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The Lagrangian for a causal curve

.lEIlZY F. PLEIJANSKI' AND HUGO GAIlCÍA-COMPEÁNt

Departamento de Física
Centro de Investigación y de Estudios Avanzados del 1l'N.
Apartado postat 14-740, 07000, México D.F., Mexico

R.ecihido el 15 de fehrero de 1996; acept.ado el Gde noviembre de 19DG

ABSTRACT. In this papel' the inverse problem oC obtaining Lagrangians and Hamiltonians from
a given a fami})' oC curves (which satisfy thcir c1assical equations oC motion) with its initial
conditions is consit1crc(1. Thc application oCthis method to t.he damped harmonic oscillator is
also considered ami two known Hamiltonians are rederivcd.

RESUME:":. En este artículo se considera el prohlema inverso de obtener (,cllaciones de e\"()lución,
lagrangianos y hamiltonianos a partir de una trayectoria dada con sus condiciones iniciales. La
aplicación de éste método al oscilador armónico amortiguado ('s también considerado y se encuen-
tran dos nuevos hamiltonianos.

rAes: 03.20.+i

1. INTRODUCTION

Far a long time, thcre ha.c¡ been an illtcrcst ill the illvcrse problem for the Lagrangian
Illethod in classical I1lCchanics:ohtaining 01' LagrangiaIlRand Harniltonialls froIll Newton's
equatiolls of motion. As is well known, tite kllowledge of the Lagrangian functiotl for a
givcn systcm is uscful for thc intcgration of thc equations of motion, for thc obtaining
of conservation la\vs from its illvariancc properties. <llld, frmIl thc Hamiltonian derived
from it, for the qllantization of cla..':isicalsystcms. First illvestigatiolls of this qllcstioIl are
duc to Helmholtz [1] who studied thc prohhm¡ of given ti", set of e<¡uations

Gi(r¡, 'j. ij) = O. i = 1.2 ..... n.

ullder what cOllditions does tlwre cxist a fUllctioll £(r¡. 'j, t) such that

G _ d UD D£
i - di U,j, - Dr¡,'

Le., t}ml Gi = Oare the Elller-Lagrangc f'qllations of a variational principIe of lile form
Ó J £(r¡, 'j, f.)dt = O? Other anthors havc 'liso ¡¡¡adc colltributiolls to thc allswcr to this
qucstioll [2-61 .
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TIIE LAGRA~GIAN FOI< A CAUSAL CURVE 635

The da.mped hal'lIlonic oscillator has playillg au essccntial role in arder to lludcrstand
the mentioned inverse problem. In particnlar, the works of Hava", [u]' Caldirola [7] and
Kanai [81 are remarkabIe examples of it. Very recently, the oscilIator with damping has
been of spccial intercst cine to its rclatioIl to sql1cezed states in quantum mcchanics [9].

In t.his paper, t.he inverse prohlem of ohtailling Lagrangians and Hamilt.onians from
a given traject.ory (which sat.isfy t.heir ela",sical e<¡natiolls of mot.ion) witlt its initial con-
ditiolls is considere,!. In Sect. 2, we introdnce the cOllcept. of a causal curve whieh is a
trajectory given in t.erms of it.s initial condit.ions. In Sect. 3, the relationship het.we"n
t.he charts ('i, q; t) and (<io, qo; t) is analyzed. In Sed. 4, emhedding the eansal curves ¡nto
the Hava....•forrnalism [6), a partíal differcntial cqllation rOl' this causal curve is obt.aillcd
and its relationship with the Lagrangian for t.he system is given. Tite example of t.he
damped harmonie oscillator is considered in Sect. 5. Here nsing our resnlts of Sect. 4,
[01' a particular choice of certaill functions, we rcderivc two vcrsions of the damped 08-
eilIator Lagrangians (and their associated Hamiltonians). The first orle appears familiar
from [7-9] and the second one is shown t.o he e<¡nivalent t.o t.he Hav,", Lagrangian [u].
Finally, SOIlle conclllding rcmarks are malle.

2. CAUSAL CURVES

Consider tite function of three variables ('io, '10, t) E <R:l,

Q = Q(<io, 'lo, t) E !R, ( 1)

(of tourse ¡jo, qo and tare independent coordinates) wltieh, for simplicit.y is assnmed t.o
be SIIlooth. Then the curve

'1 = '1(t) := Q('io, 'lo, t), (jo = const., (jo = const., (2)

is called a causal c",.ve if ami only if the fnlldion Q tomply with t.wo properties: (i) the
cquatiollS

'1= Q('io, 'lo, t),

are invertible with respect to 'io and 'lo (the sllbscript (t) denotes part.ial derivat.ive wit.h
r"spect. t.o t and 'io = const., 'lo = const.); t.he tondition for this is

and, (ii)

(4)

'lo == (¿('io, '/0, O), (5)

Gralltec1 the validity of (4). Eqs. (:3) can be illvcrtcd ill lhe form of

,jo = JI('i, 'l. t), 'lo = S('i. '1, tJ. (G)
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Notice that because of (5), the Jacobian defined in (4) as J = J(qO, 'lo,t) at t = Oassumes
the value

J(qO, 'lo,O) = 1.

The second derivative with respect to t of the causal curve,

appears in the ordinary differential equation that '1 obeys,

ij = F(q, '1, t),

where

F = F(q, '1, t) := Q(tt) (qO, 'lo, t)l. -R -5.qo- ,qo-

(7)

(8)

(9)

(10)

Inversely, given a function F(q, '1, t) "sufficiently smooth" such that existence and
uniqueness theorems do apply-in terms of the initial conditions and via fixed point
theorem-, the second arder differential equation (9) determines a causal curve.

For our purposes, its more convenient to consider thc concept of causal curve as
more fundamental than Eq. (9), eliminating in this way possible inconveniences due to
singularities of the ordinary differential equation (9). In addition, the concept of causal
curve, as related to the uniquely determined evolution in time of the initial data, is per se
of basic interest from the physical point of view.

3. THE CHART (¡j, q, t)

The formulae

'1= Q(qo, 'lo, t), t = t, (11)

can be considered as the coordinate transformatian which takes us from the chart (qO, 'lo, t)
to the equivalent chart (q, '1, t). Indeed, we have

dq d'l dt = .J dqo dqo dt i- o. (12)

It is convenient to elaborate the relationships between the partial derivatives with respect
to the chart (qO,qO,t), denoted as

(13)

and the partial derivatives with respect to the chart (q, '1, t) denoted by

(14)
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Afler some algebra, we oblain

Dq = ~ (Q(t)qoDqo - Q(t)qoD'io),

D'i = -~(QqoDqo - Q'IODqo), (15)

Dt = ~ (Q(t)Q(t)qO - QqoQ(tt)) D'ío - ~ (Q(t)Q(t)qO - QqoQ(tt) )D'IU + [J(t),

Ihe righl hand side given explicilly in lerms of the objects referred to the char!, (qO, 'lo, t).
\Ve notice that according to Ihe definition of J given in Eg. (4),

( 1 G)

As it should be, according lo the second line of E'Is. (15), tI", above e'luality leads to Ihe
idenlity

( 17)

in Ihe charl (4, '1, t).
Consider now Ihe '1uanlily Fq expressed in Ihe charl (,jo, 'lo, t),

Fq = - ~ (QqoDqo - QqoDqo) F

= -~(QqA," - Q'IODqo)Q(tt)

= - ~D(t) (QqoQ(t)'1u - Q'IoQ(t)'íU)

1
= }D(t)J = D(t) In J. (18)

Among olher Ihings, from Ihis idenlily il follows Ihat if the causal curve is such
t.hal t.he corresponding F is independent. of q, F = F('1, t), t.hen D(t).J = O, and t.1",n
.J(,jo, 'lo, t) = 1, according t.o Er¡. (7).

4. Er-IBEDDING OF THE CAUSAL CURVE INTO TIlE CANONICAL FORMALlSM

After the introductioIl of the causal curve, \ve 1I0Wél...""k ollrsclves the qucstion: is the
causal curve cmbcddcd into the callonical formalism'! i.e., can t}¡c Lagrangc fUllctioIl
L = L(q, '1, t.) be constructed such t.hat the correspondillg Euler-Lagrange eguations

i.e.,

(Lq) - Lq = O,

ijLqq + 'jLq'l + L'í' - Lq = O,

(¡~)

(20)
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are salislied only by a fixed causal curve '1= '1(t) = (J(,jo, '10,t) wilh arbilrary coustants
<jo and 'ID'!

The problem a., stated aboye, is a variant of lhe c1assical inverse problem of the
variatiollal calculus whose relevance in physics was emphatieally stétted in puhlicatioIls
by Pe ter Havas [6].

Following lhe work of Hava." if'l = (J ('jo , 'lo, t), whieh "alislies ii = F(,j, '1,1.), also
satislies Ec¡. (20) lhen any L(,j, '1, t) whieh lea,ls to this unique solution, musl satisfy

F(,j, '1, t)Lqq + ,jL,¡q + Lq, - L" = O, (21 )

whieh cau be eonsidered as a linear parlia1 difrerenlial ec¡ualion for the searehed L(,j. '1, t)
in lhe charl (<j, '1, t). Ec¡uation (21) is equivalent lo Ec¡. (~) if ancl only if

[( = [«,j,'1,t):= Lqq i' O. (22)

\Ve will foeus now in the determination of the most general solulion to the partial difrer-
entia1 cc¡uation (21) under the condition (22).

Aeting with D,¡ on Ec¡. (21) we can eslablish the partial difrerential eqnaliOll for [(,

üq(F [() + ,j[(q + [(, = O.

~.l. fl.EDUCTIO:\ TO QUADRATUHES

Suppose lhal the 801utiou [( = [(,j. '1, t) to Eq. (23) is knowu, then

Lq = Ioq d<j'[«'/,'1.t) + Mq(,/,t).

(23)

(2~)

which corresponds to the lirst quadralure of L,¡q = [(. Withoul auy loss of generality,
the lower limit of lhe iulegra1 cau be se1eetcd ;L, O, aud the arbitrary iutegration constaut
depending only on '1 and t can be repre8euted a.'i the derivative M,,('1'I.). The second
qnadrature of Eq. (24) is given by

(j i/' q
L = lo d,/, lo d,/ [«('/,'1,t) +,jAlq('1.t) + M, + lo r/,¡' N(,/.I.), (25)

because the l:intcgra.tioll constant" dependent 011q amI t surely can he always representerl
in the fonn of M,('1, t) + Ioq d'l' N(,t', t). Now, the change of the onler of iutegration brings
Eq. (25) to

1q 1qL = ,"l('i - ,j') [(,l. 'l. 1.) + d,t' N(,,'. 1.) + ,;1\1'1('" l.) + M,(q. t).
o o

Now. the substitution of L from Eq. (2!i) iuto Eq. (2\) rt'5u1ts iu

¡"
¡

F(,j,'1,I.)[\(,j,'1,t) + r/,/ [,/[\,,(,/.,/,1.) + [\,('/,'1.1.)] - N(,/.I.) = (l.
o

(26 )

(27)
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1I0wever, 1( fulfills Eq. (23) aml hence

,j'l(q(,j',q,t) + I(t(,j',q,f.) = -O,yF(<j',q,t)I\(q','1,t).

This used in Eq. (27) yields the relationship

N('1, t) = F(O, q, t)I((O, '1, t).

Consequently, the most general solution 1.0 Eq. (21) has the fonn of

ti rqL = Jo d,j' ('j - ,/)I((,j', '1, t) + Jo dq' F(O, q', 1)1((0, q', t) + qMq(q, t) + Mt(q, t),

(28)

(29)

(30)

where the two-variable function M(q, t) is arbitrary, alld the fnnetion I((,j, '1,t) 'f O is the
most general solution to Eq. (23). Note that, taken along 'j = (d/dt)q(t) ami q = q(t),
the contribntion from the second line of Eq. (30) amounts to dM['1(t), tl/dt, i.c., to the
standard ambiguity of the integrand in the aetion principie <5J¿ dt L(,j, '1, t) = O.

Now, considering Eq. (23), it is legitimate to employ the coordinate transformation
(11) amI search for the solution 1( = 1((,jo,'1o,t) in the chart ('jo,qO,t). neplacing in
Eq. (2:3) F by Q(tt), q by Q(t) ane! O,¡, Dq, O, by the right hand sides of Eqs. (15), we have

- ~(QqoOqO - QqoO,io)Q(tt)[( + (~j')(Q(t)qoOqO - Q(t)qoDqo)[(

+ ~j') (Q(t)qoO,¡o - Q(t)qoDqo)1( - Q,jt) (QqoO,io - Q'ioDqo)1( + D(t)1( = O. (31)

Afler some cancellations, we find

(:32)

On the other hand, acting with D(I) on Eq. (16) one obtains

D(I).I = -(Q'io0qo - Qq,,u,¡o)Q(tt) == iJ,¡F,

and then E'I. (32) reduces to

iJ(t).1
0(1)1(+ -.1-[( = O,

01'

Therdore, lhe solution 1.0 E'I. (23), expressee! in the chart (,jo, 'lo, ti, is given by

[( = 1((,jo,'1o,t) = ~P(,jo,qo),

(34)

(:15 )

(:lli )

\\'Iwrc P((ju, flo) ¥ O is aH (l7'bilm7'y fllllctioll of tW() variahle~. The facl,o[ .J~ 1 is determill('d

Iluiqudy hy the causal curve, i.e., in t.enlls 01' tlw fUlldioll Q{(jo. (lo. t.) ac('ordillg to t.he
definilion (4).
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The function K, expreSHed in the chart (rj, '1, t), is obtained by substitution of rjo ami
'lo from Eq. (6) into Eq. (36),

K(q,q,t) = (~P(rjo,qo)) .
.1 'io=R('¡,'1,t),qo=S(q,q,t)

Corollary

In cases where the causal curve is such that the depen,lence of F(rj, '1, t) on q is simple, in
order to determine J(rjo, 'lo, t) it can be convenienl to employ the iclentity F,¡ = 8(t) In J
[see Eq. (18)) in the form of

(38)

The quaclrature of this, cousistently with the initial conclition for .1, Eq. (7), amounts to

(:39)

5. THE EXAMPLE OF TIIE DAMPED IlARMONIC OSCILLATOII

The clamped harmonic oscillator is of speeial interest due to its relation lo squeezecl
states [7]. In oreler to illuslrate how our general c:onstruction of L('j, '1,t) works in practice,
consider the causal curve defined by

~ [ sinwt]'1= Q:= e- t 'lo coswt + (rjo + (J'Io) ---;:;- , (40)

whcre f3 2: O, w 2: O are two eonstallts aJl<I thc case ,....hen {3 = O 01' W = () is obtaincd via
a limitillg l>foces:;. Thc time derivativc is givctl by

~t { [(" ,)] sin wt }rj = Q(t) = c- rjocos wl - (j,jo + {J + w 'lo -w- . (41 )

We first verify that Eq. (40) is indeecl a causal curve. From Eq. (4) we find that .1 =
exp( -2(Jt) i' O and then the conditions (5) are vali,1.

By solving Eqs. (40) and (41) for 'j¡, and '1" we o!Jtain the functions R ancl S which
appear in Eq. (6),

~t { [( 2 ,)] sin wl }'jo = R:= e ,jcoswl. + (J'j + (J +w '1 -w- .

¡JI [ sinwt]'lo = S := c '1c:oswl - (rj + (J'I) ---;:;- .

Next, with Q giveu by Eq. (40), one easily fiuds that the fundion F(q. '1, t) ddined
in Eq. (10) becomes

F = -2{J,j - (/J' + w") q. (43)
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Therefore, our causal curve '1 = '1(t) = Q(qO, 'lo, t) with constants qO and 'lo satisfies the
cquatioll

(44)

which is precisely the equation of the damped harmonic oscillator-with unit mass-
written in the most convenient parametrization. Inversely, one easily sees that the '1 = Q
defined in Eq. (40) is the most general solution to Eq. (44) as determined by the arbitrary
initial conditioIlS.

In arder to obtain the Lagrangian which enrresponds to Eq. (44), we first observe
that

(45)

with P(qO, 'lo) O; O, being an arbitrary function of two variables, therefore K understood
as a function of (q, '1, t) is

(46)

Then

K(O, '1, t) F(O, '1, t)

13ysubstitution of Eqs. (46) and (47) into Eq. (30) we end up with an eflective Lagrangian
for the damped harmonic oscillator, whose structure depend, linearly on the arbitrary
function of two variables P('io, 'lo) O; O. \Ve will now investigate some cases of interest
which correspond to various possible choices for the function P(qO, 'lo).

The simplest case is when P = 1, then

K = e2iJ',

K(O, '1, t) F(O, '1, t) = - (f32 + w2) '1e213'.

The sub,titution of this into Eq. (30) lead, to the Lagrangian

(48)

This simple time dependcnt Lagrangian for the oscillator with damping, wa.-;cOllsidered
by researcher, like Caldirola [7]' ({anai [8]' etc. [9]. It h'L' the merit that in the limit
fJ ~ O it redllces to the standard Lagrangiall of thc harmonic oscillator, and thcll in
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the limit w -lOto the standard Lagrangian for the free partide. With p = L,¡, and
H = ]Ji¡ - L, the corresponding Hami1tonian is

(50)

It is possible, however, with an alternative choice for P(i¡o, '10), to construct a station-
ary Lagrangian L('i, '1) independent on 1 for the oscillator with damping. We will derive
a Lagrangian of this type first via a techniqne which does not employ the general resnlt
(30) accompanied by (37).

With the specilic F from (43), which is independent. on 1, one can look for L from
Eq. (21), with L, = O, confrontin~ thns the two dimensional problem

Let now

11.:= 11.('i,'1) := 'iL,¡ - L == q2 (~L) ,
r¡ (i

then

qLqq = 11.q:

Gne then easily sees that Eq. (51) mnltiplied hy q rednces 1.0

- [2fJ(j + (fJ2 + w') '1] 11.q+ ,j11.'l = o.

The Monge characteristic band for this partial differential e<¡nation is

(51 )

(52)

(53)

(54)

ti'i
2fJ,j + (f32 + w2) '1

tiq
-'-,
"

(55)

which is an eqnatioll of the Ahel inte~rable type. Indeed, the snbstitntioll q = S" rednces
(55) to

or

tir¡ s tis

-;¡ + (s + {3)2 + w2 = O, (56)

ti {[(j + (fJ + iw)"I(l+iJ!iw)/2 ['i + (fJ - iw)q](I-IJ/iW)/2} = O.

Consequently: with tite real and positive

h := ~[(i+ (fJ + iw),,](I+fJ/iw) ['i+ (fJ - iw),¡](I-IJ/iw) 2: O,

(57)

(58)

bcing constant along the charadcristic halld Eq. (55): the must gelleral soilltioll to
Eq. (54) has the form of

11.= 11.(h),
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where 11.(h) is a real arbitrary function of one variable. Note that we have normalized h
in sueh a manner that lim¡J-+oh = (q2 + w2q2)/2, which is the standard Hamiltonian for
the harmonie oscillator. With 11.(q,q) assumed to be known, the detinition of 11. can be
integrated for L in the fonn of [see Eq. (52)J

L = 'i (q d,q~11.(q',q) + qMq(q), (59)Jo q
with the arbitrary M(q) being irrelevant from tbe point of view of the aetion principIe.
One easily verities that the so constructed L satisties Ec¡. (51)-for every M(q)-and that
the crucial c¡uantity J( = L,;q beeomes [see Eq. (53)]

1
J( = ..,11.,; (60)

q

With the hclp of Eqs. (40) and (41), we now observe that

z := q + (f3 + iw)q = ['io+ (f3 + iw)qol e(-il+iw)'. (61)

lt follows that the argument funetion h can be expressed in terms of 'io, qo and t in the
form

h = ~[qO+ (f3 + iw)qO]I+il/iw [qO+ (f3 - iw)qojl-il/iw, (62)

i.e., iL' dependent only on qO ami qo, with the complex exponents in Ec¡. (58) doing the
triek.

At this point we can easily determine the fonn of the speeifie funetion P(qo, qo) whieh
leads to the stationary Lagrangian (59). lndeed, spelling out Ec¡. (60) in terms of the
ehart ('io, qo, t) [see Ec¡. (36)J

~JP(qO,qo) = - JQl (QqOÜqO- Q'Ioüqo)11.(h), (63)
• • (t)

where now h is to be interpreted iL' given by Ec¡. (62). Multiplying this by .J ,p O. we
thus have

P(qO,qo) = Q11.h(Qq,ü,;o - Qqoüqo)h.
(t)

On the other hand, using the definition (40) of Q, we have

(64)

(65)

(66)
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Substitllting this into Eq. (65) leads to

2h
(qO + (3'1o)2 + w2q6' (67)

This sllbstituted into Eq. (64), with tenns dependent on t cancelling out, leads to the
simple result that

. 2h1íh
P('1O, '10) = (' + (3 J2 + 2 2 ji O,'lo 'lo w 'lo

(68)

with the fllnction 1í = 1í(h) arbitrary, ami h given by Eq. (62). This is the most general
farm of P(qO, 'lo) which leads to the stationary Lagrangian for the damped harmonic
oscillator Eq. (59).

5.1. THE HAVAS LAGRAr-;'GIAt-:

There is an inlinite number of choices for the stationary Lagrangian for the damped
harmonic oscillator, Eq. (59), due to the ambigllity of t.hc choice far 1í = 1í(h), 1í" ji O.
With t.his funct.ion being ent.ire!y arbit.rary, t.he t.ransit.ion from the Lagrangian formalism
to the Hamiltonian formalism encounters t.he algebraic difRclllty concerned with solving
effective!y p = Lq(q, '1) in t.he fonn q = ,j(p, '1)' There is, however, a special choice far
1í(h)-detected already in Re£. 6,

1í = -1In(2h), (69)

within which this difRcult.y disappears and the effective lIamiltonian II = H(p. '1) can be
easily const.ructed. According 1.0 Eq. (68), t.his carresponds 1.0 t.he choice far P('jo, 'lo)

1
P('jo,'1o) = -t. +{3 )2+ 22''lo 'lo w 'lo

lndeed, with this choice for 1í, we have [see Eq. (52)1

But. parallel to t.he lirst. !ine of Eq. (66), h,¡ = 2,jh/ [(q + {J,¡)2 + W
2'12], so t.hat

(!L) = [_1í + _1_ In q + ({3+_iW_)_'1] .
q q q 2iw'l 'j + ({J - iw)'1 q

It follows, using tbe change of variable z := 'j + ({3+ iw)'1, t.hat

L = -21Inzl+{J/'''' zl-{JI'''' + 2.'j (Inz -Inz) + qMq('1),
lWq

(70)

(71 )

(72)

(73)
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where M(q) is arbitrary and irrelevant from the poillt of view of <5Jt~dt L = O, so that
without any loss of generality, it can he set equal 1.0 zero. The relllaining terms are easily
seen to amount to

L = ~ (z In z - ji 111ji) ,
z-z

z :=ti+({3+iw)q. (74)

This is essentially the Havas Lagrangian in a slightly different notation. In arder 1.0
determine the corresponding Hamiltonian, we observe !irst that

p:= L. = ~ In(~) = _l_ln (~) ,
q z - z Z 2lWq Z

and then

:. = ti + ({3 + iw)q = c2lWpq.
ji ti+({3-iw)q

From the second equality of Eq. (76) it easily follows that

ti + {3q = wq cot.(wpq),

(75)

(76)

(77)

amoullting t.o t.he effective inversion formula ti = ti(p, '1). With this established, we have

z = wq iwpq
. ( ) e ,SIIl wpq (78)

consistently with z - ji = 2iwq. Therefore, the Hamiltonian expressed as the function of
p and '1 is given by [see Eq. (58)]

H=H
= -t lu zl+/J/;w jil-iJ/;w

= lu [c-IIPq sin::q)] ,

which is the Havas Hamilt.onian for t.he damped hannonic oscillator.

5.2. CO~IPARISON BET\VEEN CANONICAL EQUATIO;-';S FOn. THE DA~tpED HAHt>.10NIC
OSCILLATOR

(79)

As we have seen, in t.he case of t.he causal line with F = -2{3ti - ({32+ w2) '1, the Hamil-
tonians

H = t [,,-2I1tp2 + ({32 + w2) ,,2I1tq2] ,

H = In [,,-¡iPq sin::;,,¡)] ,

(80)

(81 )
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which correspond to the choices for the arbitrary P(,jo, '10)

P=I, (82)

I
P = ------ (83)

(,jo + {3qO)2 + w2q6'
respectively, are both inducing the same ordinary differential equation

ii + 'fj3'j + ({32 + w2
) '1= O. (84)

Being concerned with the implications of the amhiguity for the choice of P-within
the general thcory-and its COIlSCqllCIlCCS 011 the level of the quantulll mechanics. the
comparison of the theories based on Hamiltonians (80) and (81) is of interest, in particular
pcrhaps for the rcsearchers interested in group-theorctical treatments with hannonic
oscillators becanse in the limit (3 -t O, the equivalent llami1t.onians (80) and (81), j.c .. in
the case of the equation ij + w2q = O, amount 1.0

H=Hp2+W2l), (85)

JI = In [Sin~:q)]. (86)

Equation (86) is a rather not commonly known expression for the Hamiltonian of the SUUl-

dard hannonic oscillator. So me intllitiolls gathcrcd by cOlJlparillg tite thcories fOllIlded
on the Hami!tonians (80) ami (81) will be later useful on the leve! of the general theory
of the causal curves embedded into the cano nica! formalisnL

Consider the canonica! equations 'i = !l,,,P = -!l'I' where !l is given by Eq. (80).
2{Jt ('2 2) 2(j{ti = e- 1', l' = - (j + w c' 'l.

By dilferentiating we have

ii + 2{3'i + ({32 + w2
) '1 = (J.

Similarly one finds that

(87)

(88)

ji - 2{31; + ({32 + w2) l' = O. (SV)

The explicit solution 1.0 (S7) in terms of initial conditions al. t = O, 1'0 and 'lo is

l' [ Sillwt]'1= C-' 'lo coswt. + (1'0 + (J'Io) ---;;;- . (VO)

l' = c~'{1'ocoswt - [(Jpo + (iJ2 +w2) '10] Sil~Wf}. (Vi)

It is importaut lo stress that with this Ilamiltollian the cow:ept of c:ltlollicall.v ('onjl1¡!;ated

1Il0mcntuIIl is dcfined simply by
(V2)
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G.l. TIIE HA~IILTO~IA~ H = lll[exp( -j3pq) sill(wpq)/wq)

Herc thc caBonica1 cquatiollS amOl1llt to

'j = Gq,
1¡, = -Gp+-,
'1

G := -(J + w cot(wpq),

all(i thcrcfore thc callonically conjugatcd JIlOlIlcntulIl is givcn by

1 -,(,j+{3q)
l' = wq Cot. ---¡;;;¡-.

From E<¡s. (9:1) it follows that (1''1) = 1, alld conse<¡nent.ly G
t.he seeond derivat.ive of '1 with respeet. t.o time is given hy

w2q
ij = - . 2 + [-{3 + weot.(wpq)],j

sm (wpq)

= -2{J,j - (rp + w2) 'J.

(9:3)

(!)4 )

_w2/ sin 2 (wP'l). Then

(!JG)

Therefore the Hamilt.on e<¡lIations generatcd hy t.he I!allliltonian (81) are sllch t.hat. '1
satisfies duly t.he e<¡lIation of t.he damI",d oseillat.or.

The most general solllt.ion to E<¡. (9:l) in tcnns of initial condit.ions PO and 'lo at.
1=0 is

wqo -~t sinw(t + 1'0'10)q = -----c ------.
sin(wpoqo) w.

p = sin(wpoqo) c~t .w(t + 1'0'10) .
wqo smw(t +1'0'10)

7. CONCLUDING IlEMARKS

(!JG)

\Ve have dcveloped a mct}¡od for gcnerating Lagrangialls and lIamilt.ollians [01' a givcn
systCtrl ba..r,H~d OH t.he knowledgc oí' its trajcct.ories in phase spacc. 'rile llsefulll{,sS nf
this mcthod IHL~ Leen ShOWIl with t}¡e gencratioll of aB infinitt: llllIll!Jcr of Lagrangians
:uld HaUliltOJlians ror thc (lampe(1 iHUlllollic oscillator, inc11Hic(1 aIllOllg tllClIl two well
kllOWII ()}les. The possibility of oi>taining an infinite 1lI1mbero[ eqllivalcnt Lagrangians
and Hamiltonians [01' a given systmll i.sintriglling and \\'mth exploring its ccHlseqllPIH:es
in fut.ure papen;. Once tile Lagrallgian [or a s,ystem is gcncrated

1
a lIamiltonian can

be dd,ermincd and classical and qllantlllll dynalllics can he analyzed. Qne interest illg
applicatioll ('(luid 1)(' t.hat. (lf the df'termillat.ioIl or the Lagrangían of a S.YSÜ~Ill wh('1l (lile
can only generatc traject.orif's Illllllcrically 01'by (~xperinJ{~lIt inst.ead01' being able to writc
a diff"reutial "'1uat ion for it.
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