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ABSTRACT. In this paper the inverse problem of obtaining Lagrangians and Hamiltonians from
a given a family of curves (which satisfy their classical equations of motion) with its initial
conditions is considered. The application of this method to the damped harmonic oscillator is
also considered and two known Hamiltonians are rederived.

RESUMEN. En este articulo se considera el problema inverso de obtener ecuaciones de evolucién,
lagrangianos y hamiltonianos a partir de una trayectoria dada con sus condiciones iniciales. La
aplicacién de éste método al oscilador arménico amortiguado es también considerado y se encuen-
tran dos nuevos hamiltonianos.

PACS: 03.20.+i

1. INTRODUCTION

For a long time, there has been an interest in the inverse problem for the Lagrangian
method in classical mechanics: obtaining of Lagrangians and Hamiltonians from Newton'’s
equations of motion. As is well known, the knowledge of the Lagrangian function for a
given system is useful for the integration of the equations of motion, for the obtaining
of conservation laws from its invariance properties. and, from the Hamiltonian derived
from it, for the quantization of classical systems. First investigations of this question are
due to Helmholtz [1] who studied the problem of given the set of equations

Gilg.g:q) =0, F 5 S B
under what conditions does there exist a function L(q,q,t) such that
_doL_oL
YUodtdg Og;

i.e., that G; = 0 are the Euler-Lagrange equations of a variational principle of the form
d [ L(q,q,t)dt = 07 Other authors have also made contributions to the answer to this
question [2-6).
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The damped harmonic oscillator has playing an esscential role in order to understand
the mentioned inverse problem. In particular, the works of Havas [6], Caldirola (7] and
Kanai [8] are remarkable examples of it. Very recently, the oscillator with damping has
been of special interest due to its relation to squeezed states in quantum mechanics [9].

In this paper, the inverse problem of obtaining Lagrangians and Hamiltonians from
a given trajectory (which satisfy their classical equations of motion) with its initial con-
ditions is considered. In Sect. 2, we introduce the concept of a causal curve which is a
trajectory given in terms of its initial conditions. In Sect. 3, the relationship between
the charts (¢, ¢;t) and (go, go;t) is analyzed. In Sect. 4, embedding the causal curves into
the Havas formalism [6], a partial differential equation for this causal curve is obtained
and its relationship with the Lagrangian for the system is given. The example of the
damped harmonic oscillator is considered in Sect. 5. Here using our results of Sect. 4,
for a particular choice of certain functions, we rederive two versions of the damped os-
cillator Lagrangians (and their associated Hamiltonians). The first one appears familiar
from [7-9] and the second one is shown to be equivalent to the Havas Lagrangian [6].
Finally, some concluding remarks are made.

2. CAUSAL CURVES
Consider the function of three variables (go, qo,t) € R?,
Q = Q(q0, q,1t) € R, (1)

(of course ¢p, qo and t are independent coordinates) which, for simplicity is assumed to
be smooth. Then the curve

4= Q(t) = Q(q.'[laq[)ﬂ t)’ (h] = const., go = const., (2)

is called a causal curve if and only if the function () comply with two properties: (i) the
equations

4= Q(QD’QU: t): f] = Q(t)(dUsQUat)v (3}

are invertible with respect to go and gg (the subscript (¢) denotes partial derivative with
respect to ¢ and ¢g = const., gy = const.); the condition for this is

J = Q1)jo Qg0 — Qutyge @io # 0, (4)
and, (i1)
9 = Q(Go,90,0), G0 = Q1)(do, 90, 0). (5)
Granted the validity of (4), Eqs. (3) can be inverted in the form of

qo = R(q,q.1), q0 = S(q,q,t). (6)
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Notice that because of (5), the Jacobian defined in (4) as J = J(qo, go, ) at t = 0 assumes
the value

(o, 90,0) = 1. (7)

The second derivative with respect to ¢ of the causal curve,

g = Q(ut)(do, 90, 1), (8)

appears in the ordinary differential equation that q obeys,

g= F(Qu 4, t), (9)

where
F= F(Q? q, t) = Q(tt}(dﬂy do, t)’q"{):R,QDZS » (10)

Inversely, given a function F'(q,q,t) “sufficiently smooth” such that existence and
uniqueness theorems do apply—in terms of the initial conditions and via fixed point
theorem—, the second order differential equation (9) determines a causal curve.

For our purposes, its more convenient to consider the concept of causal curve as
more fundamental than Eq. (9), eliminating in this way possible inconveniences due to
singularities of the ordinary differential equation (9). In addition, the concept of causal
curve, as related to the uniquely determined evolution in time of the initial data, is per se
of basic interest from the physical point of view.

3. THE CHART (q,q,t)
The formulae
¢ =Quwl(do,q,t), q=Q(do,q,t), t=t, (11)

can be considered as the coordinate transformation which takes us from the chart (g, qo, t)
to the equivalent chart (¢,q,t). Indeed, we have

dgdqdt = J ddo dgo dt # 0. (12)

It is convenient to elaborate the relationships between the partial derivatives with respect
to the chart (qo, o, t), denoted as

(af."o:aqwa(t)): (13)
and the partial derivatives with respect to the chart (¢, q,t) denoted by

(83 04, 1) (14)
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After some algebra, we obtain

1
7 (Q(f)éoaﬁre S Q(t)qoado)v

1 .
aq" — _j(Qq"odqo - Qfloaﬁo)’ (15)

1 1 3 .

7 (Q(t)Q(t)qo = quQ(u)) Qo — j(Q(t)Q(t)cja — anQ(u))qu + A,

the right hand side given explicitly in terms of the objects referred to the chart (Go,qo,t).
We notice that according to the definition of J given in Eq. (4),

T = —(QioOu — Quoio ) Q- (16)

Op =

815:

As it should be, according to the second line of Egs. ( 15), the above equality leads to the
identity

1 i
L=~ 5 (Qufh ~ Qa2 Quy = i = 1, (17)

in the chart (¢, q,1).
Consider now the quantity F; expressed in the chart (Go, qo,1),

il p
Fy = —;(Qq"ndqo - qua@D)F
1 p =
= —‘j (Q(j’odq[] - qudqo)Q(“)
1
== ‘ja(t) (ergQ(f,)(]() - quQ(t)(fu)
- la(t)‘] = 8(1‘.) InJ. (18)

J

Among other things, from this identity it follows that if the causal curve is such
that the corresponding F' is independent of q, I' = F(q,t), then Iy = 0, and then
J(go, qo, t) = 1, according to Eq. (7).

4. EMBEDDING OF THE CAUSAL CURVE INTO THE CANONICAL FORMALISM

After the introduction of the causal curve, we now ask ourselves the question: is the
causal curve embedded into the canonical formalism? t.e., can the Lagrange function
L = L(q,q.t) be constructed such that the corresponding Euler-Lagrange equations

(Lg) — Ly =0, (19)

GLgg + qLgg + Lyt — Ly = 0, (20)
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are satisfied only by a fired causal curve ¢ = q(t) = Q(qo, qo,t) with arbitrary constants
qo and qo?

The problem as stated above, is a variant of the classical inverse problem of the
variational calculus whose relevance in physics was emphatically stated in publications
by Peter Havas [6].

Following the work of Havas, if ¢ = QX(qo, qo.t), which satisfies § = F(q,q,t), also
satisfies Eq. (20) then any L(q,q,t) which leads to this unique solution, must satisfy

F(Qa q, T)qu + @Lg’rq + Lq"t - Lq = 0, (21)

which can be considered as a linear partial differential equation for the searched L(q, q,1)
in the chart (g, q,t). Equation (21) is equivalent to Eq. (9) if and only if

K = K{g,q,t) ==L £ 0 (22)
We will focus now in the determination of the most general solution to the partial differ-
ential equation (21) under the condition (22).
Acting with d; on Eq. (21) we can establish the partial differential equation for K,
0;(FK)+¢K,+ K; = 0. (23)
4.1. REDUCTION TO QUADRATURES

Suppose that the solution K = K (¢, q,t) to Eq. (23) is known, then
q
L; = / dq' K(q',q,t) + Mgy(q, 1), (24)
0

which corresponds to the first quadrature of Ly = K. Without any loss of generality,
the lower limit of the integral can be selected as 0, and the arbitrary integration constant
depending only on g and ¢ can be represented as the derivative M,(q.t). The second

quadrature of Eq. (24) is given by

q q" q
o= [ai" [* i K@ 0.0 +iMya )+ Mot [Tdd N0, (29
because the “integration constant” dependent on g and ¢ surely can be always represented
in the form of M;(g,t) + [ dg'N(q',t). Now, the change of the order of integration brings
Eq. (25) to
q q )
L=[fﬁw—fﬂﬂ%mﬂ+jrMNWH%+M%wﬂ+AMqﬂ. (26)
0 0

Now. the substitution of L from Eq. (26) into Eq. (21) results in

q
PWAMKMmﬂ+/de%Wﬁﬂ+KMUMHfNWH=& (27)
0
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However, K fulfills Eq. (23) and hence

q-'qu(q-,f’ q, t) A Kﬂ((jra q, t’) = _arj’F((jfﬂ q, t)K(qlﬂ q, t) (28)
This used in Eq. (27) yields the relationship
N(q,t) = F(0,q,t)K(0,q,t). (29)

Consequently, the most general solution to Eq. (21) has the form of

q q
L =f0 dq’ (fi‘-f)’)K(q”,q,tHfU dg' F(0,4',1)K(0,q',t) + ¢My(q,t) + My(q.t), (30)

where the two-variable function M (g, t) is arbitrary, and the function K (¢, q,t) # 0 is the
most general solution to Eq. (23). Note that, taken along ¢ = (d/d,'t )q(t) and g = q(t),
the contribution from the second line of Eq. (30) amounts to dM(q(t),t]/dt, i.e., to the
standard ambiguity of the integrand in the action principle & fo dt L(q,q,t) = 0.

Now, considering Eq. (23), it is legitimate to employ the coordinate transformation
(11) and search for the solution K = K(do,qq,t) in the chart (do,qo,t). Replacing in
Eq. (23) F by Q), ¢ by Q) and 8,;., dy, Oy by the right hand sides of Eqgs. (15), we have

_ %(inoaqn - QQOaﬁo)Q( ) (Q(t )do Q(t Vi qu)K

Q ; Qe : "
+ #(Q(f)qndqo Q{f}fm qo)K ( J(Qqe o Qq‘voaqo)K“Fd(g)K =0. (31)

After some cancellations, we find
, 1 . . ;
d(f)K o 7 [(Qéoat;'ﬂ = qudti‘o)Q(tt)J K =0 (32)
On the other hand, acting with diyy on Eq. (16) one obtains

Aty = —(Q4y 0 — Qa0 )Quur) = 04 F), (33)

and then Eq. (32) reduces to

Fi
aK + ~%T)~—K =0, - (34)
or
8o JK = 0. (35)

Therefore, the solution to Eq. (23), expressed in the chart (4o, qo, t), is given by

. 1 .
K = K(qoaq(h t) = TP(QU:QOL (d())

where P(qo, qo) # 0 is an arbitrary function of two variables. The factor J~! is determined
uniquely by the causal curve, i.e., in terms of the function ((qo, qo. 1) accordiug to the
definition (4).
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The function K, expressed in the chart (g, ¢,t), is obtained by substitution of §; and
qo from Eq. (6) into Eq. (36),

Kidg:t) = (lpfdoa%)) (37)

J

=R{G,ath00=5.ad)
Corollary

In cases where the causal curve is such that the dependence of F'(¢, q,t) on ¢ is simple, in
order to determine J(qo,qo,?) it can be convenient to employ the identity Fy = J;) InJ
[see Eq. (18)] in the form of

Fy (Q(:) (do, g0, ), Q(go; o, t), f) = gy InJ. (38)

The quadrature of this, consistently with the initial condition for .J, Eq. (7), amounts to

7= exp | [t Fa( Qo a0, 0) Qo v, 1)) (39)

5. THE EXAMPLE OF THE DAMPED HARMONIC OSCILLATOR

The damped harmonic oscillator is of special interest due to its relation to squeezed
states [7]. In order to illustrate how our general construction of L(q, g, t) works in practice,
consider the causal curve defined by

sinwt

; (40)

g=Q:=eP [QD coswt + (go + Aqo)

where 3 > 0, w > 0 are two constants and the case when 8 = 0 or w = 0 is obtained via
a limiting process. The time derivative is given by

- ] - 9 9 sinwt} 11
q=Qu =e {(Iocosw?‘- [ﬁ00+(ﬁ +w)QU} . (41)

We first verify that Eq. (40) is indeed a causal curve. From Eq. (4) we find that J =
exp(—2t) # 0 and then the conditions (5) are valid.
By solving Egs. (40) and (41) for go and o we obtain the functions R and S which

appear in Eq. (6),

Go=R:=é" {Q(:Oswt + [6(} + (52 i wz) q] Sil;wt} q

sinwt]

w

g =9 = et [q coswt — (¢ + Bq) (42)

Next, with @ given by Eq. (40), one easily finds that the function F(q,q,t) defined
in Eq. (10) becomes

F=-284- (" + ) g (43)
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Therefore, our causal curve ¢ = g(t) = Q(qo, qo,t) with constants gy and go satisfies the
equation

§+2pq+ (B2 +w?) g =0, (44)

which is precisely the equation of the damped harmonic oscillator—with unit mass—
written in the most convenient parametrization. Inversely, one easily sees that the ¢ = @
defined in Eq. (40) is the most general solution to Eq. (44) as determined by the arbitrary
initial conditions.

In order to obtain the Lagrangian which corresponds to Eq. (44), we first observe
that

K((j‘(},(][],t) = ewtp(fio:fm)a (45)

with P(qgo, qo) # 0, being an arbitrary function of two variables, therefore K understood
as a function of (g, q,t) is

> = eQﬁ‘P(em[q‘rcoswt+ [6@4— (52+w2)q] sinwt],

Pt (q coswt — (¢ + Bq) su:)wt)) (46)
Then
K(0,q,t) F(0,q,1)

_ _(52+w2)qe2m'}3[em(ﬁ2-}-wz)qSiI;—wt,em(coswt—ﬁSiIZ:Jt)Q]' (47)

By substitution of Eqgs. (46) and (47) into Eq. (30) we end up with an effective Lagrangian
for the damped harmonic oscillator, whose structure depends linearly on the arbitrary
function of two variables P(qg,qo) # 0. We will now investigate some cases of interest
which correspond to various possible choices for the function P(qg, qo).

The simplest case is when P = 1, then

201
K=e[,

K(0,q,t) F(0,q,t) = — (8% + w?) ge?". (48)

The substitution of this into Eq. (30) leads to the Lagrangian

I, = 2Bt [[D‘jd(j, (dﬁ q-‘l) - (ﬁ2+w2) /quq,q;J - %62&[9-,2 . (62+w2)q2]. (49)

This simple time dependent Lagrangian for the oscillator with damping, was considered
by researchers like Caldirola (7], Kanai [8], etc. [9]. It has the merit that in the limit
/# — 0 it reduces to the standard Lagrangian of the harmonic oscillator, and then in
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the limit w — 0 to the standard Lagrangian for the free particle. With p = L;, and
H = pq — L, the corresponding Hamiltonian is

e é[e’gﬂtﬁ 3 (52 4 wz)ezﬁtqz]_ (50)

It is possible, however, with an alternative choice for P(qy, o), to construct a station-
ary Lagrangian L(q,q) independent on t for the oscillator with damping. We will derive
a Lagrangian of this type first via a technique which does not employ the general result
(30) accompanied by (37).

With the specific F' from (43), which is independent on ¢, one can look for L from
Eq. (21), with L; = 0, confronting thus the two dimensional problem

— [283+ (B2 +w?) | Lyg + dLq — Lo = 0. (51)
Let now
1
Ho= W) =Ly - L= (GL) (52)
q
then
gLsq = My (53)

One then easily sees that Eq. (51) multiplied by ¢ reduces to
~ [284+ (8% +w*) a] Hy + iHy = 0. (54)
The Monge characteristic band for this partial differential equation is

dg _dg
206+ (B +wg g

; (55)

which is an equation of the Abel integrable type. Indeed, the substitution ¢ = sq reduces
(55) to

Ei_g sds B (56)
g (s+0)?%+w? '

or

d{lg + (B +iw)g 2 [ + (B — iw)ql' 2} = 0. (57)
Consequently, with the real and positive

hi= g + (B + iw)g ) [¢ + (B — iw)q] TP > 0, (58)

being constant along the characteristic band Eq. (55), the most general solution to
Eq. (54) has the form of
#H = H(h),



THE LAGRANGIAN FOR A CAUSAL CURVE 643

where H(h) is a real arbitrary function of one variable. Note that we have normalized h
in such a manner that limg_,oh = (¢* + w?q?)/2, which is the standard Hamiltonian for
the harmonic oscillator. With #(q, ¢) assumed to be known, the definition of H can be
integrated for L in the form of [see Eq. (52)]

Lfidg )
L=qf0 W?{(q,q)quMq(q), (59)

with the arbitrary M (q) being irrelevant from the point of view of the action principle.
One easily verifies that the so constructed L satisfies Eq. (51)—for every M (q)—and that
the crucial quantity K = Lg; becomes [see Eq. (53)]

1
K= E’ch (60)
With the help of Eqs. (40) and (41), we now observe that
z:= ¢+ (B +w)q = [o + (B + iw)go] e AT, (61)

[t follows that the argument function h can be expressed in terms of g, go and ¢ in the
form

h = 3ldo + (B + iw)qo] P/ [gy + (B — iw)go]' /%, (62)

t.e., as dependent only on ¢g and qo, with the complex exponents in Eq. (58) doing the
trick.

At this point we can easily determine the form of the specific function P(go, qo) which
leads to the stationary Lagrangian (59). Indeed, spelling out Eq. (60) in terms of the
chart (qo, go, t) [see Eq. (36)]

| —
~P(do, a0) = Q(%w Quoio ) H(h), (63)

where now h is to be interpreted as given by Eq. (62). Multiplying this by J # 0, we
thus have

Hp ,
(qudlj‘n - Qq"oatm)h' (64)

Qu

On the other hand, using the definition (40) of Q, we have

P(do,q0) =

a%(Qqaaqn Qo Ogo ) = { do cos wt — T [ﬂQO F (ﬂ tw )QO]}_I

X Kcos wt + 3 Hth) Do — jll:‘)_t (')QDJ h. (65)

From the explicit form of h, Eq. (62), we easily finds that

" 2h
© ™ (do + Bao)? + 23 ke
2h .
hgy = — : = [28G0 + (3% + w? :
© (do + Bgo)? + wiqd [280 + (4% +w ) ) ey
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Substituting this into Eq. (65) leads to

1 2h
——(QaoB4o — QuoByo)h = — :
Q(t)( qo™~qo QQD QU) (QU-I'ﬁqn)z"‘Wqu

(67)

This substituted into Eq. (64), with terms dependent on ¢ cancelling out, leads to the
simple result that

2hHp
o + Bq0)? + w?qj

P(go, q0) = ( #0, (68)

with the function H = H(h) arbitrary, and h given by Eq. (62). This is the most general
form of P(gg,qo) which leads to the stationary Lagrangian for the damped harmonic
oscillator Eq. (59).

5.1. THE HAVAS LAGRANGIAN

There is an infinite number of choices for the stationary Lagrangian for the damped
harmonic oscillator, Eq. (59), due to the ambiguity of the choice for H = H(h), Hp # 0.
With this function being entirely arbitrary, the transition from the Lagrangian formalism
to the Hamiltonian formalism encounters the algebraic difficulty concerned with solving
effectively p = L4(¢,q) in the form ¢ = ¢(p,q). There is, however, a special choice for
H(h)—detected already in Ref. 6,

H = —1In(2h), (69)

within which this difficulty disappears and the effective Hamiltonian H = H(p, q) can be
easily constructed. According to Eq. (68), this corresponds to the choice for P(qo. qo)

1
P(do, %) = —— . (70)
(0:90) = =60 T B0 + a8
Indeed, with this choice for H, we have [see Eq. (52)]
1 1 hg
(1) =mn=-(3%) -5 (71)
qg /4 4 q /g 2¢h
But parallel to the first line of Eq. (66), hy = 24h/ (¢ + f¢)* + w’q®], so that
1 ] 341 -
(EL) :{—E.—i- : ln({+([ t'w‘)q] : (72)
q /4 g 2iwg ¢+ (B —w)gly
It follows, using the change of variable z := ¢ + (3 + iw)q, that
L= llnzuﬁﬁ“’él_ﬁ/iw + l—(lnz —1Inz) + q¢M,(q), (73)
2 2iwgq
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where M (q) is arbitrary and irrelevant from the point of view of § f;; dt L = 0, so that
without any loss of generality, it can be set equal to zero. The remaining terms are easily
seen to amount to

L=

Zi—= 2

z:=q+ (f+1iw)q. (74)

(zlnz— :,71112),

This is essentially the Havas Lagrangian in a slightly different notation. In order to
determine the corresponding Hamiltonian, we observe first that

1 & 1 z
= g = ] — — 1 =
pEly=—— “(z) 2iwg n(z) )
and then
z q =+ (ﬁ o+ 2.‘-")q 2uwpq
el e e i 5 76
zZ 4+ (B-iw) (76)

From the second equality of Eq. (76) it easily follows that

4 + Bq = wq cot(wpg), (77)

amounting to the effective inversion formula ¢ = ¢(p, q). With this established, we have
wq

S—— iwpq
sin(wpg) © (78)

V4

consistently with z — Z = 2iwq. Therefore, the Hamiltonian expressed as the function of
p and q is given by [see Eq. (58)]

H=%H
- g% In z1HB/iw 51-B/iw
sin(w
=In [e—”m —Lqp 4 } : (79)

which is the Havas Hamiltonian for the damped harmonic oscillator.

5.2. COMPARISON BETWEEN CANONICAL EQUATIONS FOR THE DAMPED HARMONIC
OSCILLATOR

As we have seen, in the case of the causal line with F' = =264 — (8% + w?) q, the Hamil-
tonians

o g % [e—ﬂﬁtpz + (ﬁz “+*Ld2) e?ﬁtq ] ‘ (80)
T [e—ﬁpq MJ (81)
wq L
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which correspond to the choices for the arbitrary P (o, qo)
P=1, (82)

|
T (o + Bgo)? + wiqd’ (83)

respectively, are both inducing the same ordinary differential equation
i+ 204 + (82 + wﬂ) q=0. (84)
Being concerned with the implications of the ambiguity for the choice of P—within
the general theory—and its consequences on the level of the quantum mechanics, the
comparison of the theories based on Hamiltonians (80) and (81) is of interest, in particular
perhaps for the researchers interested in group-theoretical treatments with harmonic

oscillators because in the limit § — 0, the equivalent Hamiltonians (80) and (81), ¢.e., in
the case of the equation § + w?q = 0, amount to

H= %(pz + w2q2), (85)
H=Tn [%@} . (86)

Equation (86) is a rather not commonly known expression for the Hamiltonian of the stan-
dard harmonic oscillator. Some intuitions gathered by comparing the theories founded
on the Hamiltonians (80) and (81) will be later useful on the level of the general theory
of the causal curves embedded into the canonical formalism.

6. THE HAMILTONIAN H = L[e=%'p? + (3% + w*) ¢’

Consider the canonical equations ¢ = H,, p = —H,, where H is given by Eq. (80),

§=e P, p=— ([52 + wz) e*Ply. (87)
By differentiating we have
i+ 28¢+ (52+w2) q=0. (88)
Similarly one finds that

ii—2pp+ (8 + ') p=0. (89)

The explicit solution to (87) in terms of initial conditions at t = 0, pg and qq is
g = [qo coswt + (po + Bao) “ill“’t] : (90)

o ‘ sinwt

p=g" {Po cos wt — [!)'PU e (ﬁz 2 uz) fiu] — —} : (91)

It is important to stress that with this Hamiltonian the concept of canonically conjugated
momentum is defined simply by

= g, (92)
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6.1. THE HAMILTONIAN H = In[exp(—3pg) sin(wpq) /wq]

Here the canonical equations amount to
q = Gq,
: 1
p=-Gp+-, (93)
q
G := —f + wcot(wpg),

and therefore the canonically conjugated momentum is given by

1 T+
p=—cot™! (ﬂ) . (94)
wq wq

From Egs. (93) it follows that (pg) = 1, and consequently G = —w?/sin*(wpq). Then
the second derivative of ¢ with respect to time is given by

-
- —-z—q + [=f + wcot(wpq)]g
sin®(wpgq)
g (6"’ " wz) - (95)

Therefore the Hamilton equations generated by the Hamiltonian (81) are such that g
satisfies duly the equation of the damped oscillator.

The most general solution to Eq. (93) in terms of initial conditions py and ¢ at
(=015

Wl —pe sinw(t + poqo)

B= sin(wpoqo) w
1 . Lt
e sin(wpoqo) Ot _w{ Poqo) _ (96)
wqo sinw(t + poqo)

7. CONCLUDING REMARKS

We have developed a method for generating Lagrangians and Hamiltonians for a given
system based on the knowledge of its trajectories in phase space. The usefulness of
this method has been shown with the generation of an infinite number of Lagrangians
and Hamiltonians for the damped harmonic oscillator, included among them two well
known ones. The possibility of obtaining an infinite number of equivalent Lagrangians
and Hamiltonians for a given system is intriguing and worth exploring its consequences
in future papers. Once the Lagrangian for a system is generated, a Hamiltonian can
be determined and classical and quantum dynamics can be analyzed. One interesting
application could be that of the determination of the Lagrangian of a system when one
can only generate trajectories numerically or by experiment instead of being able to write
a differential equation for it.
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