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ABSTRACT. A statistical topography of fracture surfaces is discussed. Theoretical models of
fracture surfaces and experimental methods of fractal measurements are analyzed. The theoretical
ideas which allow to understand the strong contradictions between results obtained by different
authors in studies of fracture surfaces morphology are presented. Suggested theoretical concepts
are discussed with respect to experimental observations reported in the literature. A fractal
analysis of brittle fracture surfaces in steel type 1045, fractured at different temperatures, is
reported.

RESUMEN. Este trabajo presenta la topografia estadistica de las superficies de fractura por medio
del andlisis de modelos tedricos y métodos experimentales de medicion fractal. Son presentados
también los argumentos tedricos que permiten entender las fuertes contradicciones en diferentes
estudios de superficies de fractura obtenidas por diferentes autores. Los conceptos tedricos sugeri-
dos son discutidos con referencia a las observaciones experimentales reportadas en la literatura.
Finalmente se presenta un analisis fractal de las superficies de fractura fragil para el acero 1045
a diferentes temperaturas.

PACS: 62.20Mk; 05.45.+b; 47.53.+n

1. INTRODUCTION

Fracture surfaces morphologies represent a complex mosaic of microstructural artifacts,
the features of which are characteristic of the particular fracture mode and microstructure
and may range in size from the atomic dimensions of dislocation slip steps to the macro-
scopic dimensions of grain size [1-4]. An understanding of this morphology requires the
deconvolution of these characteristic dimensions, which together form the building blocks
of the fracture surface. Characteristic fracture dimensions are related to significant mi-
crostructural length which influence the specific local micromechanisms of fracture [2-7].
For this reason, in recent years, the quantitative analysis of fractured surfaces has become
an integral part of the study of deformation and rupture of materials [1-3]. Such surface
analysis often provide information about surface morphology which is complementary to
that obtained by other metallurgical methods. Starting from the pioneer work of Man-
delbrot et al. [8] there have been numerous investigations focusing on the crack faces
morphology characterization within a framework of fractal geometry, that is believed to
give a promising parameters in establishing a property-structure relationships (see, for
review Refs. 3-32 and references therein). It is now clearly established that at the first
view the random fracture patterns can be treated as fractal objects.
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The application of fractal geometry provides an effective tool in the study of highly ir-
regular fracture surfaces. Many different materials have been investigated, with different
fracture behavior from ductile to brittle, at a very different scales from nanometer scale
using atomic force or scanning tunneling microscopy [3,33], micrometer to centimeter
scale using profilometry measurements on a variety of materials [3,34], image analysis
techniques [3,8,35] or other techniques [3, 36], meter [37] and up to kilometer scale [18]
for geological faults. The initial hope in measuring the surface topography was to relate
this geometrical information to mechanical properties, such as toughness [3, 9, 10, 39, 40],
energy release rate [9,10, 41], tensile strength [3, 42], impact energy [3, 8], fatigue thresh-
old value of AKyy, [43], ductility [42, 44, 45], and Weibul’s moduli [6, 46-48], or to material
characterization [1-3,42]. However, some technical difficulties are related to the determi-
nation of the fractal properties of real fracture surfaces which are statistically self-affine
rather than statistically self-similar (see Refs. 9, 10 and references therein). Because of
this, some commonly used tools which were developed for isotropic fractals lead to bi-
ased measurements. As a result we have strong contradictions between results obtained
in different studies (see, for example, Refs. 9, 10, 33, 49-51 and references therein). In
practice, these contradictions give arguments to the traditional metallurgist concerning
the non-utility of using fractal geometry concepts to describe fracture in materials.

The main goal of present study is to understand the reasons and the nature of the
aforementioned contradictions in results of different investigations. For this purpose
the previously published data on fractal characterization of fracture surfaces as well as
different experimental techniques are analyzed.

Some new concepts are also suggested to fractal characterization of fracture surfaces.
These concepts are validated by the analysis of different fractal patterns. Furthermore, as
an example, the fractal properties of brittle fracture surfaces in steel type 1045, fractured
in standard mechanical tests at different temperatures, are also studied.

2. STATISTICAL TOPOGRAPHY OF FRACTURE SURFACES

The quantitative characterization and modeling of fracture surface roughness is an impor-
tant problem for both theoretical and applied fracture mechanics. Traditional techniques,
based on the idea of isolated deviations from planar surface geometry (e.g., a facet of
an elemental solid with occasional steps and kinks), face the difficulty of identifying a
small number of structural parameters that can describe the roughness for a wide va-
riety of purposes. Typically they depend on a multitude of model-specific parameters
difficult to access in practice. Fractal geometry, developed by Mandelbrot [52], allows
the description of such irregular forms which are more complex than Euclidean shapes.
More recently there have been extensive research and great development in statistical
topography which now acts as an integral part of the quantitative fractography [1-3].

The term “statistical topography” was introduced by Ziman [53] for the theory of
the shapes of random fields, with special emphasis on the contour lines and surfaces of
a random potential. A mathematical survey of the statistical topography of Gaussian
random fields was given by Adler [54]. The descriptions of scaling invariance are of crucial
importance for statistical topography.
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The most compelling example of statistical topography is presented by the diverse
and whimsical patterns of natural coastlines and islands. The geographical considera-
tions apparently inspired Mandelbrot [52] to introduce the concept of fractals. Generally
speaking, the fractal analysis provides a description of how space is occupied by a par-
ticular shape or curve. Specifically, the fractal dimension (which is commonly fractional
in the contrast to the topological dimension which can be only an integer) measures the
relative amount of detail or “roughness” occurring over a range measurement intervals.
The more tortuous, convoluted and richer in details the shape, the higher fractal (metric)
dimension. !

In mathematics, “fractal” and its fractal (metric) dimension, D, both are defined in
terms of an embedding metric space. Some of the most important definitions of the metric
dimension are given in Table I. Intuitively one can interpret metric (fractal) dimension,
D, as the smallest non-negative real number for which one can define a volume form on
n-dimensional Euclidean space which is not identically zero; such a volume form being
entirely described by the metric dimension or capacity. Underlining this approach is
the recognition that one and two-dimensional structures are in effect three-dimensional
portions of space, two or one of their characteristic scales being very small.

Another fundamental property of fractals, which distinguishes them in a basic manner
from homogeneous euclidean objects, is the scaling invariance. Specifically, many fractals
are made up of parts which are, in some way, similar to the whole, such as self-similar
fractals constructed by iterative procedures shown in Figs. 1-3. Notice that every piece
of a self-similar structure holds the key to the whole structure. In other words, if we
look at the fractal structure from afar, it appears the same as it does in a close-up view,
in terms of its details. The length (area, volume, hyper-volume) scaling of a regular
(self-similar) fractal is determined by the unique scaling exponent called the dimension
of similarity, Dg (see Table II). Furthermore, for such a structure, all definitions of the
metric (Table I) and fractal (Table II) dimensions lead to the same metric dimension
number, D, which is equal to the similarity dimension. The latter is determined by the
geometric parameters of structure (see Table III and Figs. 1-3).

Natural fractals such as failure patterns possess scaling invariance only in statisti-
cal sense: while the visual images are different in different scales, the roughness and
fragmentation neither tend to vanish, nor fluctuate up and down, but remain essentially
unchanged as one zooms in continually and examination is refined. In this way, for
random (natural) fractals, the concept of similarity must be replaced by the concept
of “statistical self-similarity” and we we can speak about two broad categories, namely
the regular (self-similar) fractals, such as shown in Figs. 1-3, and random (statistically
self-similar) fractals, such as failure patterns in solids, polymer molecules, coastlines of
islands, etcetera. Example of construction of random (statistically self-similar) Koch
curve by iteration procedure is shown in Fig. 4b.

'However, roughness and fractal dimension are not synonvmous. Roughness is generally measured
as the average variation about the mean value, and is not related to the scale or changes in scale of
measurement. Fractal dimension is used to quantify the variation of the length or area with changes in
the scale of measurement interval. Hence the fractal dimension is an intensive property, while roughness
is not.
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TABLE I. Some different definitions of metric dimension.

NN Dimension Measure Definition of dimension
1 Hausdorff-Besicovitch {U;} is a d-cover of F, i.e., . . - -
dimension o0 dimy F' = inf{S : H>(F) = 0}
FCU with O<|U,|S(5, =SUp{SZHS(F):OO}
1=1
where U is any non-empty subset of n-dimensional Eu-
clidean space, R™.
Hausdorff measure is
H%(F) = }in})HJS(F),
where
= e}
HS (F) = in{ 3" [Uil° : {Ui} },
=0
and diameter of U is
|U| = sup{|z —y|: z,y € U}.
2 Mincowski-Bouligand Let Ns(F') denotes the least number of balls in a cov- o =
dimension ering of F by balls of radius . It is follows from the A(F) = lims—o{lg No(F)/1g(1/0)},
(logarithmic density) definition of Hy that HJ (F) < (26)° x Ns(F). A(F) > dimy F
3 Divider dimension M;(C)-maximum number of points zg,z1,... ,Zm, on o
(of Jordan curves) the curve C, in that order, such that |z; — 51| =4, Dp = }%{lg Ms(C)/1g(1/)}
k= 1.3 v i
4 | Packing dimension {B;} is a collection of disjoint balls of radius at most 4

with centers in F'. Packing measure is
PS(F) = inf{z PS(F):Fc | F}
i i=1

where Py = lims_o P{(F), P{ = sup{|Bi|® : {B:}}.

dimp F = inf{S : P°(F) = 0}
= sup{S : P5(F) = o0},
dimy F < dimp F' < A(F)
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FIGURE 1. Two first stages of the classical construction of regular (self-similar) fractals by it-
eration procedure. The fractal geometry is obtained for an infinite number of iterations, i.e.
F = G-, where G,, is the pre-fractal of order n. The metric dimension (see Table I) of Fis
equal to its similarity dimension (see Table II) and can be calculated by using the corresponding
relationship from Table III. The Cantor set of points (a) has the topological dimension d = 0

and the fractal dimension Ds = In2/In3 = 0.63...; the triadic Koch curve (b) has d = 1 and
Ds =1In4/In3 = 1.26...; the Koch curve (c) hasd = 1 and Ds = In5/In3 = 1.46...; and the
Sierpinski carpet has d = 1 and Dg =1n8/In3 = 1.89.... Note, that the baseline cross-sections

of these fractals have the same fractal dimension Dgs = In2/1n3.
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FIGURE 2. Two first stages of the construction of the “Cantor-like” set of points (a), “tree-like”
fractal (b), “Koch-like” curve (c), and Sierpinski g,dsi\ot (d). Notice that all these fract: 115 have the
same fractal dimension Dgs = In3/In2 = 1.584 962501 ..., whereas theirs connectivity property
are different. Moreover, the topological dimension of thv “Cantor like set of point” is zero, whereas
fractals (b), (c¢), and (d) have the topological d = 1.
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FicURE 3. The circle fractal (a) and corresponding dependence Dg on the structure parameters

N and M (b) calculated by means equation system from Table III (b).

TaBLE II. Some definitions of fractal dimension.

NN | Dimension Expression for Fractal dimension Comments

1 Mandelbrot, ) . N, (g) is the least num-
Schirelman- Lye= !l_r,% {supIn Nz(e)/ In(1/)]} ber of balls of radius
Kolmogorov ] ] B less than e which are
= inf {d >0, _}E}}) [supe® x Na(e) = U}} needed to cover fractal
2 Kolmogorov, ) . N(g) is the smallest
Schirelman- Dk = EL‘,‘% {suplg N(e)/lg(1/¢)} number of balls of di-
Potjrajin ameter less or equal to
£ which are needed to

cover fractal
3 Similarity Ds = In M/In R If set mac%e | up of M
copies of itself scaled

by factor R
4 Internal d d: topological dimen-
similarity ZR?“ =1 sion, R;: similarity ra-

i=1 tios
5 Cluster . N is the number of
(or mass) Dirs = In N/In( B/ Ro) monomers of length Ry
dimension into monomers of di-
mension I
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TaBLE III. Relations between similarity dimension and parameters of structure for different

regular fractal structures.

NN Type of regular Expression for Fractal dimension Comments
fractal structure

1 Cantor set, n N N: number of self-similar
Peano curves, g = - parts, £: concern length of
Koch curves In(1/¢) each part (Figs. la-lc and

2a-2c)

2 “Firtrees” In P P: number of branch with

D= B length L, .+, on the branch
ST K
n with length L,,.
K = Ln/Ln+1 (Flg 2b)

3 Sierpinski r b: the base of lattice, R: num-
gaskets By o= In(0 - R) ber of ejection parts, d: topo-
(carpets) ) Inb logical dimension (Figs. 1d

and 2d)

4 Round fractal M N: number of sectors, M:
lattice NDs Z(l —2ip)Palk—1) = 1, number of possible scale

k=1 transformations (Fig. 3)
@ = tan(r/N)tan[(m/4)(1 — 2/N)]
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G
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i

G

FIGURE 4. Self-similar (a) and statistically self-similar (b) versions of the triadic Koch curve (see
also Fig. 1b). Notice that these curves are homeomorphic and characterized by the same metric
dimension D =1n4/In3 = Dg [52].
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TABLE IV. The properties which must be hold for any reasonable definition of dimension.

NN Property Relation for dimension Conditions
1 | Monotonicity fECF
3 dimy E < dimg F .
2 | Stabilit fTF:EUA
i dimy F = max {dimg E, dimy A} W
3 | Countable - If F; is a (countable) sequence of sets
stability dij{U Fi} = sup {dimH R-}
i 1<i<oo
4 | Geometric If f(F) is a transformation of "
invariance dimg f(F) = dimyg F such as a translation, rotation, sim-

ilarity, affinitty

5 | Lipschitz If f(F) is bi-Lipschitz transforma-
invariance dimy f(F) = dimyg F tion, i.e.

Crlz—y| < |f(z)-fy)| < Co|z—yl,
for (z,y € F)and 0 < C) € (% <

It is easy to see that all definitions of the metric (fractal) dimension given in Ta-
bles T and II satisfy some fundamental properties listed in the Table IV (obviously, any
reasonable definition of the dimension number should satisfy these properties). There-
fore, any random but statistically self-similar fractal can be transformed in the requlcr
(self-similar) fractal with the same metric (fractal) dimension by means of a homeomor-
phic, one-to-one and onto transformation. Hence, for a statistically self-similar fractals
all definitions of metric dimension listed in Table I are also equivalent and lead to the
same dimension number, which is equal to the similarity dimension of the homeomorphic
regular fractal. For example, two curves in Fig. 4 are characterized by the same value
of metric dimension, D = Dg = In4/In3. In this way, natural statistically self-similar
fractal patterns can be advantageously modeled by the corresponding regular fractals
with the same fractal dimension? as, for example, it is shown in Fig. 5.

Clearly the knowledge of the fractal dimension does not tell everything about the
morphology of the system. For example, two systems with the same fractal dimension
may actually look very different and have very different connectivity properties. For
example, all fractals in Fig. 2 have the same fractal dimension Dg = In3/In 2, whereas
the images and connectivity properties of these fractals are different. Moreover, the
topological dimension of the “Cantor like set of points” (Fig. 2a) is zero, while the
topological dimension of tree-like fractal (Fig. 2b), Koch curve (Fig. 2¢) and Sierpinski
gasket (Fig. 2d) is one.

*For isotropic (statistically) self-similar patterns almost any reasonable procedure for measuring the
fractal dimension will lead to essentially the same results if the fractal scaling regime extends over a
sufficiently wide range of length scales.
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FI1GURE 5. The grain boundary approximation by regular fractal curve (a); and the results of
experimental evaluation of the fractal dimension D of grain boundaries in deformed zinc [3]: (b)
by means of the yardstick (divider) method, and (c) by using the perimeter-area relation for the
grain ensemble.

Furthermore, statistically self-similar fractal patterns are essentially isotropic, whereas
real fracture surfaces in solids often have anisotropic asperity distributions. For a de-
scription of such patterns the concept of self-similarity has been extended to account
for anisotropy through the notion of self-affinity. The fundamental difference between
self-similar and self-affine fractals is the way in that scaling will produce statistical equiv-
alence. Self-similar fractals may be scaled equally in the all directions to produce statis-
tically equivalent profiles, whereas self-affine fractals must be scaled by different amounts
in the different directions to produce statistical equivalence. A self-affine pattern is sta-
tistically invariant under an affine transformation

A W v = Ay, Z = Xz (1)

Requiring that such transformations be combined, a group structure is implied. As a
consequence A, and A; have to be homogeneous functions of, say, Az; both scale as

Ay X AR, Ay e AR, (2)
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FIGURE 6. Invariant construction of self-affine fractal by means of affine transformations [55].
The self-affine curve Z(X) with H = 0.5 is obtained after infinite number of iterations.

but the exponents v, and v, are in general different. If so, then A; o )\_;;", where the
roughness exponent H, also called the Hurst exponent, is given by the relationship

H=2 3
= (3)

In the special case of an isotropic self-affine surface with mean plane parallel to the
coordinate plane (z,y), we have 1, = 1, so that H = v, the last relation is also valid
for any self-affine curve on a two-dimensional plane (see Fig. 6). However, generally
the self-affine scaling must be characterized by d — 1 scaling exponents in d-dimensional
Euclidean space. Specifically, a rough fracture surface is generally characterized by two
scaling exponents.

In the application of fractal models to real fracture surfaces the concepts of self-affinity
and self-similarity must be carefully distinguished even in the case of isotropic surface,
because of the vertical cuts of such a surface (which are commonly studied in fractographic
investigations [3]) are statistically self-affine, whereas horizontal cuts (which are used in
the popular slit-island method of the fractal dimension measurement (8]) are statistically
self-similar. Because of this, different studies dealing with fractal characterization of
fracture surfaces have given inconsistent results, raising questions about the comparison of
various works and their interpretation. The difference in the scaling properties of vertical
and horizontal cuts must be taken in mind when the results of different investigations are
discussed. Below, this aspect of fractal measurements will be discussed in more details.

2.1. MODEL REPRESENTATIONS OF FRACTURE SURFACES

It is now clearly established that fracture surfaces as well as their profiles can be treated
as self-affine objects and in this way they may be advantageously modeled by using the
fractal (self-affine) functions [7]. Despite the non-differentiability of fractal functions, now
it is beyond the question that the fractal representation of failure patterns can hardly
benefit our understanding the nature and mechanisms of failure phenomena [10-45].
The fractal models of crack faces have at least two remarkable features. First, they are
locally invariant with respect to a scaling transformation. Secondly, the fractal function
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is an essentially multiscale. Therefore, it allows one to model a real fracture surface with
multiscale roughness, including the existence of characteristic scales which are both much
greater and less than the incident wavelength. Experimental investigations studies using
various experimental techniques (profilometry, microscopy and image analysis, scanning
tunneling electron microscopy, electrochemistry, etc.) on materials as different as steels,
metal alloys, rocks, polymers, and ceramics, have shown that fracture surfaces exhibit
scaling properties on two or three decades of length scales (see Refs. 3-7 and references
therein).

An ideal self-affine profiles may be modeled using the simple algorithm suggested by
Voss [55]. For (1 + 1)-dimensional profiles the basic procedure is as follows: knowing
the values of z at both 7 and j of a root segment, we compute its value at the center k
as the average (z; + z;)/2 plus a fluctuation adz. At each generation n, the fluctuation
dzy, is picked from a statistical distribution F'(dz) with zero mean and scaled by a factor
@ proportional to the length of the parent segment |i — j| raised to the power H. The
distribution F' can be chosen, without any loss of generality, to be a Gaussian distribution.

In this way, a rough surface is defined by a vertical height profile above a hori-
zontal (z,y) plane, an may be represented by a single-valued random function z(r) of
the in-plane horizontal vector r = (z,y). Figures 7a and 7b show examples of profiles
constructed in such a manner using two different exponents H = 0.49 and H = 0.85,
respectively. These profiles possess self-affine scaling (2). To show this, let us define the
smallest length scale or unit length scale I = 1 and measure by this scale the curve
length Lag = N x [y = N between two arbitrary points A and B on the profile. This is
equivalent to regarding the curve as consisting of particles of diameter /; and counting
the number of particles between points A and B. We then calculate z- and z-variance
(X?) and (Z?) of all measured points on the profile between the two points A and B:

(= LS e, ()= L3 - @
N‘!:l 1 c 1 _lel [ C ]

with

where (z;, z;) is the coordinate of the i-th measured point on the profile. The standard
derivations ((X)) = /(X?2) and ((Z)) = /(Z2) indicate the approximate sizes of the
part of the profile. Repeat the measurement procedures described above for many pairs
of points on the curve and check by the log-log plots of ((X)) and ((Z)) versus N whether
they possess the self-affine scaling (2) in the form

(X)) x N, ((Z)) oc N™=. (5)
If so, they are then related to each other as
(2) ~ ((xN™, (6)

where the Hurst exponent is given by relation (3).
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FIGURE 7. The self-affine image of a ductile (a) and brittle (b) fracture surfaces constructed by
the Voss's algorithm described in text and the corresponding plots for standard derivation Z
versus standard derivation X in log-log coordinates. Solid lines represent theoretical behavior (6)
with H = 0.49 (c) and H = 0.85 (d); points—results of computations.

As Figs. 7c and 7d suggests, the profiles in Figs. 7a and 7b obey power law scaling (6)
and so they are possess self-affine geometry and in this way they can me used as model
representations for vertical cuts of brittle and ductile fracture surfaces [4, 10].

Another notable example of a single-valued self-affine curve in plane is the graph of the
single-valued continuous, but nowhere differentiable Mandelbrot-Weierstrass function (56]

o0

z2(x) = Z e [1 — exp (z’)\"";r:)] x exp (i) . (7)
k=0

where A > 1, 0 < H < 1 and the phases ay, are arbitrary (g may be chosen by a special
rule or may be considered as independent random variables uniformly distributed between
0 and 27). The graphs Re z(z) and Im z(z) possess self-affine scaling (2). This implies
that the whole function z(x) can be reconstructed from its values in the range r, < = <
A x,; for example, z(z) in the ranges Az, <z < Az, and A" 'z, < z < z, are magnified
and diminished versions, respectively, of z(z) in the range z, < x < Ax,. Notice that
the graph of (7) is statistically equivalent (see Ref. 57) to the profile constructed by
considered above algorithm when the corresponding Hurst exponents are equal.
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The non-differentiability property of the fractal function (7) can be formally expressed
in terms of the Holder inequality

lim [z(z + Az) — z(z)] < C (Az)?, (8)
Az—0
where C' is a constant and 0 < H < 1.
The univariable function (7) can be easily generalized to two variables to model self-
affine surfaces. Specifically, an isotropic in a mean plane self-affine fracture surface may
be usefully represented by the function

(8.0}

gfp) = Z S i [1 — exp (z’)\ﬂr|)] x exp (1ay) , (9)

k=—o00

where |r| = [\/z? + y?|, A > 1 and 0 < H < 1. Notice that the vertical cuts of the graphs
of Rez(r) and Im z(r) are statistically self-affine, with H defined by Eq. (3), whereas
the horizontal cuts of the same graphs are statistically self-similar fractals for which the
Hurst exponent defined by Eq. (3) equals one. Hence the Hurst exponent is useless when
discussing both self-affine and self-similar fractals in the same context!

An anisotropic fracture surface may be modeled by the following two-variable function
of the Mandelbrot-Weierstrass type:

Z(E) = i (ae)\k)_H {1 — exp [tzeA" (az + by)]} x exp (ikay)
k=—00
= i (ae)\k)_H {1 — exp [iaa)\”(a2 + b%)r cos(8 — ’y)]} x exp (teay) , (10)
k=—00

where 3 = arctan (y/z), v = arctan (b/a) and @ is a constant.
All these functions possess the following statistical properties

(Z(r) = Z(r + Ar)) =0,  (|Z(r) - Z(r + Ar)P’) ~ (Ar)*",

(Z(r)Z(r + Ar)) ~ (Ar)*7 | (11)

where Z(r) = Re z(r), and they are characterized by a spatial spectrum W (q) of a power
law type

W(q) = C|q|~"+2), (12)
which has been observed in experiments on X-ray scattering from the fracture surfaces

in solids [58] and in experiments on light scattering from the surface of the moon [59].
Now, if we define the correlation function as [58]

(13)
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then using Eqgs. (7) and (9)(11) it is easy to show that C(r) does not depend on r (see
also Refs. 56, 58) and it is equal to

Clr) =2 (2”‘”1 — 1) =", (14)

The sign of C* determines the type of correlations of the functions (7), (9), and (10),
which is determined by the value of H. Namely, if H > % then C* > 0 and the functions
(7), (9), and (10) display persistence, i.e., a trend (for example, a high or low value) at
r is likely to be followed by a similar trend at r + Ar, whereas if H < % then C* < 0
and functions generates antipersistence, i.e., a trend at r is not likely to be followed by
a similar trend at r+ Ar. For H = % the graphs of functions (7), (9), and (10) represent
the trajectories of a random walk for which C* = 0 [58].

In Refs. 10, 12 and 42 have been suggested that the ductile cracks are characterized
by antipersistence behavior whereas the brittle cracks possesses persistence behavior.
This leads to difference in statistical properties of brittle and ductile fracture surfaces
the images of which are shown in Figs. 7a and 7b.

Notice that a self-similar function cannot display antipersistence, since for any D the
correlation integral (13) is equal to

C(.T) _ C* — 22(d‘~l)/f)——1 —1 2 0:

i.e., only brittle fracture surfaces can be modeled by homeomorphic self-similar frac-
tals, whereas ductile fracture patterns should be always treated as statistically self-affine
fractals.

In Refs. 10 and 12 was shown that the stress behavior in the vicinity of crack tip is
governed by the roughness exponent H and does not depend on the actual geometry of
crack faces. Therefore, in the problem with self-affine crack, a complex geometry of real
crack face can be modeled by homeomorphic deterministic pattern which is statistically
equivalent to the actual crack pattern. This representation is very useful for theoretical
analysis to the problem.

2.2. FRACTAL CHARACTERIZATION OF SELF-AFFINE FRACTURE SURFACES

The constructions and procedures that fractal geometry has borrowed from mathematics
all involved infinite interpolation. In Nature, on the other hand, interpolations can-
not proceed without end, and constructions tend to proceed by extrapolation. In the
self-similar case the infinitesimal techniques extend via power law relationships valid
uniformly at all scales, whereas in the self-affine case, the two basic procedures involve
different tools.

One of the most often used methods to characterize the fractal properties of an
object is to estimate its fractal dimension. Although it seems natural to associate the
fractal dimension with a pattern that fulfills some kind of scale invariance, it has been
recognized for a long time that the very concept of fractal dimension is not well defined
as soon as the symmetry obeyed by the pattern is not a pure self-similarity. The reason
for such a statement is that the fractal dimension gives the scaling of a measure within
a length scale. For a self-affine object, the scaling with the distance along one axis
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TaBLE V. Relationships between roughness (Hurst) exponent and various fractal dimensions
for self-similar and self-affine fractals with topological dimension equal to d — 1 embedded in
d-dimensional Euclidean space.

- ) Self-affine fractals Self-similar
pmension Local limit Global limit |  fractals
Similarity, Dg — — (d-1)/H
Hausdorff- d—H d—1 (d-—1)/H
Besicovitch, Dy
Box-counting, Dg d—H d—1 (d—1)/H
Divider, Dp Latent fractal dimension:
(compass, rule) .
p, — J@d=1/H, ifH>(d-1)/d; d—1 (d—1)/H
‘74, it H < (d—1)/d.
Contou.r (d = 2], 2/(1+ H)*
D.. (single coast- | 1/H
line) 1+(1-H)/v+1)
lg N
Gap,' Dg Ig bt o (d-1)/H
. AN.'bH Nbf
Mass,® Dy log,, (T) log, (W) (d-1)/H

Mean field approximation.
1 is the correlation length exponent from percolation theory.

N is the number of similar parts, b™ = (rir2...74)"/? is the effective base, r; is the concern length
of each part in i-direction (for self-similar fractal all r; equals to r).

" 1 = maxr; and " = min7; are the largest and smallest base of self-affine transformation (for
self-similar transformation b’ = b").

may differ depending on the orientation of the axis. Because of this, the roughness
exponent H is the more adequate characteristics for self-affine scaling. However, in actual
practice of fractographic investigations the fractal dimension of the vertical or horizontal
cuts of the fracture surface is more commonly measured [1-3]. The vague definition of
fractal dimension for a self-affine object has, in the past, resulted in some misuse of the
fractal dimension in this framework, as well as some confusions in the measure of this
property. Specifically, these confusions lead to aforementioned contradictions between
results obtained by different experimental techniques (see, for example, discussion in
Refs. 33, 34, 50, 51, 60-63 and references therein).

Actually, in the contrast to self-similar fractals the fractal dimension of an anisotropic
self-affine pattern is not uniquely defined. First of all we must distinguish between the
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TABLE VI. Some definition of box-counting (or box) dimensions.

Dimension Definition Comments
Lower F'is non-empty subset of R". Ns(F)
box-counting dimz F = limy {M} is any of the following:
(or lower-box) logd A. The smallest number of
- 1) closed balls of radius é
pper 2) cubes of side §
: e — log Ns(F
box-counting dimpF = lims_,o { _og_M} 3) sets of diameter at most §, that
(or upper-box) logd cover F
B. The largest number of disjoint
Box-counting " e log Ns(F) balls of radius & with center in F
imp F' = lim C. The number of §-mesh cubes that
(or box) 60 logd
interset of F.
= [y is the §-parallel body to F':
. . M . log vol™(Fy) )
Minkowski dimp (F)xn—}gr(l) " logd Fs={ze®R":|x—-y| <4,
for some y € F'}
where n is the topological dimension.
di P If F' can be decomposed into a
T Ayt = countable number of pieces F; in
- G AT it supdim, & : e U I such a way Fhat t.he largest piece has
g = ; a small a dimension as possible.
=
dimypF =
Upper modified .
box-counting inf{su_p dimgF; : F C U FI}
4 i=1
dimy F < dimpF < dimgF
0 < dimy F < dimy, g < dimpypF = dimp F < dimgF < n

local (AL < &¢) and global (AL > £¢) fractal dimensions [38,44], where AL is the char-
acteristic scale of measurements and & is the self-affine correlation length.® The global
fractal dimension always equals the topological dimension of self-affine pattern, while
in the local limit different definitions for fractal dimension lead to different dimension
numbers which are associated with different scaling properties of a self-affine fractal [4].
The relationships between the Hurst and some different fractal dimensions are given in
Table V. Notice that different fractal dimensions associate with different experimental
techniques (see Tables I, and VI, VII).

*The existence of a well defined correlation length (o [68] is the distinctive feature of a seclf-affine
fractal, which distinguishes them from (statistically) self-similar patterns, the fractal properties of which
are limited only by physical factors [3, 64].



TaBLE VII. Definitions of some other fractional dimensions

Dimension Definition Comments
Capacity dimension Capacity is
0, if Ox(F) =0, Va >0
dimc F={dc>0, if Co(F)=0, Va>dc; c. ={[WQ(F)]”°, if W(E) < oo;
and €z >0, YV0<€a<ds. 0, otherwise;

where
Wa(F) = inf{Iom(F)},
=[] iz = ylI*=" dm(z) dm(y).

for each 0 < @ < n, where n is a topological dimen-
sion F and ||...|| is the euclidean norm.

One-sided  dimension
(of boundary F of set
A in ™)

dimos F=n—-—lim
60

log vol™ (F N A)
log 6

I is the boundary of a set A; F; is the §-parallel
body of F":
Fs={zeR":|z—y| <4, forsomeyeF},

where n is a topological dimension.

Fourier dimension

dimp = max {¢ : (V)] < BJU| "2},

for some constant B, where the mass distribution
2(U) on R™ is

aU) = ] expliz - U) dp,

where U € R" and z - U represents usual scalar
product.

<

If |4(U)| < B|U|~*/? for some constant B, ji(U)
(R™) for all U, we have

1w = (20"C [ W= a@)P v
<a [ wkraw
<1
+ 02 / |U!k—n IUI—l dU
U1

which converges if k& < ¢.
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TaBLE VII. (Continued).

Dimension

Definition

Comments

Menger-Urysohn

The dimps ¢y £ is defined inductively as fol-
lows:
1) The empty set I has

dim(M_U)F = —1,
2) A topological space F has
diIl](M__U) = n,

if n is the largest natural number such that
each point of F has arbitrarily small neighbor-
hoods with frontiers of dimension less than n.

A. If every point p of space F' has arbitrarily small neighbor-
hoods with empty frontier (i.e., for every neighborhood U of
p there exist a neighborhood V of p that V C U, fr (V) = 1)
then dimr_¢y F' = 0.

B. The set of irrational numbers, the Cantor set and any
countable space are of dimension 0 is itself zero dimensional.

C. If X is a separable metric space, then
dim(p_gy X = inf {dimpy X'},

where the minimum is taken over the set of spaces X'
homotropic to X.

D. If dim(p_ ¢y X — dimp—gy Y = K > 0, then there exist
point of ¥ whose inverse image under F' has dimy_¢) > K.

Dimension print

PrintF of subset F is defined to be the set of
non-negative pairs (k, p) for which

H*?(F) > 0.

U is a rectangle (the sides need not be parallel to the coordi-
nate axes). Let a(U) > b(7) is the length of sides of U; k and
p are non-negative numbers. For F a subset of R?,

Hk,p= : k,p F
Jim HJ7(F),

HY?(F) = inf{ > a(U)* b(Us)?

:{U;} is a d-cover of F' by rectangles}‘

Here, H*° is just the k-dimensional Hausdorff measure.
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Furthermore, for a real fracture surface self-affine scaling regime is bounded by up-
per and lower correlation lengths ¢ and #; in both the horizontal (r) and vertical (z)
directions, i.e., self-affine scaling is found over the range

b < Ar < &, b <L AE 8y (15)

and these correlation lengths are related by

So that a real fracture surface obeys scaling properties (2), (11), (12), and (14) only
within the length scale interval

£0<L$<£C= V&g, (17)

where L, is the length of crack projection on the direction of crack propagation, and ¢ is
the microscopic cutoff determined by the actual failure processes in nanoscale [6,7]. The
experimental data indicate that for brittle fracture surfaces £y is of the order of 10~ 8 =106
m and ¢ ~ 1072 1072 m [3]. Furthermore, the fracture surface roughness exponent H
in the case of brittle fracture is more than a certain critical value H,, whereas a ductile
fracture surface is characterized by H < H, [12,42]. Hence an accurate estimation of
the self-affine exponent may have deep physical implications and is of crucial importance
for the identification the nature and mechanisms of fracture. The critical values of H
and related critical values of different fractal dimensions are given in Table VII for two
classical problems in fracture mechanics.

‘According to Eqgs. (11), in the limit Ar — oo we have (1Z(r) — Z(r + Ar)|?) — oo,
while

(12(r) — Z(r + Ar)]?)
|Ar[?

<0, (18)

i.e., the model surfaces (9) and (10) are asymptotically flat and so, it is characterized
by the integer global fractal dimension. Asymptotically flat surface is a rather ideal case
since on real fracture surfaces (|Z(r) — Z(r 4+ Ar)|?) at large length scales may saturate
to the value 202, where the parameter o = ,/ (]2(0)[%) is the RMs-saturated surface
roughness [58]:

(I1Z(r) — Z(r + Ar)|?) = 202 (19)

for |Ar| > &c.

Based on their data, authors [34] conjectured that the crack faces roughness expo-
nent A has the universal value close to 0.7. Authors [65] conjectured another universal
value H = 0.8, the same for brittle and ductile fracture surface. More recently, the
authors [46]. conjectured the existence of two universal roughness exponents, namely
Hy ~ 0.84 and Hy ~ 0.45. However, a certain number of experimental data does not
agree with the conjecture of universality for the fracture surface scaling exponent (see, for
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example [3,33,63] and references therein). Furthermore, various theoretical models and
computer simulations also lead to the nonuniversal fractal dimension of crack faces, which
usually depends from the variable parameters of the model being used [67,68]. Finally,
there are strong indications that H depends on material properties and mechanisms of
fracture when experimental data obtained by the same technique (see, for review, Ref. 3).
These observations casts doubt on the hypothesis of universality for fracture roughness
exponent.

2.3. MULTIAFFINITY OF REAL FRACTURE SURFACES

Looking at the crack morphology formation problem, one realized that the self-affine ge-
ometry of crack faces results from the stochastic nature of crack growth. This issue can
be illustrated by cracks advancement, consisting of a sequence of local failures in front of
the crack tip, which are random events, caused or by the material local strength fluctu-
ations (in inhomogeneous materials [69, 70]), or by existence of two or more alternating
slip planes in crystal lattice; so that the crack trajectories behave randomly.

It is evident that in general case, the two-point correlation function (11) is insufficient
to completely characterize the crack face morphology. More detailed description of crack
faces morphology requires one to use the concept of multiaffinity that allows a mach more
complete representation of real crack patterns by using an infinite hierarchy of scaling
exponents. It has been shown that any random system F' can be usefully characterized
by an infinity spectrum of generalized dimensions D,, where —oo < g < oo, also called
the Rényi dimensions [58],

N(r)

— {3 P} (20
=1

g—1

Dy = lim {2 = -

r=0 U Inr

where P;(r) is the probability that a point of set under consideration lies in box (cell)
number ¢ such that

N(r)

Z Pi(r) =1. (21)

The set o = P, is called multifractal probability measure or mass density, of the subset
Fi(r) C F contained inside the i-th covering box with the edge r; I, is the generalized
entropy of order gq.

One can readily see that in the general case, Dy is equal to the metric dimension
evaluated by means of box-counting algorithm (see Table V), i.e., Dy = Dp = Dyy; the
generalized dimension of order ¢ =1 is equal to the information dimension D, = Dy,
which is associated with Shannon information entropy, that for a multifractal object
scales as [9, 71, 72]

I(r)=- Z Py(r)In Py(r) o rP1; (22)
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and dimension Ds is equal to the correlation integral exponent D¢, also called correlation
dimension, which was introduced by Grassberg and Procaccia [73] as the exponent of a
power-law correlation integral

N(r)

1 i TDC" .
Clr) = A}_'OON(N Hzle(r xz; —z; |) o rPe, (23)

where ©(---) is the Heaviside function. C'(r) counts the number of pairs of points such
that r < |z; — zj|.
Note that for generalized Rényi dimension the following general relation [58] is valid:

Dy < D, forq > g (24)

the equality being obtained in the case of uniform sets, i.e., such that the probability
measure is constant, P = 1/N(r), and the generalized dimension D, equals the metric
dimension Dy = Dy for all g; specifically, for homogeneous object all dimensions D, are
equal to the topological dimension, i.e., Dy = Dy = dp; and for self-similar fractals the
definition in Eq. (20) gives dr < D, = Dy = Dpg < d for all values of q.

In some works (see, for example Refs. 74 and 75) have been assumed that for a
uniform self-affine fractal D, = d — H for all q. Actually, however, the last equality
is valid only in the case of monofractal structure for which the probability measure is
constant P; = 1/N(r). In the case of a self-affine fractal P;(r) will be the same for each
box if we will use the covering network with affine rectangle (or elliptic) boxes which is
associated with the elliptical dimension [64]; whereas when a network with the square or
circular boxes is used P;(r) will be different for different boxes. Therefore for a self-affine
fractal B_so— Bse. 20,

To evaluate the generalized dimension spectrum of a self-affine fractal let us consider
a self-affine fractal F' in d-dimensional Euclidean space (for example a profile in plane
such as shown in Figs. 7a or 7b). If Fy € F is a set of N points belonging to F
and distributed over it in correspondence with an invariant measure, we can define the
distance 0(/N) between a reference point A and its nearest neighbor B among the (N —1)
other points. Evidently, 4(/N) is a non-increasing function of N and, in general, some
average over all points A will behave as (§(N)) = N~Y/P_ Badii and Politi [76] have
introduced the probability distribution P(4, N) of N distances among N points. The
moments of P(d,n) may be represented in the follows form

ML(N) = (W) = [ P(6.N)d8 = Ky, )N 7/P0), (25)

where D(v) is a 7y-dependent definition of dimension, which called dimension func-
tion [76]. It was shown [77] that, whenever v = D(y), i.e., a fixed-point relation is
satisfied, this value of the dimension function coincides with the generalized dimension,
and

Dy=(1- Q)Dq} = Dy, (26)

where D, indicates the order-¢ Rényi dimension.
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Equation (26) is valid for the some classes of systems obeying scaling behavior of the
generalized entropy I, oc r7(@) within the interval of  bounded by the same value of the
correlation length &~ for all ¢ [4]. It is easy to understand that this condition is valid
at least for the class of uniform self-affine fractals scaling properties of which within the
interval ¢y < r < &¢ may be characterized by unique Hurst exponent H. Therefore,
the evaluation of moments Eq. (25) allows the determination of any D, by means of a
recursive method: an initial value of v is chosen to obtain a first estimate of the desired
dimension which, in turn, is used as a new input until a satisfactory accuracy is reached.

Now, let us introduce the probability distribution function for the distances between
these points

U(R)=P{ti; <R}, i,j = 1,2,... N, (27)

where P{---} is the probability that the distances ¢;; between any two points 7 and j
of the N points is less than R. According to definition of the correlation integral C'(R)
function ¥(R) is proportional to the correlation integral (23), namely
2N
U(R) = ﬁC(R) x RPe, R < &c. (28)
Let us determine the relation between probability function ¥(R) and dimension func-
tion D(v). By definition, Eq. (25), we have

s N 1/
_ d[lnA(I")N] . I 2
R NY=[=3 AY ; 29
Here A; is the distances from the point with index ¢ (2 = 1,2,... , N} to its nearest

neighbor point, and v is the averaging exponent. The value of metric dimension Dy is
defined by the Eq. (26) in the form D(y = Dy) = Dy.

To calculate the mean distance to the nearest neighbor A(y, N), let us find the prob-
ability distribution function for A(y, N). The probability Pa that the nearest neighbor
of a point A randomly chosen from the N points is located a distance R (R € [R, R+dR])
away from it, and the remaining N — 2 points are located outside a sphere of radius R
centered at point A, is given by the equation

Pa = (N - 1)¥(R)[1 - ¥(R)]"?, (30)

where Pa is the desired differential probability distribution function. As a result for the
mean value A(y, N) we have the expression:

- e A [ 3o, Noi i Ly
Aly,N) = |:f0 PARY dR] = {'y/ﬂ 1—¥(R)] R dl?} . (31)

Using Eqgs. (29) and (31), we obtain the expression

4 TP () v "
Der(N+4)|

; 1
A(y,N) = %
“/Tc
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where I'(- - - ) is gamma function, and L¢ ~ {gc is a normalization coefficient. If v = D¢
the equality (26) with terms given by Egs. (29) and (32) is satisfied and thus we obtain
the equality Dg = Dy ~ v = D¢ = Ds. From this equality and general inequality (24)
it follows that information dimension also equals the metric dimension Dy;. The latter,
as it has been shown in Refs. 64 and 78, related to the Hurst exponent as Dy; =d — H
(see Table V). Thus we have shown that for self-affine fractals

Dg=D;=Dy=d-H, (33)

while Doo < .D]\f S D—oo-

Notice, that Eq. (31) may be used for the estimation of fractal dimension of a self-
affine structure from data of experimental observations. In order to validate the Eq. (31) a
line segment and two graphs of the Mandelbrot-Weierstrass function of known dimension
were analyzed. To generate and evaluate the graphs of Mandelbrot- Weierstrass function
the program [79] was used. It was found that the difference between theoretical values
of fractal dimension and those calculated by using Eq. (31) is less than 0.5% for line
segment and less than 3% for graphs of the fractal dimension D = 1.4 and D = 1.8.

It should be emphasized that equality (33) is valid for self-affine patterns obeying
property (6) and power law behavior (22) and (23) within the same interval of length
scales (17). For more complex patterns the interval of scaling behavior of the generalized
entropy (20) is dependent on g. To characterize such a pattern we need to consider the
qth order height-height correlation function [74, 75], defined as

N
Gelz)= -;—Z |2(z;) — 2(z; + 7)|9, (34)

=l

where N > 1 is the number of points over which the average is taken (only non zero
terms are considered).
For real multiaffine crack faces G, (x) exhibits a nontrivial multiscaling behavior

Gq(z) o 290, (35)

with H; changing continuously with ¢ at least for some region of the ¢ values [74]. Tt can
be shown that a continuous spectrum of
1. oG, [z
H;, = —lim InGy(2) (36)
gr—0 Inzx
values is not consistent with the equality (14) which is valid only for uniform self-affine
patterns with single exponent H; whereas for multiaffine patterns

C(x) x C*g~(H2—Ho) (37)

so that correlations between increments always vanish at large distances . Therefore,
experimental measurements of H in the scale of the order of & will always give the
values which are closed to H.. It scems to be the reason for results which lead to
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TABLE VIII. The critical values of roughness (Hurst) exponent and various local fractal dimen-
sions of crack face for d-dimensional problems of crack growth in the plane normal to applied
tensile stress and in the direction of uniaxial compression.

Crack growth in the plane normal | Crack growth in the direction of

Exponent to applied tensile stress!) uniaxial compression?)
di= 2 di=5 d =2 d=3
H, 0.5 2 L(v5-1) = %" ~ 0618
Dg 2 3 1+ &* ~1.618 3
= Be 1.5 2.333 1.382 2.382
D2= 2/(1+ Hy) 1.333 = 1.236 c—
D¢ = 1(10-7H,) 2 — 1.891 —

Y Critical values of exponents are corresponded to the brittle-ductile transition.
2} Crack growth is possible if the corresponding exponent less than its critical value.
) &" is the golden mean.

atorementioned conjecture about the universal roughness exponent.* The different values
of H for different scales of the same crack face were observed in experiments [67, 80].

2.4. QUANTITATIVE CHARACTERIZATION OF MULTIAFFINITY

The absolute disorder of a large system is in principle impossible by virtue of the theorem
of Ramsey, rigorously proved in number theory [81], according to which any sufficiently
large quantity N > R(N,n) of points (numbers, or objects) must contain a highly ordered
subsystem of N, < R(N,n) elements [R(N,n) are the Ramsey numbers|. Moreover, it
has been shown that any random structure (or point set) consisting of a sufficiently large
number of elements N > B(N,n), where B(N,n) is a certain set of numbers, can always
be represented as a multifractal, consisting of a finite number n of the pre-fractals of
i-generation (i > n) [3].

In this way, the concept of multifractals is related to the distribution of mass associ-
ated with a measure defined on the object which can be regarded in this way as a family
of different homogeneous fractal sets on which the measure has a given singularity. To
analyze the multifractality of a given object, the support of the measure is covered with
boxes of size 7¢ and probability P;(r), which is the integrated measure, is computed in

4Notice that for three dimensional problems the critical value H, = 2/3 (see Table VIII) coincides
with the universal Hurst exponent, first suggested for the directed polymer problem, and then used as
universal exponent for brittle fracture surfaces [79].
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each box. The generalized dimension spectrum defined by Eq. (20) characterizes the
non-uniformity of the measure.

In practice, sometimes it is more convenient to characterize multifractals not by
dimensionality, but rather by spectral properties. The spectral function f(«) is defined
by the number of hypercubes required to cover the subset S(a) with the same probability
behavior P;(r) ~ r*(r — 0):

dN,(r) = dp(a) r ~f(@), (38)

where « is the Lipschitz-Holder exponent which characterized the singularities of the
multifractal measure [58]. The relation between generalized dimensions D, and spec-
tral function f(«) is given by a Legendre transform: the pair {«, f(«)} is the Legendre
transform of pair {q,(q — 1)D,}. The obvious relation

ipiq - /dp(a)r ag—f(a), (39)
leads, by the steepest descent method., to
Dy = — min{ag, f(a)} = Lo - 7(@) (40)
with a defined by
3—£ =q(@) as long as jzj; - =0,
@ &

The spectral function f(«) is widely used in the analysis of multifractals. Let us note
one of its fundamental properties: if the spectral function is linear over some interval,
this could indicate a phase transition that is difficult to detect by other means [58]. There
exist a well-developed thermodynamic formalism for multifractals that emphasizes their
close analogy to spin systems [4, 58].

Grassberg [73] has introduced a variant on Eq. (39) in which the measure is covered
by a set of cubes of variable sizes, and has established a relation between the Rényi
dimension D, and the slope parameter 7(q) also called mass exponent which is defined
by relation

N
B(g,r) = 3 PA(r) ocr 7@, (41)

The sequence of mass exponents 7(q) is related to the f(«a) curve in a general way that
is useful in applications. If we know the mass exponents 7(q), we can determine f(a)
curve as

falq)) = 7(q) + qalq), (42)
where &(q) is the solution of equation
d B .
e {qor — f(n}}”:d(q) = {, (43)
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TABLE IX. Special values of the Rényi dimension, I),, and corresponding values of 7(q), o, and
f(a) for a multifractal measure M = {F;}, supported by a set with fractal dimension Dp =
dimy M, where dimy M is the Hausdorff-Besicovitch (metric) dimension.

q Dimension D, T(q) a = —dr/dq fla)=g-a+71(q)
0 Fractal dimension dimg M g fmax = dimpg M
DB = DU = dlmH M
1 | Information dimension 0 a; =—I(r)/Inr f=m=1Y
Dy =D,
2 Correlation dimension —D¢ —De — (dD,/dg) =2 200 — D
D¢ = D,
+oo | Upper limit, Dy, ~ =@ Qmin | = Omin = —InPy/Inr? f =0
—o0 | Lower limit, D_ ~ —Q Qmax | = Omax = —InP_/In r2) f—=0
U The measure M has entropy I = —lim I(7)/limr = f;, which is the fractal dimension of the set of
concentration for the measure M. (Here I(r) is the entropy of partition of measure M over boxes
of size r).

2) Here P, and P_ are the largest and the smallest probabilities in boxes of size 7.

Therefore for the Lipschitz-Holder exponent we have

. d "
alq) = *d—q“r(q)- (44)

These equations give a parametric representation of the f(a) curve, i.e., the fractal
dimension, f(a), of the support of singularities in the measure with exponent a. The

f(a) curve characterized the measure and is equivalent to the sequence of mass exponents
7(q), which are related to D, through

rgi L =)Ly, (45)

Some useful relationships between special values of Dy, 7(g), a, and f(a) are given in
Table IX.

The next step in the standard strategy of multifractal analysis consists in resolving
the exponent 7, into a density of singularities f(c) with singularity strength a(q) [58].
In doing so, we obtain

a(q) = lim

r—0 Inr

[zﬁ. P (r) mn-tv-)] | (46)

21\:1 Pzw}('f') In pl(fl)(r):|

Inr

fla) =qalq) — 1y = lil](l) [
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where the probability measure pu, = {PT-(Q)(T)} is defined by the transformation T'(yu,q)
of the p-measure included into the one parameter set {7}

T(u={P(r)},q) ={PP(r)}, —o0<q< oo, (48)

where the normalized measures Pz-(Q)(r) are defined as

N
PO = Sh B = SR (19)
It is easy to see that Pi(l)(r) = P;(r) and
T{P™},02) = T(T({P}, 1), ) = P, (50)
so that we can define the identity T} and inverse T /q transformations, because
TH{P™Y, ) =B, if ¢2= ql—l (51)

Hence, the transformation defined by Eqs. (48) and (49) associates with the one-parameter
group operating in the space of normalized measures, and the appropriate degree of -
difference between the p and T'(u,q) measures may be characterized by the Kulback
information [81]

Al Py(r)
Kyfr) =3 Pn [a@)ml | (52
The Legendre transformation [82] of the function
rla) =l 520 2
yields

a(o) = T = a(g) - Dy, 54)

f(a) = qa(q) — 7(g) = f(a) - D, (55)

7(q) = 7(¢) = (¢ = 1)Dr = (¢ — 1)(Dg — D), (56)

where a(q), f(a), and 7(q) are defined by Eqs. (41)-(45), and D; = D;.
It immediately follows from Egs. (33) and (24) that for a self-affine pattern

) =F[l)=%2) = 1 (57)
whereas for a multiaffine pattern
7(0) = Df — D < 0, and F(2) = Dg— Dy <0, (58)

while, obviously, 7(1) = 0.
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In this way, the characterization of the non-uniformity of a multiaffine structure can
be deduced by considering some degree of the order K. In fact, K,;(r) may be referred
to as a measure of nonuniformity of the multifractal structure. Its zero value corresponds
to a uniform (statistically self-similar or statistically self-affine) pattern for which the
transformation (48), (49) does not change the distribution measure, i.e. T(u,q) = p.
A nonuniformity of multifractal and multiaffine patterns leads to non-zero values of the
Kulback information K (7).

Actually, the variation problem of finding the measure which corresponds to the
entropy extremum [82]

N N N
—Zpilnfji+)\zpi+z,8jz&fji=IIla.X (59)

i=1 i=1 7 i=1

can be expressed in terms of the Kulback information as
N
P

—ZPE- In = max. (60)

=1 exp (/\ + 5 ﬁ_jf_ji)

The last relation implies the minimization of the difference between distribution {P;(r)}
and that meeting a certain set of constraints caused by two terms in Eq. (59). In our
case from the comparison of Egs. (60) and (52) follows that the corresponding variation
problem can be formulated as follows:

N N
P.
K,=- Z Pln (PT:')) = max, where P,;(Q) = exp (/\ +8Y fji)- (61)
=1 i J

This provides an opportunity to use the function 7(¢) and, specifically, the parameters
7(0) and 7(2) as quantitative measures of the nonuniformity of multifractal and multi-
affine structures, specifically, fracture surfaces.

From the analysis the experimental data reported [3] follows that in the case of brittle
fracture

|7(0)| < Hp, and |7(2)| < Ho, (62)

so we can put
Hy~H, (63)

whereas for a ductile fracture surface
[ T(0)| ~ [7(2)] ~ H, (64)

so that the ductile fracture surface can not be characterized by the unique Hurst exponent.

Hence, in the case of brittle fracture we can use the self-affine representation for real
(brittle) crack faces, while in the case of ductile fracture we have to use the concept of
multiaffinity in the account to an adequate modeling of the real morphology of ductile
fracture surfaces.
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It would appear reasonable that in the case of intergranular cleavage the fractal
dimension of crack faces is governed by the statistical topography of grain boundaries,
and thus coincides with the fractal dimension D, of grain boundaries. In the case of
transgranular cleavage it should be reasonable to expect that the fractal dimension of
crack faces Dp is less than Dy, so H > d — D,. Path integral representation for self-
affine patterns suggested in Ref. 12 to model a brittle crack paths was advanced in [63, 83].
Using this representation a detailed specification for the brittle crack morphology may
be made on the basis of the Rieman-Liouville and Wigner-Valle spectra analysis [84] of
the brittle crack profiles and surfaces.

It is important to note that the self-affine geometry of brittle crack faces leads to
the change in the stress fields distribution in the vicinity of the crack tip and within the
interval of self affinity (13) the value of stress singularity exponent is determined by the
crack roughness exponent H = d — Dp [10].

When the fracture is ductile, the crack morphology is governed by the kinetic of fail-
ure [5,6,14-18, 42] and possesses a multiaffine geometry which is characterized by a wide
spectrum of generalized dimensions D, for which the relations (64) are valid. In this case,
the knowledge of crack faces metric dimension Dp is not sufficient to model crack faces
morphology, which is quite different for different types (mechanisms) of ductile fracture,
whereas for any ductile crack face with Dg > D% the stresses near the crack tip are con-
stant within the interval (17) [12]. Hence, for the ductile fracture classification from the
fractal point of view we need in more detail analysis based on the Kulback information
concept. It would appear reasonable that the different types of ductile fractures may be
classified in terms of suggested above parameters 7(0) and 7(2). This topic will be the
subject of a forthcoming paper.

3. EXPERIMENTAL METHODS OF FRACTAL ANALYSIS OF FRACTURE SURFACES

The quantitative description of rough surfaces and interfaces has been an important
challenge for many years. In the progress of science the ability to describe phenomena in
precise quantitative terms frequently leads to important advances in understanding. This
certainly seems to be true in the case of fracture surface formation. In the review [85]
Nowicki has described 32 parameters and functions that have been used to characterize
rough surfaces. It is important to classify phenomena so that the task of describing and
understanding them can be reduced to a reasonable magnitude. In recent years it has
been realized that fractal geometry and scaling concepts can considerably simplify this
task for a quite wide range of systems including fracture surfaces. In this way, the main
purpose of fractographic investigations is to determine the fractal dimension of fracture
surface and the limits within which the surface exhibits fractal properties. Of course,
for a dimension to have any significance, repeating an experiment must lead to the same
value!

In general, fractal analysis provides a description of how space is occupied by par-
ticular curve or shape. The fractal dimension measures the relative amounts of detail
or “roughness” occurring over a range of measurement intervals. The more tortuous,
convoluted and richer in detail the curve, the higher fractal dimension. However, rough-
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ness and fractal dimension are not synonymous. Roughness is generally measured as the
average variation about the mean value, and is not related to the scale or changes in
scale of measurement. Fractal dimension is used to quantify the variation of the length
or area with changes in the scale of measurement interval. Hence the fractal dimension
is an intensive property (see Tables I-V), while roughness is not.

In order to investigate the fractal properties of a rough fracture surface, it is necessary
to determine its area as a function of measurement length. Several techniques have
been developed for these measurements [3, 58]. In principle, stereophotogrametry should
more or less provide an adequate topographic description of rough surfaces. Provided
the computer used has enough memory, this very rich information can be analyzed to
measure the fractal dimension of the surface. A technique which provides a similar
information, although in a very different length scale domain is the scanning tunneling
electron microscopy. In practice, however, more commonly the one or bi-dimensional
cuts of fracture surface are studied by using the fractographic methods [3].

Fractographic methods used to obtain fractal information from rough fracture sur-
faces, involve either obtaining surface profiles from metallographic sections cut perpendic-
ular to the surface plane (vertical section method), or from sequentially prepared sections
parallel to the surface plane (slit island method), or from spectral analysis of roughness
of surface (spectral methods) [3]. Usually, an additional hypotheses is needed in order to
achieve relation between fractal properties of surface and its cuts.

One of the most critical problems of fractal measurement and applications is the
ability to recognize and correctly measure the fractal dimension of self-affine fracture
surfaces. The horizontal contours of a fracture surface may be statistically self-similar,
but the vertical profiles are commonly self-affine [3]. Hence, the horizontal and vertical
cuts of a fracture surface have quite different scaling properties which must be estimated
by means of different measurements.

For statistically self-similar horizontal contours any reasonable procedure of fractal
measurement should lead to the same value of fractal dimension. The question is how this
fractal dimension relates to the fractal properties of self-affine (or, generally, multiaffine)
fracture surface?

For self-affine vertical profiles, there are many different fractal dimensions, some local
and global. The later always equals the topological dimension of profile, while the local
dimensions may be expressed as functions of the roughness exponent H (see Table V).

Methods for measuring self-affine roughness exponent can be schematically cast into
two groups. One find the classical methods, developing for analyzing self-similar fractals:
box-counting, divider, perimeter-area relation, power spectrum scaling, which provide the
different fractal dimensions for a self-affine surface. Several other methods sometimes
used in practice of fractal measurements. That are chord-length measurements [88],
variogram method (89], and correlation function measurement [90]. On the other hand,
several methods have been designed to specifically determine the self-affine exponents: a
variable bandwidth method [29] and return probability method (86, 87].

Various experimental techniques are used for fractal analysis of fracture surfaces.
Among them, the scattering techniques (small-angle neutron scattering [3, 58], optical
diffraction experiments [3], and secondary-electron emission measurement [58]), fracto-
eraphic studies [3, 78], adsorption-desorption studies (adsorption probes method [58], and
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thermodynamic method [91]), deposition experiments [92], electro- and heat-chemical
methods [93], nuclear magnetic resonance pore-size distribution measurement [88], and
some indirect methods, such as skin effect measurement and charge relaxation measure-
ment [3], ete.

Below, some of the most important fractographic techniques and methods of fractal
measurement are discussed in more detail.

3.1. SLIT-ISLAND TECHNIQUE

The slit-island technique was first introduced by Mandelbrot et al. [8] who applied it to
the fractal analysis of steel fracture. The filled steel fracture surfaces with nickel (by
electrolytic deposition), then polished the fracture surfaces parallel to the mean fracture
plane, so that approximately equal amounts of nickel and steel were evident on the
polished fracture faces. This created a pattern of islands of nickel in a sea of steel, which
was called “slit-islands.” Instead of nickel, a plastic material may be also used [3, 58]. The
fractal dimension measurement by means of slit-island technique is based on the analysis
of perimeter (I”)-area (S5) relations for the islands surrounded with coating material.

It is well known, that for circles, ellipses and regular polygons, the ratio of the perime-
ter to the square root of the surface area embraced by this perimeter is independent of
the figure size:

&= % = const. (65)

Thus, for circles, k = 2/7, for squares, k = 4; for equilateral triangles, k = 6/3; etc.

In the case of fractal profile of the island perimeter, its length P is dependent on
the type of standard 0 used in measuring P; in this case, at 4 — 0, the perimeter grows
infinitely:

P(0) 200 when 4§ — 0.

In contrast, the island area S(J), measured by its covering with squares with side &,
remains finite at & — 0. The typical In S-In P plot obtained in studies of fracture surfaces
by slit island method is shown in Fig. 8. The slope of the curve (plotted by applying
the least squares method) is determined by the fractal dimension Dy of the statistically
self-similar island contour
2
Qay = D_f (66)

So for islands with a fractal coastline, the ratio Eq. (65) should be replaced by the
following parameter

(67)

which is independent on the size of the island and 4.
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F1GURE 8. The fractal area-perimeter relation for slit islands on fracture surface of 30CrMnSiNi; A
steel fractured at —20°C (graph adopted from Ref. 39): [P] = pm, [S] = pm?.

The fractal dimension of statistically self-similar surface relates to the fractal dimen-
sion of the island’s perimeter by empirical relationship

By = 14 Dps i, (68)
Qay
known as one of Mandelbrot’s “rules of thumb” for fractal sets [58].

Actually, relation (68) is valid only for some specific cases of statistically self-similar
surfaces [58]. Generally, the fractal dimension of statistically self-similar surface Dp >
Dy + 1 [94], so Eq. (68) gives only the lower limit for the fractal dimension of the
self-similar surface. For example, in Fig. 1b-¢ we have show three different fractals of
different fractal (metric) dimension whereas for all these fractal the baseline cross-section
is homeomorphic to the Cantor set (Fig. la) with fractal dimension D = In2/In 3.

Furthermore, as it was noted in the previous section, real fracture surfaces are rather
statistically self-affine than self similar. Hence Eq. (68) can not be used. If a fracture
surface is isotropic in the mean plane, then the slit-island pattern will be statistically
self-similar, and so for a selected cutoff it may be characterized by the fractal dimension
Dy, while H = 1. Moreover, generally, Dy will depend on the cutoff choice.

On the other hand, to determine the perimeter-area relationship we can use different
cutoffs, but the same measurement length ;. In this case the slope of the In S-In P plot
determines the contour fractal dimension D, (see Table V). If surface is self-similar then
H =1 and D, = Dy, while for self-affine surface H < 1 and D¢, relates to the Hurst
(3) exponent as

2 2
ay 1+ H'
So, the metric dimension of statistically self-affine surface D)y is related to D., by the
equation

D¢, = (69)

2(2Dgyn — 1)
DCTL

which should be used instead of the commonly used incorrect Eq. (68). In Fig. 9 we show
the dependence of the surface metric dimension Dj; on the ay calculated by Egs. (68)

Dy =3-H= =4 — ay, (70)
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F1GUure 9. The relation between fractal dimension of self-affine surface and the slope of area-
perimeter plot in log-log coordinates (of the type shown in Fig. 5). Curve 1: calculation by
classical formula (68) and curve 2: calculations by Eq. (70).

and (70). As we can see, the values of Dy calculated by Eq. (68) will be always less than
those calculated by Eq. (70) when the same data for 1 < ay < 2 are used. Hence the
data reported in the literature, which were obtained by slit-island measurement, should
be corrected.

Notice, that Eqgs. (69) and (70) are valid only for self-affine fracture surfaces which
are isotropic in mean plane. It was shown [95] that the slit-island technique is insensitive
to anisotropy in the plane of fracture and so it is useless when the slit-island pattern is
also self-affine.

3.2. VERTICAL SECTION TECHNIQUE

A very useful experimental procedure for fractal measurement of anisotropic fracture sur-
faces is based on vertical section through the surface The sections generate profiles (see,
for example Figs. 7Ta and 7b) that sample continuously across the entire surface as op-
posed, for example, to the point-by-point registration obtained by stereophotogrametry
measurements. With the sample in a metallographic mount, the fracture path and under-
lying microstructure are revealed in relation to each other, and the standard equations of
stereology are applicable to both. Moreover, serial sectioning is readily performed merely
by grinding down the face of the sample parallel to the previous location. This proce-
dure yields a new profile each time and systematically samples through sample space.
Accordingly, equation

L = LoA'"P», (71)

where Lg is a constant and the value of the non-integer exponent D), which is indepen-
dent of the measuring step size A, is normalized by the projected length of the profile,
Lz,

P



578 ALEXANDER S. BALANKIN AND FRANCISCO J. SANDOVAL
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Fi1cure 10. Schematic illustration of divider measurement of the profile length with variable stick
(divider, ruler) length.

There are basically three methods for measuring fractal dimension of profiles:®> (1)
the divider (or yardstick, or ruler, or compass) method, (2) linearization of reversed
sigmoidal curves method, and (3) the box-counting method.

3.2.1. The divider method

It is the oldest method of determining the fractal dimension. Its use as a measure-
ment technique predates the invention of the word “fractal.” The basic method involves
measuring the length of a curve either at different resolutions, or with different sizes of
measuring stick (ruler, caliper). Another name for this method is the structured walk
technique. The essential characteristics of this method are illustrated in Fig. 10. First
walk the stick along the profile and record the length (which equals the number of stick
lengths times the size of the stick). Next, change the length of the stick and repeat the
measurement. Repeat this process several times, each time with a different stick length.
Then plot the log of the curve length versus the log of the stick length. If the data plot
along a straight line, this means that the profile has fractal geometry. This plot is some-
times called a “Richardson plot.” The results of grain boundary length measurements
by using divider method are shown in Fig. 5b.

5The fractal dimension of profile can be also estimated by using Eqgs. (30)-(32).
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Now, determine the slope ay of the line which best fits the data, and compute the
fractal dimension of the profile from this slope using relation

By =1 —@ip=1>Dp. (72)

For self-affine profile D, is related to H as D, = Dp = 1/H (see Table V) and the metric
dimension of surface relates to ap as
1 _ 2 —3ap

Dy=3-H=3—-—=

e 75
D, 1—ap (73)

In practice, however, there are several operational problems which are associated
with the choice of the length scale resolution. A self-affine profile scales differ in the
horizontal and vertical direction. If horizontal resolution is near the crossover length,
than the divider method may give invalid results. Hence, before performing the fractal
measurement by the divider method, it would be very useful to know whether or not the
surface is self-affine.

To do this, we need to calculate the standard derivation (4) for the X and Z coordi-
nates for many pair points in the profile. A fixed stick scale should be used to measure
the length between each pair of points. Then the coordinates of all of the measurement
points of the stick are used to calculate two standard derivations (4) in the two coordi-
nate directions. These standard derivations for all pair of points mast be plotted versus
length on log-log scale. The slopes of these two lines yields the self-affine exponents v,
and v, defined by Eq. (5). If v, = v, then the profile is statistically self-similar and
Dp = 1/v, = 1/v,, whereas for self-affine profile v, # v, and the Hurst exponent H is
defined by Eq. (3).

Another operational problem is the problem of remainder. For the divider method,
as one approaches the end of the profile, there will be some quantity which won’t fill the
last stick. This results in the error in the length estimation. Three ways are suggested for
handling the remainder [3].° One way is to use only those rules which give a remainder
less than a specified value of tolerance. A second way is to add the straight-line distance
between the stick and the end of the profile to the total length. A third way is to round
up the remainder. Choosing a method for handling the remainder may lead to different
estimates of fractal dimension D), and these differences should be treated as part of the
error of the measurement.

3.2.2. The linearization of reversed sigmoidal curves method

It is based on the studies of surface roughness parameters. It has become evident in the
study of fracture profiles that the profile roughness parameter, R,, occupies a central
position in expressing the characteristics of the profile. The parameter R, is defined by
the length L(A) of the fractal curve, which approximate the profile with stick A, divided
by L,, the (constant) profile projected length. It also bears a direct relationship to Ry,
the surface roughness parameter, which is defined by the surface area S, divided by its

“The slit-island method also has a remainder problem [3]. What happens to islands which cross the
boundaries of the region of study? Should they be ignored, or partially counted?
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FIGURE 11. Schematic illustration of the box-counting measurement (a); the plot of the number
of boxes needed to cover the fracture profile in Cu versus box size (b). Experimental data adapted
from Ref. 3.

projected area, Sp. Although R is the quantity sought because it gives the fracture
surface area, it is relatively difficult to obtain. The parameter, R., on the other hand, is
an experimental quantity that is measured directly from a vertical section [1-3].

Several analytical methods have been proposed for determining R.. One of the
simpler ways is through the linear parametric equation that links R, directly to R.
according to empirical equation

4
Ry = —(R, —1)+1. (74)

This relationship provides the best fit to all known experimental data [1]. It is based on
a realistic model, that is, a fracture surface that can have any configuration between the
limits of completely oriented (R, =1) and extremely complex (R, — 00).

If the approach of marking segments along a baseline is used instead of marking
segments on the profile, than the remainder problem can be avoided by recursively sub-
dividing the total length of the baseline into halves. In analyzing the fractal behavior of
irregular fracture surfaces, data point pairs (R, Rs) are needed for each configuration.
Equation (74) supplies the inaccessible quantity, R,, with a high degree of reliability and
a minimum of calculation. This method was described in detail in Refs. 1, 3, and 96.

3.2.8. The boz-counting method

It uses boxes to measure the length of a profile, or the density of the lines or points over
an area. The curve is covered with square boxes as shown in Fig. 11a.

The size of the box lp is the length of the square. The number of same sized boxes
needed to cover the line is counted. This is repeated for series of different sized boxes.
The result are then plotted as the number of boxes Np (Y-axis) versus [p (X-axis)
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on a log-log plot as shown in Fig. 11b. The fractal dimension of line (profile) is equal to
the slope of the plot, i.e.,

D, = Dp=2—H = —ap, (75)

where ap is the slope of the plot. A variation of this method is to use circles instead of
squares, where the diameter of the circle is equivalent to the box size. The box method
can be modified for self-affine curves by converting the square boxes to rectangles which
have an aspect ratio representing the ratio of the anisotropic scaling factor.

There are different ways of applying the box-counting method for measurements of
fractal dimension. This method can be easily implemented with a computer algorithm by
defining the boxes with a square grid. To handling a potential remainder problem, one can
then count the number of intersections of the line with the boxes (grid elements or tiles),
or alternatively, the number of boxes intersected by the line. When using a computer,
one can start with the finest resolution image and then mathematically combine tiles
into larger, lower resolution images, a procedure called “mosaic amalgamation.” The
box method can be used to analyze areas within curves as well as the curve itself. One
can apply the centroid rule where the centroid of the box has to lie in the region of
interest (non on the other side of the line) for the box to be counted. One can also apply
the “majority rule,” where a box is counted if more than half of its area lies within the
region of interest [3].

Obviously, the evaluation of D, depends on the method and algorithm used, on the
range chosen, on the sequence and the scale resolution on the analyzed profile. Hence,
the estimated fractal dimension is not an absolute measure so those parameters must
always be specified in order to reproduce the results as well as to compare and interpret
them.

3.3. TESTING FOR SCALING

The problem of estimation of the slope from the logY-log X plot is common for all
methods of fractal measurement. When we are dealing with uniform self-similar or self-
affine patterns there are no problems. The log-log plots are linear at least on the average.
When, however, we are working with real fracture surfaces, problems begin to emerge.
In fact, scaling is assumed a priori and the scaling region is subjectively estimated. In
this way, there is no consistent way of estimating the slope and different methods can
give considerably different results!

The slope may be estimated by a linear regression, or other standard curve-fitting
techniques. Often, only part of the plot is used to calculate the slope, while other
researchers will use the entire plot. The slope is often somewhat curved, rather than
straight (see, for example, Refs. 1, 3, and 80). Does this curvature indicate that the
fractal theory is not applicable to that particular data set, or is this just the expression
of lack of self-similarity of the data? What does it mean if the curve is concave up versus
concave down? Some researches choose a particular straight section of the curve for the
estimation of slope, explaining that the straight segment is the range of scales over which
the fractal theory applies. If an error analysis were applied to the slope estimation, the
error range for the fractal dimension could be as large as the possible range of fractal
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dimensions. Many of the studies do not estimate errors, or they estimate only one aspect
of the error, such as the curve-fitting error, while ignoring other such as the remainder
€rror.

If the slope « is determined with the help of the least-square fit, the standard deriva-
tion of the fit may be interpreted as the error bar of the obtained dimension value.
However, the error bar defined in such a way does not reflect the uncertainty of the
calculated value of fractal dimension due to the finiteness of data set, but it is rather
related to the choice of the fitting range.

Actually, position of each point in the log-log plot is determined by the relation
log N/ logr, where N(r) is the number of sticks (boxes) with size r needed to cover the
evaluated profile. To obtain an exact result, the limit N — oc should be achieved. In
practice, we always have a finite set of N(r) points. Hence the underlying question being;
how many data points are needed in order to obtain a “correct” estimate of a given slope.
It is clear that the higher the fractal dimension of profile, the greater number of points
N needed in order to correctly evaluate the slope of the log-log plot. Several empirical
criteria have been suggested in the literature, which define the minimal number of data
points N required for a “reliable” estimation of a given fractal dimension D [97,98]. They
have the form

N> 1022, and N >42°. (76)

Of course these limitations are in some sense subjective, but they are very useful in the
practice of fractal measurement (3]. However, in this approach, the question of whether
a given data set is self-similar (self-affine) is overlooked.

The authors [99] have suggested the tests of self-similarity and self-affinity based
on the data analysis in the coordinates log (dY/dz)-log X which gives the slope a as
the function of the logarithm of measurement scale length. For a uniform fractal o =
constant. The fracture surface can be treated as a statistically self-affine object only
when the corresponding slope « varies within a certain bounded interval (for example,
the 5%-95% interval of the observed frequency distribution of ).

Here, we suggest another test for self-affinity which is based on the comparison of the
values of roughness exponent H obtained by divider HP) = 1/(1-ap) and box-counting
H(B) = 2 — o methods. For a uniform self-affine pattern, obviously,

HE = D),

Furthermore, as it follows from the analysis in Subsect. 2.4, if

1 . I
(¢ — HP) < - min {H(B) =2-Dp,HP = D_u} : (77)

then the fracture surface can be treated as self-affine and so may be characterized by the
unique roughness (Hurst) exponent

H = VHB) HD), (78)

Otherwise, the surface must be considered as multiaffine and we need to estimate param-
eters 7(0) and 7(2) to its characterization.
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In order to validate the criterion (77), two self-affine graphs of the Mandelbrot-
Weierstrass function with H = 0.5 and H = 0.8, and the graph of deterministic multi-
affine function [74] were analyzed. To generate and evaluate the graphs of Mandelbrot-
Weierstrass function the Fractal Vision software [79] was used. For the graph with
theoretical value of Hurst exponent H = 0.5(Dp = Dp = 2) it was found H®) = 0.53
and H'P) = 0.48 so that inequality (77) is valid and by Eq. (78) we obtain value H ~ 0.5
which coincides with the theoretical one. For graph of Mandelbrot-Weierstrass function
generated with H = 0.8, Dp = 1.25 we found HP) = 0.85 and H®) = 0.78, and so,
the inequality (77) is also valid. For the graph of deterministic multi-affine function de-
scribed in [54] we obtain H(P) = 0.5 and H(P) = 0.85, so that |HB) — H(P)| = .35 >
0.5HP) = 0.25. Hence, the scaling properties of this function can not be characterized
by a single Hurst exponent.

4. FRACTAL PROPERTIES OF FRACTURE SURFACES IN STEEL 1045

The material chosen for the experimental studies of fracture surfaces topography was the
steel 1045 widely used in industry [1, 3, 100]. In order to validate the suggested concepts,
specifically, the test of self-affinity and non-universality of the fracture roughness expo-
nent H, the mechanical tests were made at different temperatures and for different strain
rates.

4.1. MECHANICAL TESTING

Tensile bars were machined from heat treated samples to a 5 mm diameter and a gauge
length of 50 mm (length/diameter = 10 coincides with german standard [101]). The
bars were tested in accordance with the standard tension test (ASTM E8-81) using the
INSTRON tensile apparatus (model 1125). Tension tests were made at different temper-
atures (when temperature was raised over 300°C, the atmosphere pressure was kept at
1076 torr), and for different strain rates: 3.333 x 10~° s~1,3.333 x 10~3 s71,1.666 x 1072
s7!, and 1.666 x 10~' s7'. The ultimate tensile strength, o, elongation, d,, and ad-
sorbed energy, F,, for each sample was calculated from the results of these tests. The
typical example of stress-strain diagram is shown in Fig. 12a. The variations of the o,
dp, and E, with the testing temperature are shown in Figs. 12b, 12¢, and 12d, respec-
tively. We can see that mechanical properties of steel 1045 change dramatically in the
interval 500-800° C, while their variations within the intervals 25-500°C and 800 1000°C
are insignificant. Hence, it is reasonable to expect that the fractal properties of fracture
surface also will possess changes in the interval 500-800°C. Furthermore, it is reason-
able to expect the changes in fractal properties associated with a dramatical decrease in
adsorbed fracture energy in tests with strain rate 3.333 x 107° s~ 1 (see Table X).

4.2. FRACTAL MEASUREMENTS

After mechanical testing fractured specimens were assembled in baseline and fracture
surfaces were covered by epoxic resin. Then specimens were machined to obtain the
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FIGURE 12. The stress-strain diagram for steel 1045 at 300° C obtained in the tensile test with
strain rate 3.333 x 10~3s~! (a); and the temperature behavior of the ultimate tensile stress (b),
elongation (c), and adsorbed energy (d).

vertical cut profiles which were microphotographed to 200x and 500x. All micropho-
tographs were scanned in Studioscan IIsi-AGFA and obtained scanning profiles were used
for fractal measurement. Figs. 13a and 13b show the micrographs of rupture profiles for
two specimens fractured at temperatures 300°C and 500°C, respectively. The fractal
dimension of each profile were estimated by means of divider and box-counting methods.
Obtained in such a way data were used to calculate the values of roughness exponents
HB) and H®). Thereupon, if the inequality (77) is valid, the Hurst exponent H were
calculated by Eq. (78).

4.3. DIVIDER MEASUREMENT

The foundations of divider dimension measurement by means of yardstick (divider method
are described in Sect. 3.2.1). The main operational problem associated with this mea-
surement is the problem of remainder. In present work this remainder was handled by
adding the straight-line distance between the ruler and the end of analyzed profile to
the total length (see Sect. 3.2.1).7 The interval 10 =+ 10° mp was chosen for the ruler
length 6,, so that according to criteria (76) the number of data points were sufficient
for a reliable estimation Dp. Only the points associated with ruler length 8, < & were
used to estimate the slope of the plot in the coordinates log Ly-log d, by the least square

"The algorithm of measurement was tested by the evaluation of the graphs of Mandelbrot-Weierstrass
function generated by the program [79]. In all cases the difference between theoretical and estimated
values of H was less than 8%.
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TABLE X. Adsorbed energy and fractal properties of fracture surfaces in steel 1045 fractured in
standard tests with strain rate 3.333 x 1073 s~! at different temperatures.

136 E,, J ] HD) H, Eq. (78)

25 1.35 0.958 0.959 0.958
100 14.56 0.961 0.960 0.960
200 19.44 0.955 0.930 0.942
300 8.97 0.940 0.917 0.929
400 9.36 0.935 0.915 0.925
500 6.99 0.820 0.910 0.864
600 11.86 0.805 0.846 0.825
700 37.96 0.950 0.951 0.950
800 8.81 0.972 0.973 0.972
900 7.79 0.971 0.972 0.971
1000 0.972 0.996 0.970 0.971

0.5 mm
e —

FIGURE 13. Micrographs of fracture profiles in steel 1045 fractured at temperature 300°C (a)
and 500°C (b) with testing strain rate 3.333 x 103 s !
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TABLE XI. Adsorbed energy and fractal properties of fracture surfaces in steel 1045 fractured at
1000°C in the standard tests with different strain rates.

Strain rate (s™')

Property
1.666 x 107! 3.333 x 10~® 3.333 x 10~°

E..J 30.253 29.960 5.320
Dp 1.041 1.030 1.171
H(D) 0.961 0.970 0.853
Dpg 1.041 1.028 1.140
H(B) 0.956 0.972 0.960
H, Eq. (78) 0.960 0.971 0.857

method. The method of the & estimation is easy to understand from Figs. 1la and
11b which show two typical plots of divider measurements. The corresponding values for
divider dimension and H(P) were calculated by Egs. (72) and (77), respectively. These
data are listed in Tables X and XI.

4.4. BOX-COUNTING MEASUREMENT

The foundations of box-counting fractal measurement are described in Sect. 3.2.3. To
avoid the problem of remainder we have used the box-counting algorithm suggested in
Ref. 102.% Two typical plots of box-counting measurements are shown in Figs. 14c¢ and
14d in coordinates log N (dp)-log §p. Estimated by the least square method the slope of
a plot was used to calculate the box-counting dimension and H(Z) by Eq. (75). Obtained
in this way data are listed in Tables X and XL

4.5. DISCUSSION

Generally, different methods of fractal measurement lead to the same fractal dimension
only for a statistically self-similar fractal. At the same time, different methods of fractal
measurement of the vertical cross-sections of a statistically self-affine surface should give
the same value of the roughness (Hurst) exponent, if they applied correctly. Multi-
affinity of real fracture surfaces manifests itself in the difference between Hurst exponents
estimated by different methods. In this way, the self-affinity of real surface can be verified
by using criteria (58), (62), and (77).

As it is easily seen from data in Tables X and XI, for all investigated fracture surfaces
the inequality (77) is valid, and so they may be treated as statistically self-affine fractals
within the interval (17) and characterized by the unique roughness (Hurst) exponent (78).
In this way statistically self-affine fracture surfaces in steel 1045 can be advantageously
modeled by the homeomorphic regular self-affine fractals (for more details see section 2).

$The algorithm was tested in [102] and it was shown that it gave the best results in comparison with
other common algorithms.
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FIGURE 14. Length of fracture profiles L, shown in Fig. 13a and 13b plotted versus stick length
(a,b) and the number of boxes covered these profiles N, plotted versus box size (¢, d). Graphs a
and c are related to the profile in Fig. 13a (§¢ = 0.31 mm) and graphs b and d are related to the
profile in Fig. 13b ({c = 1.06 mm).

While no clear relation has been found between H and the studied mechanical prop-
erties, it is clear from data presented in Tables IX and X that the changes in fractal
properties coincide with those for mechanical properties. Hence our data cast doubt on
the hypothesis of universality for fracture roughness exponent. To obtain explicit inter-
relations between mechanical properties of a material and fractal properties of fracture
surfaces, we need in a more presentable set of experimental data. Specifically, it seems to
be interesting to investigate the relation between adsorbed energy and fractal properties
of fracture surface for different strain rates of mechanical testing.

5. CONCLUSIONS

In this work the fractal approach to fracture surface morphology characterization was
advanced.

It is noted that while, explicitly speaking, real fracture surfaces are always multifractal
or multiaffine, in some cases they can be treated as statistically self-similar (or self-
affine) pre-fractals obeying scaling properties within a wide but bounded lengthscale
interval (17). The criteria (58), (62), and (77) and quantitative characteristics (53) of
multifractality (multiaffinity) are suggested.
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It is important to keep in mind that any random (statistically self-similar or statis-
tically self-affine) fractal can be transformed in the regular fractal with the same fractal
(metric) dimension by a homeomorphic, one-to one and onto transformation. Hence,
regular and random fractals of the of the same fractal dimension are statistically equiv-
alent and cannot be distinguished within a framework of fractal geometry. In this way
statistically self-similar (self-affine) fracture patterns can be advantageously modeled by
the homeomorphic regular self-similar (self-affine) fractals (see also Ref. 105). -

Furthermore, it is emphasized that in some cases a brittle fracture surface (which
possesses persistence scaling within the interval (17)) can be represented by self-similar
pre-fractals, whereas the ductile fracture surfaces always display antipersistence behavior,
and so they should be always treated as self-affine (or multi-affine) (pre)fractals.

Two variations of the Mandelbrot-Weierstrass function were suggested to statisti-
cally equivalent model representations of self-affine fracture surfaces with self-similar
(isotropic) and self-affine (anisotropic) cross-sections.

It is shown that for (statistically) self-affine patterns the metric, information, and
correlation dimensions are equal whereas Dy < Dy < D_o. The Eq. (31) for fractal
dimension estimation from experimental data set is derived. The fractal properties of real
fracture surfaces were analyzed on the base of experimental data reported in literature.

A new test of self-affinity (77) is proposed. Suggested theoretical concepts were
validated by the analysis of graphs of Weierstrass function generated by the commercial
program [79].

The possible reasons of strong contradictions between results of fractal measurements
reported in different works were discussed on the basis of suggested concepts. Different
methods of fractal measurement lead to the same fractal dimension only for a statistically
self-similar fractal. Different methods of fractal measurement of the vertical cross-sections
of a statistically self-affine fractal should give the same value of the roughness (Hurst)
exponent, if they applied correctly. Multi-affinity of real fracture surfaces manifests itself
in the difference between Hurst exponents estimated by different methods. Horizon-
tal cross-sections in fracture surfaces are commonly statistically self-similar within the
lengthscale interval (17). New relation (70) between fractal dimension of surface and the
slope of the perimeter-area plot used in the slit-island fractal measurement is derived. It
is noted that previously published data obtained by slit-island method should be revised
with the use of Eq. (70).

The fractal properties of brittle fracture surfaces formed in steel 1045 fractured at
different temperatures and different strain rates have been studied. Our data are in
contradiction with the concept of universality of the fracture roughness exponent, which
hecame popular in recent years. Moreover, it is noted that the changes in fractal prop-
orties of fracture surface coincide with changes in mechanical properties of steel.
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