111ancl Figs. 1-3).

Natural fractals such as failllre pattcrns posscss scaling invariance only in statisti-
cal sense: while the visual images are different in different sea/es, the roughness and
fragmentation neither tend to vanish, nor jiuc/uate up and down, but ,.emain essentially
l1nchanged as one zoorns in continually anri examination is refined. In this \vay, fol'
random (natural) fractals, the concept of similarity mllst be replaced by the concept
of "statistical self-similarity" and we we can speak about two broad categories, namely
the regular (self-similar) fractals, such as shown in Figs. 1-3, and random (statistically
self-similar) fraetals, snch as failure patterns in solids, polymer moleenles, coastlines of
islands, etcetera. Example of constructioll of random (statistically self-similar) Koch
curve by iteration procedure is shown in Fig. 4u.

1 However, roughness and fractal dimcnsion are not synonymous. Ruughncss is generaliy mea'3ured
as the average variation about the mean valuc, and is IIot related tu the scale or changes in scale of
measurement. Fractal dimension is used to quantif.y the variation of the length or area with changes in
t lw ~caleof mca.surcment interva1. lIence the fract.al dimensioIl is an intensivc propcrty, while roughness
is noto
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TABLE I. Some different definitions of metric dimensiono

NN Dimcnsioll ~leasure Definition of dirncnsion

1 Ilaus( lorff- lJcsicovi tch {U;} is a J-cover of F, i.e.,
dim/{ F = inf{S: ¡¡5(F) = a}

dilIlcw:iion =
FCU with a < IU.I ~ J, = sup{S: ¡¡5(F) = oo}

i=l

whcrc U is any non-cmpty subset of n-dimensional Eu-
clidcan spacc, R".
llausdorff measure is

H5(F) = lim Hf(F),,~o
whcre

=
¡¡f(F) = inf{I: !Uds: {U;}}.

i=O

ami diamcter of U is

IUI = sup{lx - yl : x,y E U}.

2 J\ IiIlcowski -BOllligaIH I Let N,(F) dellotes the least number of balls in a eo\'.
",(F) = lim,~o{lgN,(F)/lg(I(J)},

<iilllCIISioll ering of F by balls of radius f. lt is follows fram the
(logarithmic dcnsity) defillitioll of Hf that Hf(F) ~ (2J)S x N,(F). ",(F) 2: dim}{ F

3 Diyidcr clilllcnsiOlI ,Má(C)-lIlaxirnum llumber of points XO,Xl,'" ,Xm, OH
(of .lardan rllrn~s) thc curve e, in that arder, such that IXk - xk-d = 6, DD = lim{lgAI,(C)(lg(I(J)}

'~o
k = 1,2, ... 111l.

~ l)iH'killg dimCllsioll {/Ji} is a collectioll of disjoint balls of radius at most J
dimpF = inf{S: pS(F) = a}

with cPlltcrs in F. Packing measure is

= = S\lp{S: pS(F) = oo},
pS(F) = inf {I: pt(F,) : F e U F.},

, i=l diml! F ~ "iml' F ~ ",(F)
when' p¡f = lilll,~O 1',s(F), p,s = s\lp{lflils : {B;}}.
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FIGURE 1. Two £irst stages of the classical eonstruetion of regular (self-similar) fraetals by it-
eration procedure. The fractal geometry is obtaincd for an infinite number of iterations, i.c.

F = Gn=OCll where Gn is tite pre-fractal of arder Tl. The rnelric dimension (see Table 1) of F is
pC¡lIal to its similarity dimcllsion (sec TabIe II) and can he ealculated by llsing the corrcsponding
reiationship from Table 1Il. The Cantor set of points (a) has the topologieal dimensiou Ji = O
aud the fractal dimensiou Ds = lu 2/1n3 = 0.63 ... ; the triadie Koeh curve (b) has Ji = 1 and
Ds = In 4/1n 3 = 1.26 ... ; the Koeh curve (e) has Ji = l and Ds = In 5/1n3 = 1.46 ... ; ami the
Sierpinski earpet has Ji = 1 ami Ds = In 8/ In 3 = 1.89 .... Note, that the baseline eross-seetions
of these fraetals have the same fractal dimension Ds = In 2/ In 3.
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FIGUHE 2. 1'wo first stagcs of the construction of the "Cantor-like" sel of points (a), "tree-like"
fractal (b), "Koeh-like" cune (e), and Sierpinski gasket (d). ;\otiee that a1l these fraetals have the
same fractal dimension Ds = In3/ In2 = 1.584962501 ... , whereas theirs connectivity property
are different. )'loreo\'cr, the t.opological dimension of the "Cantor like set of point" is zcro, whereas
fractals (b), (e), ami (d) have the topologieal Ji = 1.
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FIGURE 3. The c¡rele fractal (a) ancI corresponding dependcnce Ds OIl the structure pararneters
N and M (b) calculated by means equation system from Table III (h).

TABLE II. Sorne definitions of fractal dimensiono

NN Dimension Exprcssion for Fractal dimension Cornrncnts

1 Mandelbrot,
DF = lim {sup[lnNx(E)jln(l/E)]}

Nx(£) is the ¡cast llllIrl-

Schirelman- ,~o bcr of halls of radius
Kolmogorov = inf{d2': 0, lim [SUPE" x Nx(E) = O]}

les s than E which are

,~o needed to caver fractal

2 Kolmogorov,
DK = lim {suplgN(E)/lg(l/E)}

N(E) is the smallest
Schirelman- ,~o number of balls of di-
Potjrajin ameter les s 01' cr¡ual t.o

f which are needcd to
cover fractal

3 Similarity
D s = In M jln fl

lf set made up of M
copies of itself scaled
hy factor fl

4 Internal " d: topological dimcll-

similarity L fld" = 1 SiOll, R¡: sirnilarit.y ra-,
i=l Uas

.) Cluster
DA! = In Njln(fl/flo)

N is the Ilumber of
(or mass) rnonomers of length Ro
rlirncnsion into rnOllorncrs of di-

mensiOIl R
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TABLE III. Relations bclwf'cll similarity dimension ami paramet.ers of st.ruct.ure rol' different
regular fractal structurcs.

"\'.JV Type of regular Expression for Fractal dimcnsion Commcnts
fractal structllrc

I Cantor sel,
Ds=~

¡\': numbcr of sclf-similar
Peana curves, parts, f: (,ollc('rn length of
Koch curves In(l/f) each part (Figs. la-le and

2a-2e)

2 ¡¡Firtrccs'l
D _ In P

P: numbcr of branch with
length Ln+1 OII t.he branch

S - In f{ \vith length Ln.
f{ = Ln/ Ln+1 (Fig. 2b)

3 Sicrpinski
ln(bd - R)

b: the ba<;e of lattice, R: IlUIIl-

gasket.s Ds = ber of ejection parts, el: topo-
(earpet.s) In b logieal dirncnsion (Figs. Id

and 2d)

.1 Honnd fract.al M N: Illlmber of sf'ct.ors, M:
latticc NrpfJs ¿(1 - 2rp)fJ.(I-I) = 1, Illlrnber of I)ossibh) scalc

k=! transformatiolls (Fig. :l)

rp = tan(lr/N) t.an[(1r/4)(1 - 2/N))

/\h

--------------Go------ _

G.
FIGUHE 4. Self-similar (a) and statistical1y seU-similar (h) yprsions ofthe triaclie I\och ctlrn~(sec
also Fig. lb). :'\oticc that thcse curyes are hOlIlcotIloI"phieand charaeterized by tht' saltle rnetric
dilllC'nsion D = In 4/ In 3 = Ds. {;j2J.
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TABLE IV. The properticR which must be hold rOl' any rcasonable definition of dimensiono

NN Properly Helation rOl' dirncnsion Conditiolls

1 ~lonotonicity lfECF
diml/ E :s d¡mll F

2 Slabilily Ir F: EUA
dimll F = max {dimll E, d¡mll Al

3 Counlable Ir F¡ is a (countable) sequcnce of scts
=slabilily dillllf{U Fi} = snp {dilI1l1 F¡}
i=1 1::;1$00

4 Geometric lf f(F) is a transformatioll of ~Rn
illvariance dimll f(F) = dimll F sllch as a translatioIl, rotatioll, sim-

ilarit.y, affinitty

5 Lipschitz lf f(F) is bi-Lipschitz transforma-
invariance dimll f(F) = dimll F tion. i.e.

C'¡ .lx-yl :s If(x)- f(y)1 :s C2.1".-yl,
ror (x, y E F) amI O< C, ::;C2<oo

11 is easy to see that all delinitions of the metrie (fractal) dimension giveu iu Ta-
bies I aud II satisfy some fundamental properlies lisled in lhe Table IV (obviously. any
rea.,onable cIefinition of the dimension number should salisfy lhese properlies). There-
fore, nny random but stati8tically self-similar fHu:tal can be transfonnerl in tite negulcr
(sclJ-similar) fractal lVitlt tite smlle metrie (fractal) rlimension by mean., of a IW1/I.eom07.-
phic, orLe-io-one and onto lnl1tsJonnation. I1ellce, for a statistical1y self-similar fractals
all definitions of met.rie dimension listed in Table 1 are also equivalent. and lead lo the
same dimension number, whicll is cqual to the silllilarity dimensíon of tlle Itollleolllorpltic
regular fractal. For cxamplc1 two curves in Fíg. 4 are characterized by tlle salllc vaIue
of metrie dimension, D = Ds = In4/ln :1. In t.his way, natural statist.ieally self-similar
fractal patterns can be advanlageollsIy modeled h.y tite corresponding regular fractals
with the same fractal dimension2 as, for example, it is shO\vn in Fig. 5.

Clearly the knowledge of the fractal dimension does uot tell everylhing about lhe
morphology of the syst.em. Por example, two syst.ems with the same fraet.al dimension
may act.ually look very dilláent and have very different eonnectivit.y proper! ies. Por
example, aH fract.als in Pig. 2 have the same fradal dilJlension Ds = In :1/ In 2, whereas
l}¡e illlages and conllcctivíty propcrtics of thesc fradals are diffcrcnt. fvlorcover, tile
t.opo\ogical dimension of tlw "Canlor like sel of point.s" (Pig. 2a) is zero. while lhe
lopological dimcnsioll of trec-likc fractal (Fig. :lb), I<Ocil curve (Fig. 2e) and SierpiIlski
g,.,kct (Fig. 2d) is one.

:lFor isotropic (statistically) Sf'lf-similar pattf'rtls almost ¡UlYr¡'asonable procf'durp for Illl,¡t."uring the
franal dimension will l('ad to l'ssf'lltial1y the sallw r('slllts if tllf' fractal scaling rl'giuH' l'xtl'llds O\'l'r a
sllff1cil'Jltly wide ranJ!.cof ICIIJ!.t.hscalps.
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x27(i=3)
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FIGURE5. The grain haundary approximatian by regular fractal curve (a); and the results af
experimental evaluatian af the fractal dimension D af grain baundaries in deformed zinc [3J: (b)
by meaus af the yardstiek (divider) method, and (e) by using the perimeter-area relatian far the
grain ensemble.

Furthermore, statistically self-similar fractal patterns are essentially isotropic, whereas
real fracture surfaces in solids often have anisotropic asperity distributions. For a de-
scription of such patterns the concept of self-similarity has been extended to account
for anisotropy through the notion of sclf-affinity. The fundamental di!ference between
self-similar and seU-affine fractals is the way in that scaling will produce statistical equiv-
alence. Self-similar fractals may be scaled equally in the all directions to produce statis-
tically equivalent profiles, whereas sclf-affine fractals must be scaled by di!ferent amounts
in the different directions to produce statistical eqllivalence. A sclf-affine pattern is sta-
tistically invariant under an affinc transformation

(1)

Reqniring that snch transformations be combined, a group struct.nre is implied. As a
cOIl~equcIlcc Ay and Az have to be homogcncous fllnctiollS of, :'lay, A,r; both scalc as

(2)
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FIGUHE G. Invariant cOllstruction of self-affine fractal by mean s of affine transformations [55].
Tlw se1f-affinecurve Z(X) \'lith II = 0.5 is obtained aft.er infinitc nllmber of itpratiolls.

hut the exponcnts vy ami //z are in general diffcrent. If so, thCIl Az ex.A~/. \\.hcrc thc
r011g1mcss expol1cnt 1I, abo called the Hllrst eX¡)0I1l'Ilt, is given by the rclationship

In the speeial eru;e of an isotropie seIf-al!ine surface w¡th mean plane parallel to the
mordinate plane (x, 1/), we ha"e /ly = L so that II = 1/, the last relation is also "alid
for any sclf-affine em"e on a two-dimensional plane (see Fig. 6). Howe"er. generally
the self-affine sealing mnst be charaeterized by d - 1 sealing exponents in d-dimensional
Eudidean spaee. Specifieally, a rough fracture surface is generally eharaeterized by two
scalillg exponellts.

In the application of fractalmodels to real fractun, smfaces the coneepts of self-affinity
ami self-sinülarity Il111St.be carefulIy distillguislu'd eV{~lIin tite ca.se of isotropic surface,
hecallsc of thc vertical Cllts oí' sllch a sllrface (whicll are (,olllIllonly studic(1 ill fractographic
in"estigations [:1])are statistieally sclf-affine, wl",n"L' horizontal euts (which are used in
the popular slit-island method of the fractal dimension meru;urement [8]) are statistieally
self-similar. !3ecause of this, different studies dealing with fractal characterization of
fracture surfaces havc givcll inconsistent results, raising qucst.ions about the comparison of
various works and thcir interpretatioIl. The difrcrcllce in the scaling propertips of vertical
ami horizontal cuts tIlust be takell in mind whell tllC reslllts of differcnt. invest.igations are
discllssed. Bclow

1
this aspect. of fractalmea ..."illrCmcllts wiIl be discllssed in more details.

2.1. !\IODEL HEPHEsEYI'ATIONS OF FHACTUltE SUBYACES

It is now cleady estahlished that fracture sud,,,.,'s as well as their I'rofile, can he tr""ted
as sdf-affine ohjcds ami in t!lis way thc.v lIIay he advalltagl'Ollsly lIlodl'I('d hy' lISillg tite
fractal (self-aninc) fUllctiolls [7]. Oespitc the 11011-<1im'n~lltiahili ty of fract al funcl. ions. no\\"
it is heyond the qucstion t.}¡at the fractal repn~sclltatioIl of failufc patt.pnls can hardly
IWlldit our undcrstanding t.he lIatllre alld Illcchanisms 01' failurc phcllomcna [10-45].
TIJ(~fractal lIlodels of crack faCf~shave al h'ast. t.wo n~llIarkahle fcat.l1n's. Firsl. the~' are
locally illvariallt with I'CSIH'c!.lo a scalitlg trallsfoI'JIlatioll. Sccondly, tlw fract al fllm:t ion
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is an essentially multiscale. Thercfore, it allows one to model a real fracture surfaee with
mnltiscale roughness, includiug the existence of eharacteristic scales whieh are hoth much
grcater and less than tite illcicicnt wavelength. Experimental investigations stlldies using
variolls cxpcriInental techniqllcs (profilometrYI microseopy and ¡mage allalysis, scanning
tunneling electron microscopy, eleetroehemistry, cte.) on material s as difIerent a-, steels,
metal alloys, rocks, polymcrs, and ceramics, have sltown that fracture surfaces cxhibit
sealing properties on two or three decades of length scales (see Refs. 3-7 and rderenees
therein).

An ideal self-affine profiles may be modeled using the simple algorithm suggested hy
Voss [55]. For (1 + 1)-dimensional profiles the ha-,ie proeedure is as follows: knowing
the valnes of z at both i and j of a root segment, we compute its vahle at the eenter k
'1.' the average (z; + zj)/2 plus a fluetuation ,eJz. At eaeh generation n, the fluctuation
Jz" is pieked from a statistieal distribution F(Jz) with zcro mean and sealed hy a factor
,e proportional to the length of the parent segment li - ji raised to the power Il. The
<1istributioll F can be cllosen, withollt any loss of gcncralit.y, lo Le a Gaussian distributioIl.

In this way, a rough surfaee is defined by a vertical height profile above a hori-
zontal (x, y) plane, an may he represented by a single-valued randa m fundion z(r) of
the in-plane horizontal vector r = (x, y). Figures 7a and 7b show examples of profiles
construeted in sueh a manner nsing two different exponents H = O.4Dand II = 0.85,
respeetively. These profiles possess self-affine sealing (2). To show this, lel. us define the
smallest length seale or unit length seale lo = I and measure by this scale the curve
length LA[J = N x lo = N hetween two arbitrary points A and B on the profile. This is
equivalent to regarding the curve as consisting of particles of diameter lo and counting
the IllllIlber of particles betwccn point.s A and £3. \Vc thcn ealcll1ate x- and z-variancc
(X2) and (Z2) of all measured points on the profile hetween the two points A ami 13:

with

N
.2 1 '" 2(X ) = - L (J:; - xc) ,

N ;=1

1 l'¡'

Xc = N LXi,
i=l

V
,2 1~ 2(Z ) = NL (z; - zc) ,

l=1

N1
Zc= NLziJ

i=l

(4)

where (:r;, z;) is the coordinat" of the i-th Illeasured point on the profile. The standard
,lerivations ((X)) = j(X"2) and ((Z)) = /\Z1í indieate the approxilllate si?es of the
part of the profile. Repeat the Illea.snrelllent procedures deseribed above for many pairs
of points on the curve and check by the log-log plots of ((X)) and ((Z)) v",'sus N whether
they possess the self-affine sealing (2) in the form .

((X))ocN"',

If so, they are then rclated to ea.eh other '1.'

((Z)) oc N"'. (5)

((Z)) ~ ((X))I/,

wh"re the Hurst exponent is given by relation (:l).

(6)



556 ALEXANDERS. I3ALANKINANDFRANCISCO.J. SANDOVAL

•
JI = 0.49 DEl = 1.51, Dv = 2.0

z
Lx

k-
11 = 0.85, DEl = 1.15, V[) = 1.18

['(('11

,

Ductile fracture surface

e [.((,))

,

Brittle fracture surface

d

o ['(('1) o , 1.((,»

FIGURE7. The self-affine image of a duetile (a) aud brittle (b) fracture sur faces ronstructed by
thc \'o~s'salgorithm descrihcd in text and the corresponding plots COI' standard dcrivation Z
versus standard derivatioll X in lag-lag coordinates. Salid lines represent theoretical Lehavior (6)
witb ¡¡ = 0.49 (e) amI ¡¡ = 0.85 (d); points-results of colllputations.

As Figs. 7e and 7d suggests, the proliJes in Figs. 7a and 7b obey power law sealing (6)
and so they are possess self-altine geometry and in this way they can me used as model
representations for vertical cuts of brittle and ductile fracture surfaces [4,10].

Another notable example of a single-valued self-alline curve in plaue is the graph of the
siugle-valued continuous, but nowhere differentiable Mandelbrot- \Veierstrass function [56]

00

z(x) =L >. -kll [1 - exp (i>.k:¡;)] x exp (iak),
k=O

(7)

where >. > 1, O < JI < 1 and the phases "k are arbitrary ("k may be chosen by a speeial
rule oI' lIlay be consi(lered as indepcndent ran<iolll variables llllifonnly distrihuted bet\veen
O and 2,,). The graphs ne z(:¡;) amI 1m Z(l:) possess self-altine scaling (2). This implies
t.hat tlle whole fUIlction z(:¡;) can he recoIlstructed frolll its valucs in tlle rauge l:u ~ ;1:<
A 1:0; for examplc, z(:r:) il! tbe ranges A Xo ::s :1: < )..'2;ro and )..-1.7:0 ::s ;r; < .ro are lIlagnified
and dilllinished versiotls, respectivcly, of Z(l;) in tlw range :ro ::s :r < )..;170. Notice that
th" graph of (7) is stat.istically equivaleIlt (SI'" ¡¡d. 57) to the prolilc ('()I1st.ructed hy
C<Jllsiciercd aboye alg:orit.hlll wllell the correspOlHlillg: 1111rstCXPOIleutS are cCllml.
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The non-differentiability property of the fractal funetion (7) can he fonnal!y expressed
in terms of the Holder ine,!uality

lim [z(x + t.x) - Z(l:)] ::; C (t.x) 11 ,~x~o (8)

where C is a eonstant ami O ::; H < 1.
The univariable fundíon (7) can be easily generalized to two variables to model self-

afHnc surfaces. SpecificallYl an isotropic in a mean planc sclf-affine fracture surface may
he useful!y represented hy the funetion

00

z(r) = :L rl/
k [1 - exp (iAk¡rl)] x exp (iok) ,

k=-oo
(9)

where Irl = IJx2 + y21, A > 1 and O < H < 1. Notiee that the "ertieal euts ofthe graphs
of Re z(r) and 1m z(r) are statistieal!y self-affine, with H defined by Eq. (3), whereas
the horizontal euts of the same graphs are statistieal!y self-similar fraetals for whieh the
lIurst exponent defined by Eq. (3) equals one. Henee the Hnrst exponent is useless when
discussing hoth self-afline alld self-similar fraetals in the same context!

An anisotropie fracture surfaee may be IIlodeled hy the fol!owing two-variahle funetion
of the Mandelhrot- Weiersl1';L'5 t.ype:

00 -/1
z(r) = :L (;dk) {l- exp [údn(ax + by)]} x exp (ikok)

k=-oo

= f: ("'Akr
ll

{1-exp[iiP.An(a2+//)1'eos(¡J-')')]} xexp(úend, (10)
k=-oo

where ¡J = aretan (y/x), ')' = aretan (b/a) ami ;c is a eOllstant.
Al! these functions possess the fol!owing statisticai properties

(Z(r) - Z(r + t.r)) = O,

(Z(r)Z(r + t.r)) ~ (t.r)UI , (11 )

where Z(r) = Rez(r), and they are eharaeterized hy a spatial speetruIll W(,,) of a power
law type

( 12)

which has becn obscrved in cxperilnents 011 X-ray scatt.cring [rom tlle fract.ure surfaces
jtl solids [58] and in cxperimcnts 011 light scattcrillg frolll the surfare of tite mOOIl [59].

Now. if we define tite corrclation functioll <1...•[58}

C(r) = (-Z(-r) Z(r))
(Z2(r)) ( 13)
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then using Eqs. (7) and (9)-(11) it is ea.,y to show that C(,.) does not depend on ,. (see
'lIso Refs. 56, 58) aIl(1 it is equal to

(14)

The sign of C' determines the type of carrelations of the functions (7), (9), and (10),
which is detennined by the value of H. Namely, if II > 1 then C' > OaIl(i the functions
(7), (9), and (10) display persistence, ¡.e., a trend (for example, a high 01' low va1ue) at
,. is likely to be followed hy a similar trend at ,. + Ll.,., whereas if H < 1, then C' < O
¡UHI fUIlctions gCllcratcH <tt1til>crsistcncc, i,c'l a tn~Il(1al 1" is not likely 1.0 I)(~ f(lllowed I)y
a similar trend at,. + Ll.,.. For lf = 1 the graphs of functions (7), (!J), ami (lO) represent
the trajectories of a random walk for which C' == O [58).

In Rcfs. 10, 12 aIl(1 42 have been suggested that. t.he ductile cracks are eharaeterized
by <lntipersistencc bchavior wltcrcas the brittlc cracks possesses pcrsistcllce behavior.
This leads to difference in statistical properties of hrittle ancl ductile fracture surfaces
the images af which are shown in Figs. 7'1 and 7h.

Notice that a sclf-similar function cannot display antipersistence, sinee for any D the
correlation integral (13) is equal to

C(x) = C' = 22(d-I)/IJ-1 - 1 2 O,

i.{~.) only brittlc fracture surfaccs can be trlodeled hy homcolIlorphic self-similar frac-
tals. whereas ductile fracture patterns should he always treated as statist.ically self-affine
fractals.

In Refs. 10 and 12 was shown that t.he stress hehavior in t.he vi('init.y of crack t.ip is
govcrncd by the roughncss exponent H ami dnes nol depend OIl the actual gcoIllct.ry of
crack faces. Therefore, in the problem with self-afline crack, a complex geOlnetry of real
crack [aec can be lIlodeled hy hOJllcomorphic(letermillist.ie pattern which is statistically
pC¡\Iivalcllt to the actual crack pattern. This rcprcselltatioll is vcry lIseflll for theorctical
allalysis t.o the problem.

2.2. FHACTAL CIIAHACTEIUZATIO:'>: OF SELF-AFFI:'>:E FIL\CTUHE SURF:\CES

Tite cOllstructions and procedures that fractal geollletry ha..'"horrowcd frolll lIIat.hematics
al! illvolvcd infillit.c interpolatioIl. In Nat.llre. 011t.he other hall<L itlt.erpolatiolls can-
nOl procccd without cnd, aJICIcOllslrllctions t.clld to proceed by extrapolation. In the
self-similar case the infinitcsimal tcchniqllcs cxt.clHI via powcr law reiat.icHlshipsvalid
lIuiformly at aU scalcH,wlwrcaH in the sc1f-affinccasc, thc two basic pro('(~dlln~s involvc
differe"t t.ools.

Onc of thc 1ll0St.oft,ell lIsed mcthods lo charadcrizc thc fractal properties nI' an
object is to estilllale it.s fractal dimcnsioll. Alt!tollgh it. secms natural t.u :t."isociatcthe
fractal dilIlCIlSiuIl witlt a pattern tilat fulfills SOIllCkilld of scale illvariallcc. il Itas bCCll
n'cogllized for a lotlg t.illW lllat. the ver)' cOllcept.(lf fradal dimcnsion is 1I0t.\,,"cH(lcfined
a."iSOOIlas the sYIIlJlletry ohey('d h.ythe pal tC1'1Iis lIol a pllrc !"elf-similarity. TIII' n)(L"'on
rOl"SIH:ha statcmcnt. is t.lta!. tlte fractal dimcJlsioll giv{'s t.hcscaling uf a lll('aSlln~ within
a h~Ilgth scalc. For él sdf-affilw o1Jjectl t.he scalillg wit.1t t.llc dist.ancp alollg olle axis
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Tr\BLE V. Hclationships bet\\"ccn rouglmcss (Hurst) exponent ane! variom¡ fractal dimensioIls
fUf sclf-similar and self-affinc fractals with t.opological dimensioll cqual to ti - 1 embedded in
d-dimensional Euclidean spacc.

Self-affine fractals Self-similar
Dimcnsion fractalsLocal Iimit Globallimit

Similarity, Ds - - (d - 1)/1I
lIausdorff- d - II d - 1 (d-I)/ll
Bcsicovitch, D II

BOX-COlllltillg, DR d - lf d-l (d-I)/H
Divider, DIJ Lat.cnt. fractal dinwllsion:
(compa ..'!s, rule)

D, = {(d - 1)/ H, if II > (d - I)/d; (d-l)/Ild-l
d, if Il S; (d - I)/d.

Contour (d = 2) ,
2/(1 + ll)"D,n (single coast- d-I 1/ 1Iline) 1+ (1 - ll)/(v + 1)1

Gap,! Da
IgN

(d-l)/lI19h+
-

.\Iass,~D;\f CI/') Ch')10gb' ti 10gb" -¡;tI (d-l)/lI

).f('an f¡cld approximatioIl.

t 1I is the corTeJatían leugth ('xponent from JH'rcolation theory.
X is tlw Ilumher of similar parts, b+ = (r¡Tl_ .. Td)l(d is the cffl'etive base, T, is tlw {'oncern length
of ea,h part in i-direction (for ~elf-similar fractal aH TI eqllals lo r).

b' = Illax T, and bJl = min Ti are the large:;t and srnallest ba...,e of sclf-affinc tran~formation (for
sf:'lf-~illlilar transformatioll 1/ == bll).

may differ depending on the orientation of the axis. I3ecause of this, the roughness
exponent lJ is the more adequate characteristics for self-alfine scaling. 1I0wever, in actual
practice of fractographic investigations the fractal dimension of the vert.ical or horizontal
cuts of the fracture ~urfacc i~more commotIly measllrcd [1-3]. Thc vague defillition of
fractal dimension for a sclf-alfine object has, in the past, resulted in sorne misuse of the
fractal dimen~ioll in this framework. as well <l.';';some confusions in the IIlcasurc of this
property. Specifically, these confusions lead to aforementioned contradictions between
results obt.ained by difl'ment. experiment.al t.echniqnes (see, for example, discussion in
¡¡els. :l:J, :14, 50, 51,60-6:1 and referen"es t.herein).

Actually, in thc contrast to sclf-similar fractals thc fractal dimcllsioIl of aIl anisotropic
self-affine pattcrll is not. lllliqucly defincd. First of aH \\'c lIl11st distinguish betv.'cen t.he
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TABLE VI. SaIne definition of box-counting (or box) dimcllsions.

Dimension Dcfinition COlllmellts

Lower F is non-empty subset of ~n . N6(F)
box-counting . , fOgN6(F)} is any of the following:
(or lower-box)

dlInBF = J!m,-.o logS
A. The smallest number of

Upper
1) closed balls of radius S

- - fOgNó(F)}
2) cubes of side S

box-coullting dirnBF = limó-+o lag ó 3) seIs of diameter at most S, that
(or upper-box) covcr F

B. Thc largest number of disjoint
I3ox-counting fogN6(F) }

balls of radius ó with center in F
(or box) dimB F = ¡¡m 1 S C. Thc number of o-mesh cubes that6-+0 og

interset o( F.

d' Al(F) r fogVOl"(F,)}
F, is the S-parallel body to F:

Minkowski IInE =n- un 1 Ó F, = {x E !JI" : Ix - vi :S S,6-+0 og
for sorne y E F}

wherc n is the topological dimensiono

dilIlMRF =
If F can be decomposed iuto a

Lower modified conutable nnmber of pieces F, in

box-counting inf {s,:p dimBF, : F C UF, }
such a ,vay that the largcst piece has
a srnall él dimension as possible.

t:::::l

dimAotBF=
Upper modified

inf {s~p dilllB1', FC.QF,}box-counting

dilIlH F :s:dilIlnF :s:dimnF

O:S: dirnJ! F:S: dilIlAfH:S:dimMBF = dimpF:S: dilIlBF:s: n

local (f:;.L « ~c) and global (f:;.L » ~c) fractal dimensions [38,44), where f:;.L is the ehar-
aeteristie seale of measurements and ~cis the self-affine eorrelation length3 The global
fractal dimension always eqllals the topologieal dimension of self-affine pattern, while
in the local limit different definitions for fractal dimension ¡cad to different dimension
Ilurnbers which are associatcd with diffcrcnt scaling propcrtics of a self-affinc fractal [4].
The relationships between the Hurst ancl some different fractal dimensions are given in
Table V, Notiee that different fractal dimensions assoeiate with different experimental
techniqlles (see Tables 1, and VI, VII),

3The existence of a well defined correlation length Ce [68] is the distinct.ive featUfe of a self-affine
fractal, whic:h distinguishes them from (statistically) self-similar patterns, the fractal properties of which
are limited only by physical factors [3,64].



T:\BLE VII. Defillitiolls of sOlIle other fractional dimensions

DirnC'Ilsion Definition Comments

Capacity dimensioll Capacity isr if Ca (F) = O, \f O > O;
dime F = de > O, if Ca(F) = O, \f o> de; Ca = {[Wa(FW/a, if W(E) < 00;

and Ca > O, \f O < O < de. O, otherwise;

where

Wa(F) = inf{Ia,m(F)},

la,m = JJ F Ilx - ylla-" dm(x) dm(y),

for each O < Q < n, whefe n is a topological dimen-
sion F and 11 ... 11 is lhe ellclidean norm.

One.sided dirnclIsion F is lhe bOllndary of a sel A; Fó is lhe J-parallel
(of boundary F of sel l' F l' fOgVOI"(FnA)} hody of F:(linos = n-1m
A in !JI") ó-+o log Ó

Fó = {x E !JI" : Ix - yl :s J, for so me y E F},

where n is a topological dimensiono

Fourier dimellsion If I¡;(U)I :s BIUI t/2 for so me conslan! B, ¡;(U)I :s
dim[.' = max {t : I¡;(U)I :s BIUI-t/2} , ¡,(!JI") for all U, \Ve have

for SOIIlCCOllstant B, where the IIIass distribution I;(¡,) = (271')"C J IUlk
-" 1¡;(U)12 dU

¡;(U) on !JI" is

¡;(U) = J. exp(ix. U) d¡l, :s CI 1 IUlk
-" dU

H" IUI~I

where U E ~n and x . U represents usual scalar + C21 IUlk
-" IUI-I dU

preduc\. IUII

which com"erges if k < t.
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TABLE VII. (Continlled).

Dirnension Definition Comments

!\lenger- Urysohn The dim(.\l_u) F is defined indllctively as fol- A. Ir cvcry point l' of spacc F has arhitrarily smallllcighbor-
10\\'5: hoods \v¡lh empty frontier (i.c., rOl' c\'cry neighborhood U of
1) The empty set F has l' there exist a neighhorhood l' of p that ¡: e U. fr (1') = 0)

dilll(.\l_u) F = -1,
then dilll(M_U) F = O.

2) A topological space F has
n. The sel of ¡rrational numbers, thc Cantor sel ami aIl)'

COlllltablc space are of dimension O is itsC'if zera dimeIlsional.

diIll(M_U) F = 11, C. Ir x is a separable mctric space. tIten

ir n is lhe largcst natural numbcr sllch that dilll(M_lJ) X = inf {dilllf{ X'},
cach point of F has arbitrarily srnall neighbor-
hoods with fronticrs of dimension lcss than n. where thc minimum is taken O\'er lhe sel of spaccs X'

hOlIlotropic to X.

D. Ir dilIlp,f_U} X - dimpt_u) Y = I( > o, then there exist
point of Y whose inverse image under F has dirn(,\f_u) 2: K.

Dimension print PrintF of subset F is defined lo be the set of U is a rectangle (the sities need nol be parallel lo the cOOl-di-
non-negative pairs (k,p) for which nate axes). Let (((U) ~ b(U) is lhe lellgth of sides of U, k anel

/lk,P(F) > O.
pare I1on.negative IluIIlhers. For Fa subset of m:2,

¡¡k.p = Iilll ¡¡;,P(F),,~O
¡¡;P(F) = inf {L ,,(U,)k b(U,JP

,

: {U,) is a S-cover nf F by rectangles}.

Here, l/k,O is just lhe k.dirnensional Hallsdorff measurc.
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Furthermore, for a real fracture surface self-affine scaling regime is bounded by up-
per and lower correlation lengths ~i amI io in both the horizontal (r) and vertical (z)
directions, i. e" sclf-affinc scaling is foulld aver the rauge

and these correlation lengths are related by

io < t.z < ~z, ( 15)

~z = (~,)II
io io (16)

So that a real fracture surface obeys scaling properties (2), (11), (12), and (14) only
within the length scale interval

io < Lx < ~c= J~,~z, (17)

where Lx is the length uf crack projection on the directiun of crack propagation, and io is
the microscopic cuto!f determined by the actual failure proceSHes in nanoscale [6, 7J. The
experimental data indicate that for brittle fracture surfaces io is al' the arder of 10-8+10-6
m and ~c~ 10-:1 + 10-2 m [:1]. Furtheflnure, the fracture surface roughness exponent l!
in the ca", of brittle fracture is more than a certain critical value He, wherea, a ductile
fracture surface is characterized by H < He [12,42]. Hence an accurate estimation of
the self-afline exponent may have deep physical implications and is of crucial importance
for the identification the nature and mechanisms uf fracture. The critical values of l!
and related critical values of different fractal dimensions are given in Table VII for two
classical problclIlS in fracture mcchanics .

.According to Eqs. (11), in the limit t.r --f 00 we have (IZ(r) - Z(r + t.rW) --f 00,
while

(IZ(r) - Z(r + t.rW)
lt.rl2 --f 0, (18)

i.e., the model surfaces (9) allll (10) are a'ymptotically flat and so, it is characterized
by the integer global fractal dimensiono Asymptotically flat surface is a rather ideal case
since on real fracture surfaces (IZ(r) - Z(r + t.r)12) at large length scales may saturate
to the value 2a2

, where the para meter a = J(lz(O)l2) is the RMS-saturated surfaee
roup;hncss [58]:

(IZ(r) - Z(r + t.rW) = 2a2 ( 19)

for It.rl » ~c.
Ba.,ed on their data, authors [:14]eunjeetured that the crack faces roughness expo.

nent l! has the universal vallle cIose to 0.7. Authurs [65] eonjeetured another universal
value H = 0.8, the same fOl"brittle and duetile fracture surfaee. More recenUy, ¡he
alltlJ(Jr~ [..tGJ. cOlljectured the exi.stcllcc of two universal rOllghIH~ss cxpoucuts, lléllJldy

l!¡ '" 0.8,1 and 1I2 '" 0.45. lIuwever, a eertain number of experilllental data does not
agn'(~with t he conjccturc of llIIi\"crsality rOl' the fracture surface scaling exponent (see, rol'
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example [3,33,63] and references therein). Fmthermare, various theoretical models and
computer simulations also lead to the nonuniversal fractal dimension of crack faces, which
usually depends from the variable parameters of the model being used [67,68]. Finally,
thcrc are strong illdications that H depends on material propcrties amI IIlcchanisms of
fractme when experimental data obtained by the same technique (see, far review, Ref. 3).
These observations casts doubt on the hypothesis of universality far fractme roughness
expollcnt.

2.3. MULTIAFFINITY OF REAL FRACTURE SURFACES

Looking al. the crack morphology formation problem, one realized that tbe self-affine ge-
ometry of crack faces results [rmIl the stocha..'itic nature of crack growth. This isslle can
be illustrated by crack s advancement, consisting of a sequen ce of local failmes in front of
thc crack ti}>, which are randOlIl evcnts, causcd al' by the material local strcngth Ructn-
ations (in inhomogeneous materials [69,70]), or by existence of two or more alternating
slip planes in crystal lattice; so that the crack trajectories behave randolllly.

1t is evident that in general case, the two-point correlation function (11) is insufficient
to completely characterize the crack face morphology. More detailed description of crack
faces morphology requires one to use the concept of Illultiaffinity that allows a Illach more
complete representation of real crack patterns by using an infinite hierarchy of scaling
exponents. It has been shown that any randa m system F can be usefully characterized
by an infinity spectrum of generalized dimensions Dq, where -00 < q < 00, also called
the Rényi dimensions [58),

{
I (r)}D = - lim -q-- ,

q r-+O In 7'

1 N(r)

Iq(r) = -----=--1 In { L P;"(r)},
q l=l

(20)

where Pi(") is the prohability that a point of set lIluler considerat.ion lies In box (cell)
1l11Illbcr i sllch that

N(r)

L Pi(r) = 1.
i=l

(21 )

The set. l' = p¡ is called mult.ifract.al probability measme or mass densit.y, of the subset
F¡(r) e F contained inside t.he i-t.h covering box with t.he edge ,.; Iq is the generalized
ent.ropy of order q.

Qne can readily see t.hat in t.he general case, Do is equal to the met.ric dimension
evaluat.ed by means ofbox-count.ing algoritlun (see Table V), i.c., Do == Da = D,\{; the
generalized dimension of arder q = l is equal t.o the infarmation dimension DI = DI,
which is associatcd with Shannon informatioll eIltrupy, that fuI' a lIlultifractal object
scales "" [9,71,721

N(r)

I(r) = - L I',(r) lnl'¡(,.) ex ,.1)/;
i=l

(22)
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and dimension D2 is equal to the correlation integral exponent De, abo ealled eorrclation
dimension, whieh was introdueed by Grassherg and Procaccia [73] as the exponent of a
power-law corrclatioll integral

1 N(r)
C(r) = lim ---- L e(r- IXi - Xj 1) ex ,.De,

N-.oo N(N - 1) ._\
1,)-

(23)

where e( ... ) is the Heaviside function. C(r) counts the number of pairs of points such
that r < IXi - xjl.

Note that for generalized Rényi dimension the following general relation [58] is valid:

for '1' > '1; (24)

tite e'luality being ohtained in the case of unifonn Hets, i.f.., sueh that the prohability
measure is eonstant, Pi == I/N(,'), and the generalized dimension Dq e'luals the metrie
dimension Da = DJI for all '1; specifically, for homogeneous objeet all dimensions Dq are
e'lual to the topologieal dimension, i.e., Dq == DJI == dT; and for self-similar fraetab the
definition in Eq. (20) gives 'i']' ::; D'I == Do = Da ::; d for all values of q.

In some works (see, for example Hefs. 74 and 75) have been assumed that for a
uniform self-affine fractal D'I = d - ¡¡ for all q. Aetually, however, the last equality
is valid only in the case of monofraetal strneture for whieh the probability me"-'ure is
constant Pi == I/N(,'). In the case of a self-affine fractal Pi(r) will be the same for eaeh
box if we will use tite eovering network witlt affine rectan gil' (or elliptie) boxes which is
H...")soeiatcd with thc clliptical dilllCIlSioIl [64]; whcrcas whcJI éLIlctwork with thc square nI'
circular boxes is used Pi(r) will be different for di!ferent boxes. Therefore for a self-affine
fractal D-00 - Doo > O.

To evaluate the generalized dimension speetrum of a sclf-affine fractal let us eonsider
a self-affine fractal F in d-dimensional Euclidean spaee (for example a profile in plane
sueh "-, shown in Figs. 7a or 7b). If FN E F is a set of N points belonging to F
and distributed ayer it in correspondcncc with an invariant IIlcasurc, \Ve can define the
distanee <5(N) between a referenee point A and its nearest neighbor B among the (N - 1)
other points. Evidently, <5(N) is a non-inereasing funetion of N and, in general, some
average over all points A will behave as (<5(N)) "" N-l/O. [ladii ami Politi [76] have
introduced the probability distribution P(<5,N) of N distanees among N points. The
moments of P( <5,71) may be represented in the follows fonn

(25)

wltere D(--r) is a ,-dependent definition of dimension, which ealled dimension func-
tion [76). It was shown [77] that, whenever , = D(--r), i.e .. a fixed-point relation is
satisficd1 this value oC the dimcnsioll fUIlctioll coincides wit}¡ the gcneralized dirnensioIl,
alld

(2(; )

\\'IJ(~re Dq in<iicatcs the order-r¡ Réllyi dimensiono
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Equation (26) is valid for the sorne cia.",,, of systems oheying scaling behavior of the
generalized entropy Jq ex ,.T(q) within the interval of l' hounded by the same value of tbe
corrclation length ~cfor al! <J [4]. It is ea.,y 1,0 understand that this coudibon is valid
al, lea.,t for the class of uniform self-affine fractals scaling properties of which within the
interval eo « r « ~cmay be characterized hy unique Hurst exponent /l. Therefore.
the evaluation of moments Eq. (25) al!ows the detennination of any Dq hy meims of a
recursive mcthod: au initiai valuc of T is clIasen to oht.aill a first estímate of thc dcsired
dimcnsion which, in tllfU, is llsed as a new input Ilutil a satisfactory accuracy is reachcd.

Now, let us introduce the prohability distrihution funelion for the distances between
these points

w(R) = p{eij < R}, i, j = 1,2, ... ,N, (27)

where p{ ... } is the probability that the distances eij hetween any two points i and j
of the N points is less than R. According to definition of the corre1ation integral C(R)
function w(R) is proportional to the correlation intel'ral (23), namely

W(R) = ;~ IC(R) ex R[)e, R« ~c. (28)

Let us determine the rclabon between prohahility funetion W(R) and dimension func-
bon D(-y). By definition, Eq. (25), we have

D-1 () l' d[ln A(f)N]f = un -----,
N->oo d(ln N)

(29)

Here ~i is the distances from the point with index i (i = 1, 2, ... ,N) 1,0 its nearest
ncighbor point, alld , is the averaging CXPOIlCIlt. Thc valuc of Illctric dimcnsioll D JI is
defined hy the Eq. (26) in the fonn D(-y = D 11) = J)11.

To calculate the mean distance to the nearest neighhor ~(-y, N), let us find the prob-
ahility distribution function for ~(-y, N). The probability 1'1>.that the nearest neighhor
of a point A randomly chosen from the N points is located a distance R (R E [R, R +dRJ)
a.way [r0111jt, alld the rcmaillillg iV - 2 points are located outside a sphere of radius R
cClltcrcd at poillt A, is givcll by the eqllatioll

1'1>.= (N - I)W'(R)[1 - '!'(R)]N-2, (30)

where 1'1>.is the desired difl"erential prohahility distribution function. As a result. fill' the
mean value A (-y, N) we have the expression:

A(-y,N) = [le p1>.R' (iR] Ih = {I 10''' [1_ \V(R)]N-I RO-1 dR} lh (:ll)

Using Eqs. (29) and (31). we obtain the expression

A(¡,N) =
1

Dvrc [
-2- r(N)r (-B;:)] Ih
De: r (N +-B;:)

(;]2)
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where 1'(... ) is gamma fuuction, and Le '" ~gcis a normalization coefficient. Ir l' = De
the equality (26) with !.erms given hy Eqs. (29) alld (:12) is satisfied aud thus we ob!.ain
the equali!.y Do == DA! '" l' = De == D2. From this equality and general inequali!.y (24)
it follows that information dimensioll also equals the metric dimension DA!. The latter,
as it ha.- heell shown ill !lefs. 64 and 78, related !.o !.he 11nrst expollellt as DA! = d - H
(see Table V). Thus we have shown that. for self-affine fractals

De = DI = DA! = d - f1, (:13 )

while Doo :s DA! :s D-oo'
Notiee, that Eq. (31) may be used for the estima!.ion of fractal dimension of a sclf-

affine stn:ctnre from dat.a of experimental ohservations. In order t.o validate the Eq. (:¡¡) a
lille seglllellt and two graphs of the Mandelbrot- Weierstra:.;s fuuctioll 01'knowIl <1imensioll
\Vere aualyzcd. Tú gencratc and evalllatc the graphs 01'Mandelbrot- \Veierstra.¡;;;s fUIlctioll
the program [79] was llscd. It was fOllUd that the diffcrcncc hctwecn theorctical vallles
of fractal dimension and t.hose calculat.ed hy using Eq. (:11) is I('ss t.han 0.5% f()r !ine
segment and less than :1% for graphs of the fractal dimension D = 1.4 and D = 1.8.

It should he emphasi,ed !.hat e<¡ualit.y (:13) is valid for self~affine patt.erns obeying
property (l¡) and power law hehavior (22) and (2:1) wit.hin t.he same int.erval of lengt.h
seales (17). For more complex patteflls the interval of sealing hehavior of the gen('ralized
entropy (20) is depeIl<lent on q. To characterize such a patt.ern we need t.o consider t he
'Ith arder height-height correlation fllnction [74,75), defined as

NI
Gq(x) = N :L Iz(x;) - z(:I:, + :1:)lq•

i=1
(:14 )

where IV» 1 is thc Illllllbcr of puints OVC1' which tite average is takcn (ollly 11011 zcro
tCrIllS are cont'iidercd).

FuI' real IIlultiaflillc crack faces Cr¡(.t:) (~x}¡ibits a Ilolltrivial IIlultiscalillg hchaviur

G () qll,
lq:r.cx:X. (:15 )

wit.h Hq changing continnously wit.h 1Iat. lea.,!. for some region of tI", '1 values [741. It can
he ShOWIl that a cOlltill1l011Sspectnull of

1/ _ 1 l' InG'I(:r)
q - - lIn ----

'1 r---,>O 111:1:

values is not. consistent with the equali!.y (14) whi<:h is valid only f(lI' uniform selr-allir",
pattcrns with single eXpCHlclltH; whereas for Blultiaffillc patterus

C(:r) exC':c-(II,-lIoi. ( :17)

so that (:orn~latiol1s \)('t.W(,Pll illCIClIICIIt.S always vallisil al, large (Iist.al)(:es :I:. T1H'rl,f()l'e,
(lxperilll<mtal lIIea.sUl"Clllellts ni' JI in f,11e scale nf t1Hl order of E.c \....ill ah....a.vs givt' t.ile
vallles which are closed to 1/(" It. St't'IIlS to bp 1.Iw l"l'aSOIl rol' J"('slIits wJ¡i('J¡ h'ad to
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TABLEVIII. The critical values of roughness (Hurst) exponent and various local fractal dimen-
sions of crack face for d-dimensional problems of crack growth in the plane normal to applied
tensile stress and in the direction of uniaxial compression.

Crack growth in the plane normal Crack grO\\'th in the directioIl of
Exponent to applied tensile stressl) uniaxial cornpression2)

d=2 d=3 d=2 d=3

H, 0.5 2 HV5 - 1) = <1>'::::0.6183)"
D' 2 3 1+<1>'::::1.618 3D

DJ¡ = Dh 1.5 2.333 1.382 2.382

D~= 2/(1 + Hcl 1.333 - 1.236 -

D~= ~(10 - 7H,) 2 - 1.891 -

1) Critica1 values of exponents are corresponded to the brittle-ductile transition.

2) Crack growth is possible if the corresponding exponent less than ¡ts critical value.
3) ~. is the golden mean.

aloremer.tioned conjecture about the universal roughness exponent4 The di!ferent values
of H for di!ferent scales of the same crack face were observed in experiments [67,80].

2.4. QUANTITATIVECHARACTERIZATIONOF MULTIAFFINITY

The absolute disorder of a large syst.em is in principIe impossible by virtue of the theorem
of Ramsey, rigorously proved in number theory [81]' according to which any sufficiently
large quantity N > R(N, n) of point.s (numbers, or objects) must cont.ain a highly ordered
subsystem of Nn < R(N, n) clements [R(N, n) are t.he Ramsey numbers]. Moreover, it
has been shown that. any randoIn struct.ure (or point set) consisting of a sufficiently large
number of elements N > B(N, n), where IJ(N, n) is a certain set of numbers, can always
be represented as a multifractal, consisting of a finite nmnber n of t.he pre-fractals of
i-generation (i > n) [3).

In this way, t.he concept of mult.ifractals is relat.ed to t.he dist.ribution of mass associ-
ated with a measure defined on t.he objecl. which can be regarded in t.his way as a family
of di!ferent homogeneous fractal set.s on which t.he measure has a given singularit.y. Tu
analyzc thc multifractality of a p;iven objcct, thc Sllpport of the mcaSllrc is covcrcd with
boxcs of size ,d and probahility Pi(T), which is the integratcd meaSllrc, is computed in

41\'oticc that for three dimensional problems the critical value !le: = 2/3 (Sf'C Tahle VIII) coincides
with the universal Hurst exponent, first sllggested fnr thc directed polymer pr()blem, and thell uscd as
universal cxponent for brittle fractnre sllrfaces [79].
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eaeh box. The generalized dilllension speetnlln defined by Eq. (20) eharaeterizes the
non-unifonllity of the nlcasllrc.

In practicc, sometirlles it is more cOllvcnicnt to charactcrizc tmIltifractals Bot by
dimensionalit.y, bllt. rather by speetral propert.ies. The speet.ral fllnetion f(o) is dc!ined
by the nUlllber of hypereubes required 1.0 eover t.he subset. sto) wit.h the sallle prohabilit.y
behavior P,(") ~ ra(r -+ O):

(38)

where n is t.he Lipsehitz-lliilder exponent which eharaeterized t.he singlllaritics of t.hc
lIlultifractal mcasurc [58]. Tite relation betw(~eJl gcneralizcd dimcllsions Dq alld spec-
t.ral fllnetion f(o) is given by a Legendre t.ransfonll: the ¡>nir {0,J(0)} io< the Le.'lendre
lransform of ¡>nir' {r¡, (r¡ - 1)Dq}. The obvious rc!at.ion

""LP¡" ~ jd(J(o),.nq-f(a),
,

lcads, by t.he st.cepest deseent. n",thod, to

(3g)

1
lIlin {or¡,f(o)} = --[<ir¡ - f«i)),
n r¡ - 1

(40)

wit.h n defined hy

df I = r¡«i) as long as ¡f2 f I < Odo _ doZ _ .
n a

The speetral funetion f(o) is widely used in t.he analysis of lIlultifraetals. Let us note
aIle of its fundamental propcrties: if thc spcctral fUllction is linear over SOBle intcr\'al~
t.his <:ould indicate a phase t.ransit.ion that is diffieult to deteet by ot.her lIleans [58]. There
exist a wcll-dcvclopcd thermodynamic formalislIl f()l' lIlultifractals that ernphasiz.cs thcir
clase allalogy t.o spin systcms [4,58].

Crassberg [73} has introdueed a variant. 011 Eq. (3g) in whieh the lIleasure is eovered
by a set of culles oC variable sizes. and has est.ablishcd a rclation bctwccll t.lte Hényi
dimension Dq ami the slope para meter T(q) al so called mass exponent which is dcfined
by relation

N

2:('1, r) =L P;"(,') ex ,.-7('1) (41 )

The sequenee of lIlass expouent, 7(r¡) is related to the f(o) curve in a general way that
is nseflll in applieations. lf we know the mass cxponents 7(r¡). we can determine f(o)
curve as

f(I1(r¡)) = 7('/) + '1,,(,/),

where ñ(r¡) is t.he SOllltioll of p<¡uation
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TARLE IX. Special values of the Rényi dimcnsinIl, Dq, ami corrcspondillg vallles of T(q), o, and
f(n) for a multifractal measurc /1.1= {F¡}, !'illpport.ed hy a set with fractal dirncnsioIl DF =
dimJl .11.1,where dilIl}{ 1\1 is thc Hausdorff-Besicovitch (rnctric) dimension.

'1 Dimension Dq T(q) <1 = -rlT /dq f(<1) = '1.<1 + T(q)

O Fractal dimcnsion dilllf{ Al 0'0 fmax = dimll Al

Da = Do = ,lim" M

1 InformatioJl dimension O <11 = -/(,.)/ In,. f¡ = <11 = /1)

DI = DI

2 Correlation dirncnsion -De -De - (rlDq/dq)q=2 2U2 - De

De = D,

+00 Upper limit, Doo ......,-q'OmíTl --+ nmin = -In P+/ In r2) f-+O

-00 Lowcr limit, D_oo "'"'-'1 . O:max --7 Umax = -In P_/ In r:l) f-+O

1) The measurc 1\/ has entropy 1 = -lim 1(1')/ Iim r = f¡, which is the fractal dimension of the set of
cOIlcentratioIl [or the measnre Al. (Here 1(1') is the entropy of partition of IIH'a.'iure ,\f O\'l'f hoxcs
of size r).

2) Bere P+ and P_ are the largest and the sm¡lllest probahilities in baxes of size r.

Therdore for the Lipschitz-lIólder exponent. we have

d
ü(q) = --1 T(q).

(tI
(44)

Thc~e cquations give a paramctric rcpre~cntation of the f(a) cllrvc1 'l.e., thc fractal
dilllension, f(a), of t.he support. of singnlarit.ies in the II1easure wit.h exponent ". The
J(o) eUfVC charactcrized thc IIlca.'illrc and is eqllivalent t.o the sequcllcc of mass cxpollcnts
T(q), which are relat.ed 1.0 Dq t.hrough

Tq = (1 - '/lDq. (45)

SOllle uscful relat.ionships het.ween special values of Dq, T(q), a. allll f(a) are ¡(¡ven III

Tahle IX.
The ncxt stcp in the standard stratcgy nf lIlultifraclal analysis cOllsists in rc~olvillg

the exponent Tq into a density of singularit.ics f(") wit.h singularit.y strengt.h ,,('1) [58].
In doing so, we obtain

. [I:;;:'I 1'('1)(,.) In I',(r)]
0('1) = lun ' ,

,.---tO In T .

[
"''' 1'(")( ) I ['(,,) ]

f() ( ) l. L..i=1 i ,. n i (r)
o = qn q - TI} = 1JIl

T--tO Inf

(.Jo)

(.17)
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where the probability lIleasure 1"'1= {piq)(1')} is defined by the transformation T(Jl, '1)
of the 1,-meaBure included iuto the one pararneter set {7q}

T(,l = {P,(1')},q) = {piq)(1')},

where the uorlllalized measures piq)(1') are defined as

-00 :s; '1 :s; 00, (48)

1'('1)(1') _ piq(I')
, - E(q,1')'

It is easy to see that pP)(I-) = Pi(1') and

N

E(rj,T) = L 1',"(1')_
i=\

(49)

so that we can define tlle idclltity TI and invcrsc T1/q trallsfofmatiom';l becausc

T({pi'l')},q2) = Pi, if '12 = ~_ (51)
'11

Hence, the transfonnation defined by Eqs_ (48) and (49) associates with the one-parameter
gronJ> opcrating in tlle space of nOfmalized mea..~urcs, ancl t}¡c appropriate degree of
difference between the l' and T(I", '1) rneasures may be characterized by the Kulback
information [81]

N [ ]
[';(1')

Kq(1') = L I'; In ('1) _ -
i=1 Pi (1)

The Legendre transforlllation [82] of the function

_ J( (,-)
1'('1) = lnn _'1-

r-tO hiT'

yields

d1' ('1)
ñ('1) = dq = 0('1) - DI,

1(0) = '1ñ(q) - 1'('1) = /(0) - DI,

1'('1) = T(q) - ('1 - I)DI = ('1 - I)(D'I - DI),

where 0('1), /(0), and T(q) are defined by E'ls- (41)+15), and DI == DI_
1t inuuediately follows from Eqs_ (33) and (24) that for a self-afline pattern

1'(0) = 1'(1) = 1'(2) = O,

w}¡crca.."'i rOl' a Blllltiaffinc pattern

(52)

(53)

(54)

(55)

(56)

(57)

1'(0) = DI - DA! < O,

while, obviousiy, 1'( 1) == O_

alld 1'(2) = [Jr: - [JI < O, (58)
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In this way, the characterization of the non-llniformity of a mllltiaffine structure can
be dedllced by considering sorne degree of the order Kq. In fact, Kq(r) may be referred
to as a mcasure al' nonuniformity of the multifractal structllre. Its zero valuc corresponds
to a llniform (statistically self-similar or statistically self-affine) pattem for whieh the
transformation (48), (49) does not change the distriblltion measure, ;.c. T(I', '1) = 1'.
A nonllniformity of mllltifractal and multiaffine pattems leads to non-zero vahIes of the
Kulback information Kq(1}

Aetllally, the variation problem of finding the measure which eorresponds to the
entropy extremllm [82]

N N N

- :L Pi In Pi + >- :L Pi + :L (Jj :L P;jji = max
i=l i=l j i=l

can be expressed in terms of the Klllback inforrnation as

(W)

(60)

The last re¡ation implies the minimization of the difference between distribution {Pi (1')}
anrl that meeting a certain set of constraints callsed by two terms in Eq. (59). In our
case from the comparison of Eqs. (60) ami (52) follows that the corresponding variation
problem can be formlllated as follows:

Kq = - f,Pi In ( ~~)) = max,
i=1 Ji

where
Npiq) = exp (>- + (J:L Jji).
j

(61 )

This provides an opportllnity to usc the funetion 1'('1) and, specifieally, the parameters
1'(0) and 1'(2) as qllantitative measures of the nonuniformity of multifract.al amI mlllti-
arRue structures, spccifically, fracture surfaces.

From the analysis the experiment.al dat.a rcport.ed [3] follows t.hat. in t.he case of bril.t.lc
fracture

so we can put

Ho '" H,

(62)

(6:J)

whercas for a dllctilc fracture surface

(64)

so that the dllctilc fracture sllrface caullot be rharactcri:.':cd by the unique Hllrst CXPOllCUt.
llCIlCC, in thc case al' brittlc fracture we can use the self-affille rcprcsclltation 1'01'real

(brittle) crack faces, whilc in thc case nf ductilc fracture we have to use the COIlcept of
1I11lltiaffillity in the aCCollllt to ¡-tIl adeqllate lIlodelillg nf the real Illorphology af ductile
fracture slIrfaces.
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It would appear reasonable that iu the case of intergranular cleavage the fractal
dimension of crack faces is governed by the statistical topography of grain bouudaries,
and thus coincides with the fractal dimension Dg of grain boundaries. In the case of
transgranular cleavage it should be reasonable to expect that the fractal dimension of
crack faces Da is less than Dg, so H > d - Dg• Path integral representation for self-
affine patterns suggested in Ref. 12 to model a brittle crack paths was advanced in [63,83].
Using this representation a detailed specification for the brittle crack morphology may
be made on the basis of the Rieman-Liouville and Wigner- Valle spectra analysis [84] of
the brittle crack profiles and surfaces.

It is important to note that the self-affine geometry of brittle crack faces leads to
the change in the stress fields distribution in the vicinity of the crack tip and within the
interval of self affinity (13) the value of stress siugularity exponent is determined by the
crack roughness exponent H = d - Da [10].

\Vhen the fracture is ductile, the crack morphology is governed by the kinetic of fail-
ure [5,6,14-18,42] and possesses a multiaffine geometry which is characterized by a wide
spectrum of geueralized dimensions Dq for which the relations (64) are valido In this case,
the know ledge of crack faces metric dimension D I3 is not sufficient to model crack faces
morphology, which is quite di!ferent for di!ferent types (mechanisms) of ductile fracture,
whereas for any ductile crack faee with Da > DÉ the stresses uear the crack tip are cou-
stant within the interval (17) [12). Hence, for the ductile fracture classifieation from the
fractal point of view we ueed in more detail analysis based on the Kulback information
coucept. It would appear reasonable that the di!ferent types of ductile fractures may be
classified in terms of suggested aboye parameters 1'(0) and 1'(2). This topic will be the
subject of a forthcoming papeL

3. EXPERIMENTAL METHODS OF FRACTAL ANALYSIS OF FRACTURE SURFACES

The quantitative description of rough sur faces and interfaces has been an important
ehallenge for mauy years. In the progress of science the ability to describe pheuomena in
precise quantitative terms frequently leads to importaut advances in understanding. This
certainly seems to be true in the case of fracture surface formation. In the review [851
Nowicki has described 32 parameters all(l functions that have been used to characterize
rough surfaces. It is important to classify phenomena so that the task of describing and
understanding them can be reduced to a reasonable magnitude. In recent years it has
been realized that fractal geometry aud scaling concepts can considerably simplify this
task for a quite wide range of syst.ems including fracture surfaces. lu this way, the main
purpose of fract.ographic investigations is to determine t.he fract.al dimension of fract.ure
surface and the limit.s wit.hin which the surface exhibit.s fract.al properties. Of course,
[ol' a dirnension to have any significance, rcpcating an cxperimcnt Illust lead to thc salllc
valuc!

In general, fraet.al analysis provides a description of how space is occupied by par-
ticular curve al' shapc. The fractal dimcnsioll lIlcasurcs the rclativc alllolluts of dctail
01' "roughness" occurring over a rauge of l1leaSllrenl{~llt intcrvals. Thc more tortuollS,
convolutcd and rieher in dctail the curve, thc highcr fractal dimensiono However, rOllgh-



574 ALEXAJ'DEH S. UALAJ'KIJ' AJ'D FHAJ'CISCO .1. SAJ'DO\.AL

IteS:; and fractal dimcnsioJl are nol. SYllollymollS. HoughllcsS is gCllcrally IIlca::-iured as tite
average variation ahout thc lIIeall value, and is tlof, rclated to thc scale nI' dtangcs in
licalc of measnrcIUCllt. Fractal dimcnsion is used lo qllantify thc variatioll of the length
01' arca with changcs in tite sea le of measurcmcllt intcrval. Hcnce tite fractal dimcnsion
is an intensive property (see Tables ]- V), while rollghness is noto

In arder to investigatc the fraetal propertics of a rOllgh fracture surfaCt~. it is Ilccessary
to determine its area a.."i él fundían of lIlCaHUfelllPnt lcngth. Several tCdllliql1cS have
beell dcveloped [01' thc¡.;c IIlca.surcmcnts [:~.58]. 111 principie, stcrcophotograIlletry ShOll1d
more 01' lcss provide au adequate topographic descriptioll 01' rOllgh sur faces. Provided
the computcr llscd has enouglt memory, this very r¡eh informatiOlI can I)(~ allalyzed to
mea.sure thc fractal dimcnsion of the surfacc. A tecllllique which provides a similar
infofmatiofl, although in a very diffcrcnt length scale dOlIlaill is the scalluing tllllllClillg
electron microscopy. In pract.icc, however. more cOllllIlOllly the one 01' bi-dimensiollal
cuts of fracture surface are stuelieel by usiug the fractographic metbods [31.

Fractographic methods useel to obtain fractal inforlnation from rOllgh fracture sur-
faces, involve either obtainillg surface prafiles froIll mctallographic scctions cut perpcndic-
ular to thc surfacc planc (vertical section metlwd), 01' frolll sequcntially preparcd ~ectians
parallel to the surface plane (slit islar,,] metlwr1), or frOln spectral analysis 01"rollghness
of surface (spectral rnethor1s) [:1]. Usually, an aelelitional hypotheses is lIe,,,kel in oreler to
achicve relation betwcclI fradal prapertics nf sllrface and its C11tS.

One of the most critical problems of fractal m'''LSurement anel applicatious is the
ability to recogni,e auel correctly measure the fractal elimension of sell"-alliue fract ure
sur faces. The horizontal contollrs of a fracture slIrface lIlay be statistically self-similar.
Imt the vertical profiles are couuuonly self-alfine [:lJ. !Ieuce, the horiwutal auel vertical
Cllts of a fracturc surfare iJave quite different scaling propertics \\'hich IIIllS!. IH~estimated
by IlIcallS uf diffcrclIt IIlCaSllrClIlcnts.

Por statistically self-~.;jlllilar ilorizontal COIIt.01ll'S;UIY rcasonablc procc<illrc 01' fractal
IIl('aSllremellt ShOllld lead to th<l sallW vallle of fradal dimensioll. The qllestioll is /W11I Ihi8
fmelal di71lension relatcs to the fl.adal1'1"01'crtics of self-aJJinc (or, ycncmlly. mnltiaJJinc)
J1'aet1ln~ surJaee?

For sclf-affine vcrt.ical profiles~ there arc lIlany ditfl'rcnt. fractal ditllCllSiolls. sotlle local
alld global. The la ter always eqllals the topologic:al dimension of profile. while the local
dimellsions may be "xpressed ;L' fnnctiolls of the ronghness expollent ¡¡ (S('" Table V).

l"vlcthods fol' mC;:L.'mring self-affine rOllghness eXpOIlcllt caIl be schcmat.ically cm;t illta
two grollps. One find the c:h"ical methods, d"ve!opillg for analy,ing self-similar fractals:
},ox-coll11ting, dividcr, perimetcr-arca relatioIl, power spedruIll scalillg, which providc the
(iifren~llt fractal diIIWI1Si{HlS rOl' a self-aHilW Slll'fan~. S(~veral other IlwtiH)(is S(llllct imes
IIspd in practice of fractal IIlC;:L"mrCIllcnts. That are dW7YI-Ir-ngth l1lCa81l1'el1/('nts [88],
lIa1'io!/1'am method [SaL and f:ondation f1lndion mCf!S1l1'rment [90]. 011 t.Iw ot.iH'r Iiand.
s(~veral IIlcthods have iH'l'1I dl'siglled to sp<'cifically determinc t.he sdf-afline ('XPOIH~l1tS: (l

1'ariahh: fHl7uiwirilh md/wd [29] alld rel1l1'H 1l1'olJllhilify 71/.ctlwd [Su. 87].
Variolls experimental tl'Clilliqlll's are Ilscd for fradal analysis of fract.urt! surfaccs.

AlI10llg thcm. tite scatt.erillg tt'chniqllcs (slIlall-allglt~ llPllt.ron scatterillg (:L GI)]. optical
diffractioll cxperimellts [:~], alld sPcolldary-dl'ctroll l'lIIissioll lIle(L'mrt~lIWIlI. [G~]). fracto-
1!,raphic st.lldies [:L 7S]' adsorpt.ioll-desorptioll st.lldj('s (adsol'ptioll prolH's IIwt.!Jod [~)81,alld
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thennodynamie method [!JI]), deposition experiments [92]' eleetro- ami heat-ehemieal
methods [9:JL nuclear magnetic resonancc porc-size distriblltion measuremcllt (88), and
sume indircct mcthods, sllcll íL'iski n effect IlleíL'illrCmcnt alld chargc rclaxation mCíL'iurC-
ment [3]' etc.

Below, S01l1Cof tllc Illost imjlortant fractographic tCChlliqlWS alld uwthods of fractal
measureJIlcnt are discussed in morc detail.

:J.1. SLlT-ISLA:"iD TECHl':IQUE

'rhe slit-island tedmique w,"' tirst introduced hy Mande!brot d "l. [8] wbo applied it to
the fractal analysis of steel fracture. The filled steel fracture surfaees witb nieke! (by
eleetrolytie deposition), then polished the fracture surfaees paralle! to the mean fracture
planc: so that approximately ('qual amollnts of nickcl ami stccl were evident OH the
polished fracture faces. This created a pattem of islands of niekel in a sea of stee!, whieh
was ealled "slit-islands" ¡nstead of nicke!, a ph,tie materialmay he also used [:1,58]. The
fractal dilllCIlSioll lIlcasurcmcnt. by IIlCallS of slit-isiand teclllliqllc is hascd 011 thc allalysis
of perimeter (P)-area (S) relations for the islands surrounded with eoating material.

It is wcll knowIl, that for circles, ellipses and regular polygons, the ratio of the perimc-
ter lo the square root of the surfaee area embraeed hy this perimeter is independent of
the figure size:

P
k = ,¡s = consto (65 )

TIl\lS, for eireles, k = 2,j1[. for squares, k = 4; for equilateral triangles, k = 6.y:); etc.
In the e,"", of fractal profile of the island I",rimeter, its length P is dependent on

the typc of standard 6" llsed in measuring P: in tltis casc, at J --+ O, thc perimetcr grows
infinitely:

1'(6) -+ DO when 6 -+ O.

In eontra"t, the island area S(6), measured hy it, eovering with Sl¡tIareS with ,ide 6.
remains finite at 6 -+ O. The typicalln S-In P plot obtained in studies of fracture surfaces
by slit i,land method i, shown in Fig. 8. The slope of the curve (pIotted by applying
the least squares method) is determined hy the fractal dimension J)f of the statistically
self-similar isIand eontour

2
D'f

(66 )

So for islands with a fractal coastline. the ratio Eq. (65) should be replaeed by the
follO\ving paramct.er

°'(11'(6)
k¡.- = .jS(6)

which is indepl~lldeIlt OIl the size of the island ami J.

(67)
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In P

luS

FIGURE8. The fractal area-perimeter relation for slit islands 011 fracture surface of 30Cr~IIlSi'\"i2A
steel fractured at -20°C (graph adopted from Ref. 39): [r] = 11I1l,[SI = 11m2

The fractal dimension of statistically sclf-similar smface relates to the fractal dimen-
sioll of the island's perimeter by cmpirical relationship

2
DI" = I+D¡=I+-, (68)

"\'

known as one of Mandclbrot's "rules of thumb" for fractal set.s [58].
Actually, relation (68) is valid only fO!'some specilic "'""" of statistically self-similar

surfaces [58]. Geuerally, the fractal dimension of statist.ieally self-similar surfaee DI" 2:
D¡ + l [94]' so Eq. (68) gives only t.he lower limit for the fractal dimension of t.he
self-similar surface. For example. in Fig. Ib-c we have show three different fractals of
different fractal (metric) dimension whereas fO!'all these fractal t.he baseline eross-section
is homeomorphic to the Cant.or set. (Fig. la) with fract.al dimension D = In2/ In :1.

Furthermorc, a...~it \"'3..';;nated ¡ti the previous sectioll, real fracture sllrfaccs are rathcr
statistically self-alfine than self similar. ¡¡ence Eq. (68) can not be used. If a fracture
smface is isotropic in the mean plaue, theu the slit.-islaud patt.ern will he statist.ically
self-similar, aud so fO!'a selected cutoff it. may be characterized by the fractal dimeusion
D¡, while H == 1. MO!'eover, generally, D¡ will depeud ou the cutoff choice.

On the other haud, 1.0 determiue the perimeter-area relatiouship we eau use different
cut.offs, but the same measuremeut leugth 0o. In this e'"", the slope of the In S-Iu P plot
determines the coutour fractal dimensiou Den (see Tahle V). If smfaee is self-similar then
lJ = l ami Den = D¡, while fO!'self-affiue smfaee II < I aud Den relates t.o the ¡¡mst
(:1) exponent as

2
Den =-

ny

2
1+ lJ'

(69)

So, t.he met.ric dimeusion of st.at.istically self-affine smfaee DM is related to Den hy t.he
equatioIl

. 2(2Dcn - 1)
DM=,I-Il=-- =4-"1',

Den
(70)

which should he used inst.ead of t.he commouly used iucorred. Eq. (68). In Fig. 9 we show
t.he dependeuee of the surface met.rie dimension DM ou tho "l' ealculat.ed hy Eqs. (68)
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FIGURE 9. The relation bctwccn fractal dimension oC sclf.affine surface and the slope oC area-
pcrimcter plol in lag-lag coordinates (0£ the typc showll in Fig. 5). Curve 1: calculation by
c1,c"ieal formula (68) ami eun'c 2: ealculations by Er¡. (70).

alld (70). As wc call see, t.he vahles of DM caklllat.ed by Eq. (68) will be always less t.hall
t.bose calculat.ed by Eq. (7ll) whell t.he same dat.a for 1 < Oy < 2 are used. Ilcllce t.he
dat.a report.ed ill t.he Iit.erat.ure, which were obt.ailled by slit.-island measuremellt., should
be corrcct.ed.

Not.ice, t.hat. Eqs. (69) ami (70) are valid ouly for self-affine fract.ure surfaces which
are isotropic in mean planco It \Va8 ShO\\lIl [95] that the slit-island techniqllc is insensitive
to anisotropy in the planc of fracture and so it is Ilseless when the slit-island pattern is
also self-affine.

:3.2. VEIrI'lCAL SECTION TECIINIQUE

A very llseful experimental procedure [or fractallIlca .."'iurementof anisotropic fracture SUf-

faces is based 011 vert.ical sect.ioll t.hrough t.he surfaee The sect.ions geuerat.e profiles (see,
for example Figs. 7a alld 7b) t.hat. sample cOIlt.illnously across t.he ent.ire surface a~01'-
posed, for example, t.o t.he point.-by-point. regist.ration obtained by st.ereophot.ogrametry
me'c""ements. With the sample in a met.allographic moullt, t.he fract.ure path and under-
Iyillg microstructure are revealed in relation to each ot.her, alld t.he st.andard equations of
sten,ology are applicable to both. tv!oreover, serial sectionillg is readily performed merely
by grilldillg down t.he faee of t.he sample parall'" to t.he previous loeatioll. This proce-
d lIre yields a Hew profilc each time and systematical1y samples throllgh sample space.
AccordillglYl equation

(71)

wherc Lo is a COllstant and the value of the Iloll-integer exponent DPl which i.s indepen-
dent of the me,c"n'ing step size 6., is normalized by the project.ed lenglh of the profile,
LIJ.
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r1'lllailldN

L, = N (r) x r + r<'luailHler
vL, = Li=1 {,(h,) 19L,

..........

D lJ = 1 - slol'"

lu h,

FIGURE 10. Schematic illustration of divider measllrement of the profile length with variable stick
(divider, ruler) length.

There are basical1y three methods for measuring fractal dimension of profiles:5 (1)
the divider (or yardstick, or ruler, or compass) method, (2) linearization of reversed
sigmoidal curves method, and (3) the box-counting method.

3.2.1. TILe divider metILod

lt is the oldest method of determining the fractal dimensiono Its use as a measure-
ment techni'lue predates the invention of the word "fractal." The basic method involves
measuring the lcngth of a curve eithcr at different rcsolntions, ar with different sizes of
measuring stick (ruler, caliper). Another name for this method is the strnctured walk
techni'lue. The essential characteristics of this method are il1ustrated in Fig. 10. First
walk the stick along the profile and record the length (which e'luals the nUlllber of ,tick
lengths times the size of the stick). Next, change the length of the stick and repeat the
measurement. Repeat this process several times, each time with a different stick length.
Theu plot the log of the curve length versus the log of the ,tick length. Ir the data plot
along a straight line, this means that the profile has fractal geollletry. This plot is SOlne-
titnes ealled a "Richardson plot." The reslIlts of grain bOlludary length IllCasurcmcnts
by tlsing divider lnethod are ShOWIl in Fig. 51>.

5The fractal dirnension of profile can be also estimated by using Eqs. (30)-(32).
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Now, determine the slope ny of the line which best fits the data, and compute the
fractal dimension of the profile from this slope Ilsing relation

Dp = 1 - nn = DD. (72)

For sclf-affine profile Dp is related to H as Dp = DD = 1/H (see Table V) and the metric
dilnension of surfacc relates to a D as

1 2 - 3nD
DM = 3 - H = 3 - - = ---

Dp 1 - nD
(73)

In practice, however, there are several operational problems which are assoeiated
with the choice of the length scale resolution. A self-affine profiJe scales differ in the
horizontal and vertical direction. Jf horizontal resolution is near the crossover length,
than the divider method may give invalid results. Hence, before performing the fractal
measurement by the divider method, it would be very usdul to know whether or not the
surface is self-affine.

To do this, we need to calclllate the standard derivation (4) for the X and Z coordi-
nates for many pair points in the profiJe. A fixed stick scale should be used to measure
the length between each pair of points. Then the coordina tes of all of the measurement
points of the stick are Ilsed to calculate two standard derivations (4) in the two coordi-
nate directions. These standard derivations for all pair of points mast be plotted versus
Jength on log-Iog scale. The slopes of these two lines yields the self-affine exponents Ux

and Uz defined by Eq. (5). Jf Uz = Ux then the profile is statistically self-similar ami
DD = l/ux = l/uz> whereas for self-affine profile Ux i' Uz and the Hurst exponent H is
defined by Eq. (3).

Another operational problem is the problem of remainder. For the divider method,
as one approaches the end of the profile, there will be some r¡uantity which won't fill the
last stick. This results in the error in the length estimation. Three ways are suggested for
handling the remainder [3]6 One way is to use only those rules which give a remainder
less than a specified value of tolerance. A second way is to add the straight-line distance
between the stick and the end of the profile to the total length. A third way is to round
up the remainder. Choosing a method for handling the remainder may lead to different
estimates of fractal dimension Dp, and these differences should be treated as part of the
error of the mcasurement.

3.2.2. The linearization of reversed sigrnoidal curves rnethod

It is based on the studies of surface roughness parallleters. It has become evident in the
study of fracture profiles that the profile rouglllless parallleter, Rz> occupies a central
position in expressing the characteristics of the profile. The parameter Rz is defined by
the length L(6) of the fractal curve, which approxilllate the profile with stick 6, divide,l
by Lp, the (constant) profile projected length. It also bears a direct relationship to R"
the sllrface roughness paramcter, which is defined by the sllrfacc arca Ss divided by its

6The slit-island method also ha." a remaindcr problcm [3]. \Vhat happens to íslands which cross the
hOllndaríes of the regíon of study'? Should thcy he ignored, or partíally cOllntcd?
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FIGURE 11. Schernalic illuslratian af the bax-counting rneasuremenl (a)~ the plat af the number
of boxcs needed to caver the fracture profiJe in eu versw; box size (b). Experimental data adapted
frorn Ref. 3.

projected area, Sp- Althaugh Rs is the '1uantit.y sought. because it. givcs t.bc fract.ure
surfare arca, it is relativcly difficlllt to obtain. The paramcter, Rz, OH the other halld, is
an experimental '1uantity t.hat. is measured direcl.ly from a vertical sectian [1-:1].

Several analytical methads bave been proposed for det.errnining R,. Qne of t.be
simpler ways is through t.he linear parametric equat.ion t.hat links R, ,lircct.1y to R,
according to empirical cqllation

4
R, = -(R, - 1) + 1.

1r
(74)

This re1ationship provides the best lit to all known experimental dat.a [1]. lt is based on
a rcalistic model, that ¡s, a fracture surface that ca.n have allY configuratioll bctwcen the
limits of completely orient.ed (R, = 1) and extreme1y complex (R, -+ 00).

lf the approach of marking segrnents along a baseline is used instead of markiug
segmeuts on the prolile, t.han the remainder problem can be avoided by rccursive1y sub-
dividing the total leugth of the baseliue into halves. In aualyzing the fractal behavior of
irregular fracture surfaces, data point pairs (R" JI.,) are ueeded for eaeh configuratiou.
Equation (74) supplies t.he iuaccessible '1uantity, JI." wit.h a high degree of re1iability and
a Illiuimum of caiculatiou. This method was describcd in det.ail iu Refs. 1, :1, aud 96.

3.2.3. The box-counting rnethod

lt uses boxes to measure the leugth of a prolile, or t.he densit.y of t.he liues or point.s over
an arca. The curve is covcred \vith squarc boxcs a....shown in Fig. 11a.

The size of t.he box ln is t.be lengt.h of lbe square. The uumber of same sized boxes
Ilccdcd to cover the liBe is cOllIltcd. This is repcatcd for series of differcnt sizcd boxes.
The result are theu I'lot.t.ed as the number of boxes N¡¡ (Y-axis) versus l¡¡ (X-axis)
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on a log-Iog plot as shown in Fig. lib. The fractal dimension of line (profile) is e<¡ual to
the slope of the plot, ¡.e.,

Dp = Da = 2 - ¡¡= -a¡¡, (75)

where a¡¡ is the slope of the 1'101..A variation of this method is to use cireles instead of
squarcs, where the diameter of the cirele is c<¡uivalent to the box sizc. The box mcthod
can be modified for self-affine curves by converting the s<¡uare boxes to rectangles which
have an aspect ratio representing the ratio of the anisotropic scaling factor.

There are different ways of applying the hox-counting method for measurements of
fractal dimensiono This method call be easily implemented with a computer algorithm by
defining the boxes with a square grid. To handling a potential remainder problem, one can
then count the number of intersections of the line with the hoxes (grid elements ar tiles),
or alternatively, the number of boxes intersected by the line. When using a computer,
one can start with the finest resolution image and then mathematically combine tiles
iuto larger, lower resollltion images, a procedllrc callcd "masaie amalgarnation." Thc
box method can be used to analyze areas within curves as well as the curve itself. One
can apply the centroid rule where the centroid of the hox has to lie in the region of
interest (non on the other side of the line) for the box to he counted. One can also apply
the "ma.jority rule," whcre a hox is cOlluted if more than half of its arca I¡es withill thc
regio n of interest [3].

Obviously, the evaluation of Dp depends on the method and algorithm used, on the
range chosen, on the sequen ce ami the seale resolution 011 the analyzed profile. Hence,
the cstimatcd fractal dimensioIl is not an absolllte meaSllrc so those paramctcrs must
always he specified in arder to reproduce thc reslllts as well as to COIupare and intcrprct
them.

3.3. TESTING FOR SCALlNG

The prohlem of estimation of the slope from the lag Y-lag X plot is common far all
methods of fractal measuremenl.. When we are dealing with unifornl self-similar or self-
affine pattems there are no problems. The log-Iog plots are linear at least on the average.
WhCIl, however, we are workillg with real fracture sur faces, problclIIs bcgin to emerge.
In fact, scaJing is a.:';SllIIlCda p1'iori alld the scalillg rcgioll is subjectivcly cstimatcd. In
this way, there is no consistent way of estimating the slope and different methods can
give considerably different results'

The slope may he estimated by a linear regression, or other standard curve-fitting
techni,!nes. Often, only part of the plot is used to calculate the slope, while other
researchers will use the entire plol. The slope is often somewhat cnrved, rather than
straight (see, for example, Refs. 1, 3, and 80). Does this curvatnre indicate that the
fractal theary is not applicable to that particular data seto ar is this just the expression
of lack of self-similarity (lf the data? What does it mean if the curve is concave up versus
COll(:av(~clown? SOlJlC rescarches choose a particular straight sectioll of thc curve rol' thc
estimat.ioll of SIOIW,explaining t.}¡at t.he straight. segmcnt. is the range of scales over which
the fractal theory applies. If an error analysis \Vere applied to the slope estimation. the
error rauge for tlle fractal dimcnsioll could be as larg(~ a."ithe possihle rangc of fractal
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dimensions. Many of the stndies do not estimat.e errors, or they estimate only one aspect
of the error, such éL"'i the curve-fitting error, while ignorillg ot.her such as t}¡c remain<ier
errOf.

If the slope O' is determined with the help of t.he least-sqnare lit. t.he standard d!'rim-
tion of the lit lIlay be interpret.eli as the error har 01' the obtaincd <iillwllsion valllc.
However, the error bar delined in snch a way ,loes not reHect the nncertainty of the
ealculated value of fractal dimcllsion cine to tite finitcllcss of data set, buí. it is rat.hcr
related to the choice of the fitting range.

Actnally, position of each point in the log-log plot is de!ermincd by the relation
log NI log r, where N(r) is the nnmber of sticks (hoxcs) with size ,. n!'eded lo cov!'r lhe
evalnated prolile. To obtain an exact resnlt, the limil N -+ 00 shonld be achieved. In
practice, we always have a f¡nite se! of N(,') points. Hence the nnderlying qlll'stion heing:
how IIlUUY data poillts are llceded in arder to obtain a "corred" estímat.e of a giVCIl siopc.
It is clear that the higher t.he fractal dimension of profile, t.he greater nnlnher of I'0int.s
N needed in order t.o eorrectly evalnate lhe slope of tlll' log-Iog plot.. Several C1npirical
criteria have been sllggestcd in the literature, which define t.he mÍnima1 numbcr of data
points N reqnired for a "reliable" estimation of a given fractal dimension D [97,98]. They
have the fonn

and (76)

(77)

Of course these limitatioll8 are in so me SCIlse subjectivc. hut tite)' are very llseflll in thc
practicc of fractal mcasllrcmcnt [3]- Howcver, in this approach, thc qllcstioll of whether
a given data set is sdf-similar (sdf-affine) is overlooked.

Thc anthors [99] have suggested the tests of self-similarity and self-aflinity h'L,ed
on t.he dat.a analysis in t.he coordinales log (dYldx)-log X which gives lhe slope " as
the fnndion of the logaritlnn of llIeasnrement seale length. For a nniforlll fractal" =
constallt. Thc fracture surface can Le t.reated a.<.;a st.atistically self-affillc object. only
whcll the corrcspolldillg ~dopen: varies within a certaitl bOll11ded illt(~rval (for exftlllplc,
the 5%-95% inter"al of the observed freqnency ,Iistribntion of 0').

!lere, we snggest another test. for sdf-aflinit.y which is based on the eOlnparison of the
valnes of ronghness exponent H ohtaine<l by divider ll( /J) = 11(1 - n /J) and hox-connting
H(TI) = 2 - OB methods. For a nniforlll sdf-affine pat.lPrn. ohviously,

Furthennore, as it follows from t.he analysis in Snbseet.. 2.4, if

IH(II) - H(I))I < _l_min {H(ll) = 2 _ DII, Jl(/J) = _l_}.
[)¡J [)¡)

then the fracture surface can be t.reated 'L' self-alfine and so may be characterized by the
llui(IUe rOllglmcss (llun;t) exponent.

(78)

Otherwisc, thc sllrfacc must bc cOllsic1erc(l as IIlIlIt.iaHiIlPami \",'e llced 1.0 cstimate pal'fllll-
eters f(O) and f(2) to its "haracterization.
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Iu order to validate the crit.erion (77), t.wo self-afliue graphs of t.he Maudelhrot.-
Weierst.n~,s fuuctiou wit.h H = 0.5 and H = 0.8, and t.he graph of detenuiuistie multi-
affiue fuuction [74] were analyzed. To geuerat.e and evaluate the graphs of Maudelhrot.-
Weierst.r;~" funct.iou t.he Fractal Vision soft.ware [79] \,,~, used. For the graph with
t.heoretieal value of Hmst. expooent. H = 0.5(Dn = D/I = 2) it. was foood HU)) = 0.53
amI HUi} = 0.48 so t.hat. inequalit.y (77) is valid and hy Eq. (78) we oht.aiu value Il ce 0.5
which coineides wit.h t.he t.heordical one. For graph of Mandelbrot.- Weierst.rass fuuetion
geuerated wit.h Il = 0.8, DD = 1.25 we found H(D) = 0.85 ami Il(/I) = 0.78, aud so,
t.he iuequalit.y (77) is also valido For the graph of det.ermiuist.ic mult.i-alfiue fuudiou de-
scrihed iu [54] we oht.ain H(D) = 0.5 and Il(/I) = 0.85, so t.hat. IH(li} - H(D)I = 0.:15 >
0.5H(D) = 0.25. Heuee, the sealing propert.ies of t.his fuudion eau uot. he charaderized
by a single Hurst exponent.

4. FHACTAL PHOPEHTIES 01' FHACTUHE SUHFACES IN STEEL 1045

The material chosen for the experiment.al stndies of fraetme snrfaees topography w;~, the
steel 1045 widely used in industry [1,3,100). In order to validate the suggested coneepts,
speeifieally, the t.est of self-affinit.y and uon-uuiversality of the fraetme roughuess expo-
nellt JI, tite mechallical tests werc made at diffcrcnt temperatllres and for differcllt straill
ratcs.

4.1. l\ilECIIANICAL TESTING

TCllsilc bars \Vcrc maehillcd from heat trcatcd samples to él 5 mm diamcter alld a gauge
length of 50 mm (lengthjdiamet.er = 10 coincides with german staudard [101]). The
bars were tested iu aecordanee wit.h t.he standard tension test (ASTM E8-81) usiug the
INSTRON tensile apparatus (mode! 1125). Tensiou t.ests were made al. ,Ii!ferent temper-
atmes (when t.emperat.me was raised over :lOOee, the at.mosphere pressme w;~, kept. at
10-6 torr), and for di!ferent st.rain rates: 3.:1:1:1x 10-5 s-l. :1,:133x 10-:1 s-l, l.GGGx 10-2
s-l, and l.GGGx 10-1 5-1. The ultimate teusile strength. ac, elougation, Jp, and ad-
sorhed energ}", Ea, for eaeh sample was eakulat.ed from the results of these tests. The
typical examplc of strcss-strain diagram is sltown in Pip;. 12a. Tilc variatiolls of the ar.
Jp, aud Ea with the test.ing temperature are showu in Figs. 12b, 12e, ami 12d. respec-
tivel}". \Ve can see t.hat meehauical properties of steel 1045 ehange dramatieally in the
intervaI500~800ee, while their variatious within the iutervals 25-500ee and 800 !OOOee
are insignificant. Hcnce, it is rea..'.;onable to expect that. the fractal propcrties of fracture
surface al so will posscss changes in tite illtcrval 500 _gODOC. Fllrtlwrlllore, it is n~:L"OIl-

aLle to expect the changes in fractal propertics associated with a dramatical decn'as(' in
adsorbed fracture euerg}" in test.s with strain rate 3.33:1 x lO-5 s-¡ (sr'" Tabl" X).

4.2. FHACTAL ~IEAStJHEMENTS

After mechanical testillg fractllred specimens ".."ere <L"sPlIlhledin h¡L"P}illcaud fracture
surfaccs were coven'd by epoxic resiB. Tlwll spcciJlwlls w(~remacililled to oi>t.aill t he
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FIGURE 12. Thc stress-strain diagram ror stccl 1045 at 3000 e ohtaincd in thc tensile test with
strain rate 3.333 x 10-35-1 (a); and the temperature beha\"ior of the ultimate teusile stress (b).
elougation (e), ami adsorbed energy (11).

vertical cut p1'Ofiles whieh were mic1'Ophotographed to 200x and 500x. Allmie1'Opho-
tographs were scanned in Studiosean Ilsi-AGFA and ol>tained scanning p1'Ofileswere used
for fractal mea$mement. Figs. l3a and l:ll, show the mic1'Ographs of ruptme profiles for
two speeimens fractured al. temperatures 300°C and 500°C, respective1y. The fractal
dimcnsioll of each profilc were estimated hy mC<lllSof (lividcr alld hOX-Colluting mcth<HIs.
Obtained in slIch a way data were lIsed lo ealclllate t.hc valucs of roughncss cxponcllts
H(II) and H(D). Thereupon, if the inequality (77) is valid, the Hmst exponent H were
calculated by Eq. (78).

4.3. DI\"IIlER MEASUHEMEt<T

The fouwlatiolls of divi(icr dimcllsioll IllCa..."lllremCllt by meaus of yardstick (divi<icr IlwtllOd
are deseril>ed in Sec!.. 3.2.1). The main operational p1'Ol>lema.ssociated with this mea-
surClllcnt is thc problcIll of rcmaiwlcr. In prcscllt work this remaindcr \vas handlcd by
addillg the straight-lille distallte betweell the rnler aIHI the ellll of allalyzed profile 1.0
the total lellgth (see Sec!.. 3.2.1).7 The ¡llterval lO -;- 10' IIl/l w,e' ehosell for the mler
lcngth Ó"Tl sO that according t.o criteria (76) t.he lltllllber of data poiuts were sl1fIicient
rol' a reliahle cst.imatioll DI). (111)' the points a..ssociat('(l wil.h ruler len~t.h ór < ~(' \VI 're
Ilscd to cst.imate the siope of the plot in t.lte coor<iinates log l.Jp-log ár by tite l<'ast sq1lare

1The al~orithlll of mea.Sllreml'llt was tl'sted hy the ('valuatioll 01' t1ll' p,raphsof )'landf'lhrot-\\'('ierstra."~
fundion gl'llf'rat(!d by tlH' program [79]. In all t"<L"PS tlll' diffl'l"('llCe llf'tw(,l'1l 1heorl'tif'al at\ll ('stimaled

\'ahll's of H was less than 8%.



SELF-AFFI:<E PHOPEHTlES 01' FRACTUHE SURFACES 585

TABLE X. Adsorbed energ)' and fractal properties of fracture surfaees in steel 1045 fraetlll'ed in
standard tests with strain rate 3.333 x 10-3 S-l at different tcmperaturcs.

T(°e) Ea, J ¡¡(I!) ¡¡(D) ¡¡, Eq. (78)

25 1.35 0.958 0.D5D 0.958

100 14.5G O.DGl O.DGO 0.%0

200 lD.44 0.D55 0.D30 0.D.12

300 8.D7 O.D.lO 0.D17 0.D2D

400 D3G 0.D35 OD15 0.D25

500 G.DD 0.820 ODIO 0.8G4

GOO 11.8G 0.805 0.84G 0.825

700 37.% 0.050 0.051 0950

800 8.81 0.D72 0.D7:1 0.D72

DOO 7.7D 0.D71 O.D72 0.D71

lOaD 0.D72 O.99G 0.D70 0.D71

FIGURE 13. 1o.Iicrographs of fracture profiles in st!'!'1 1045 fracllll'"d al temperalur!' :lOO°C (a)
ami 500°C (1)) with testiug strain rat(' 3.333 x 10-:1 ~-1.
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TADLE XI. Adsorbed energy and fractal properties of fracture surfaces ill stcel 1045 fracturcd at
lGOOce in the standard tests with different strain rates.

Property
Strain rate (8-1)

1.666 X 10-1 3.333 X 10-3 3.333 x 10-"

Ea, J 30.253 29.960 5.320

Do 1.041 1.030 1.l7l

H(D) 0.961 0.970 0.853

D/I 1.041 1.028 1.140

H(/J) 0.956 0.972 0960

H, Eq. (78) 0.960 0.971 0.857

method. The method of the ~cestimation is e;L'y to understand from Figs. lla ami
11b which show tWQ typical plats of divi(h~r IIlCaSlIremcnts. The correspollding valllcs rol'
divider dimension and ¡¡ID) were calculated by Eqs. (72) and (77). respectively. These
data are listed in Tables X ami XI.

4.4. I3oX-COUt'TING MEASUREMENT

The foundations of box-counting fractal measurement are described in Sec!.. 3.2.:1. To
avoid the problem of remainder we have used the box-counting algorithm suggested in
Ref. 1028 Two typical plots of box-counting mea.surements are shown in Figs. 14c and
14d in coardinates log N (Ó/J )-Iog .1/l. Estimated by the le;L,t square method the slope of
a plot W;L'used to calculate the box-counting dimension and ¡¡lB) by Eq. (75). Obtained
in tbis way data are listed in Tables X and XI.

4.5. DISCUSSION

Genera.lly, differcnt IIlctho(ls of fractal IIwaSllrcmcllt lea.d 1.0 tite salllc fractal dimcnsioIl
only far a statistical!y sdf-similar fractal. At tbe same time. different methods of fractal
measurement of the vertical cross-sections of a statistical!y sdf-afline surface 8hould gi,'e
tbe same value of the fOughnes8 (Hurst) exponent, if they applied corredly. Multi-
affinity of real fracture sur faces manifests itself in the di!ference between Il urst exponents
estimated by different methods. In this way, the self-aflinity of real surface can be verified
by using criteria (58), (62), and (77).

As it is easily seen ffOm data in Tables X ami XI, far al! investigated fradure surfaces
the inequality (77) is valid, and so they may be treated ;L' 8tatistical!y self-afline fradal,
within the interval (17) and charaderized by the unique roughness (Hurst) exponent (78).
In this \\'ay statistically self-afHllc fracture surfacps in stcpl 1045 can be at1vantagl'ollsly
modeled "y the homeomorphic regular sdf-affine fradals (Iór mare details see sectiou 2).

I,lThe ai~orithm \\'a."test{,d in [102] and it \Va.." :-;hown t hat it. gav(' the be:-;t.r('suits in compari:-;oll wit.h
other COllllllon al~(}rithms.
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FIGURE 14. Length of fracture profiles Lp shown in Fig. 13a and 13b plotted ver,,,,, stick length
(a, b) ami the number of boxes covered thcse profiles Np plotted ycrsus box sizc (e, d). Graphs (l

and c are related to the profile in Fig, 13a (~c= 0,31 mm) and graphs b and d are related to the
profile in Fig. 13b (~c= 1.06 mm).

\Vhile no elear rdation has been found between H and the studied Illechanical prop-
erties, it is elear from data presented in Tables IX and X that the changes in fractal
propcrties coincide with thosc for mcchanical propcrties. Henre our data C<L.e;¡t doubt OH

the hypothesis of universality for fracture roughness exponent. To obtain explicit inter-
relations between Illechanical properties of a material and fractal properties of fracture
surfares, we need in a more presentable set of experimental data. Specifically, it seems to
be interesting 1.0 investigate the relation between adsorbed cnergy and fractal properties
of fracture surface for different strain rates of mcchanical tcsting.

5. CONCLUSIONS

In this work the fractal approach to fracture Hurface morphology characterizatioIl wa..'"i
advanccd.

It iHIlotcd that while, explicitly Hp(mking, real fracture HlIrfaces are always 1Il1lltifractal
or multiafline, in some cases they can be treat"d as statistically self-similar (or se1f~
affille) pre-fractab oheying sca.lillg propcrtics withiJl a wide lJllt bOlIIHh.d ICllgthscale
interval (17). The criteria (58), (62), alld (77) and quantitative charactcristies (53) ,,1'
multifractality (1ll11ltiaflinity) are sll~~"sted.



588 ALEXANDER S. I3ALANKIN AND FHANCISCO .J. SANIlOVAL

It is important to keep in mind that any randOJn (statistieally self-similar or statis-
tically self-affine) fractal can be transformed in the regular fractal with the same fractal
(tuetric) dimensioll by a homcolIlorphic, aBe-t.o olle ;uHI outo transformation. Ifellcc,
regular aud ralldmll fraetals of the of the samc fradal dilllCllSioll are statistical1y eqlliv-
alcnt amI cannol. be distingllished within a fralllcwork of fractal geomctry. In this ,,,,"ay
statist;cally self-similar (seif-afline) fracture pattems can be advant.ageously modeled by
the homeomorphic regular self-similar (self-affine) fract.als (see aiso Ref. 105).

Furthcrmorc, it is cIIlphasi~ed that in SOIllC c:'l:5cs a hrittle fracture sllrfacc (\vhich
possesses pers;stence scaling withiu the int.erval (17)) can be represented l,y self-similar
I)fc-fractals, whcrcas the ductilc fracture sllrfaccs always display aI1til)CrsistcIICC bellavior,
and so they should be always treated a., self-afline (or multi-aH;ne) (pre)fraet.als.

T\\TO variatiolls of the Mandelbrot- \Vcicrstra ....s fUIlction wcre sllggcsted to statisti-
eally equivalent model represent.ations of self-affine fradure surfaees with self-similar
(isotropie) and self-afline (anisotropic) cross-seetions.

It is showll that for (st.atist.ieally) self-affine pattems t.he met.rie, inforInat.ion. amI
correiation dimensiolls are equal whereas Doo :s; Do :s; U-oo' The Eq. (:\1) for fractal
(liulCllSioll estimation frolll experimental (tata sel is <icrivc(l. Thc fractail)rOI)Crties (JI'real
fracture sllrfaces wefe <Lllalyzed 011 thc h.L,",Cof experimental data reportcd in literat.llre.

A new test. of self-alHnity (77) ;s proposed. Suggested theoret.ieal COIlcepts wer"
validated by the analysis of graphs of Weierstrass fnnetion generat.e,1 by lh" COlIlnlereial
program [79].

Thc I)Ossible rca.sons of strong contra<1ictiolls 1)(~tweeIl rcslllts of fractallllcasurCllleJlts
rcportcd in diffcrcnt works were discussed 011 tlle hasis of suggested concepts. Diffcrcnt
met.ho,ls of fraetalmea.,nrement lead t.o t.he same fractal dimens;on only for a stat.ist.ieally
self-similar fract.al. Diffcrcnt mdlHHls 01'fradal Ilwa.";¡llrCnlellt of lile vertical cross-s(~dions
of a st.at.islically self-afline fract.al shonld give the sam" valne of lhe ronghness (IInrst.)
exponent., if t.hey applied eorreet.ly. !vInlti-aflinit.y of real fractnre surfaces maIlifesls ilself
in thc (liffcrcllce uetwcCll Hltrst ()XPOllCllts estilllat.ed 1),'/ (liffereIlt mctllolls. fIlll'izOll-
tal cross-sections in fracture sllrfaccs are cOIlllllonly statistically self-similar withill the
lengt.hseale int.erval (17). New relat.ion (70) bet.ween fractal ,Iilllension of surface and the
slope uf the perilIleter-area plol llsetl in tite slit-islalld fraet.almeasurclllellt. ¡s dcrived. It.
is not.ed that previollsly published dat.a obt.ained hy slit-island Illet.hod shunld he re"ised
wit.h the use of Eq. (70).

Tlw fractal propcrtics uf brittlc frad1lre surfaces fOrIncd in steel 1045 fractured al.
differcnt t.emperaturcs alld differcllt. strain rah's have \)('('n st.udicd. 0111' data are in
cOlltradictioIl with the rOllccpt of llllivcrsality 01' lhe fract.ure rO\l~lllleSS cxponellt. which
1Jccamc popular in recent years. Moreovcr, it. is lIot.cd t.}¡at tllC c}¡allgcs ill fractal prop-
crties of fracture surfaC(~ COillCid(~ with challgcs in lllcchanical prolH'rtics of stcel.
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