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ABSTRACT. Tbe aclion of lhe groups SU(2) and SO(3) as dynamical symmelry groups of lhe
two-dimcnsional isotropic harmonic oscillator and of tllc Kepler problcIIl in two dirncnsions, re-
spectively, is analyzcd and thc corrcsponding quantum problems are sol ved employing thesc
groups.

REsmIEN. Se analiza la acción de los grupos SU(2) y SO(3) como grupos de simelría dinámica
del oscilador armónico isátropo bidimcnsional y del problema de Keplcr en dos dimcnsiones,
respectivamente, y se rcsuelven los problema.s cuánticos correspondientcs empleando cstos grupos.

rAes: O.3.20.+i; 03.65.Fd; 02.20.Qs

l. INTRODUCTION

The importance of the continuous sytllIllctry grollps in analytical IIIcchanics is very well
kno\\!Il; if the Lagrangiall fllIlction of a mcchanical SystCll1is invariant with rcspcct ta a
one-paramcter gran}) of transformatiolls 011the cOllfiguration spacc. then thcre exists a
corrcsponding constant of the matioll. IIowever, for SOlllelnechattical systenls, tlwre exist
constants of the motion that arc not related witli symmctries of t.hc configllratioll space;
nevert.heless, t.hese conslant.s are always relat.ed 1.0 symmet.ry gronps that ael on the
phase spac.e, leaving t.he Ilamiltonian fnnclion of the syslem invarianl. Snch symmetries
are called ¡¡hidden symmctries" 01' "dynamical sYlllmetrics:' In qllantlllll mechanics. a
const.anl of t.he mot.ion t.hal do es not. depend explicilly on t.he t.ime corresponds to an
operat.or tha.t cornmutes w¡th the lIamiltonian, alld the existcnce of such al! opcrat.or
explains partially t.he degeneracy of t.he energy levds; when lhe degeneracy of t.he energy
levels is related 1.0 a hidden syrIllne!.ry, lhe degeneraey is ealled "accidental" (se". c.g ..
Refs. 1-:3 and the references cited t.herein).

Two well-knowll examples of mechallical syst.cms with hiddl~I1 symIllctries an~ the
Kcpler prohlcUl ami t,iJe isotropic harmonic oseillat.or. In hot.h cases tite pol,PIlt.ial is
spherically syullnetric, which implics tite cOllscrvatiol! o[ t.he angular mOnIelltlllll, but.
thcre cxist additiOIJaICOllstallts of tlle IllOtiol1\""hose(~xistellce <loes 1101.come [rOlllol)viOllS
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geometrical symmetries (sec, e . .'I., Refs. ;¡, 4 and the rdcrenccs citcd therein). For the
Kepler problem, there exists a conserved vector-the Hennann-l3ernolllli-Laplace-Hllnge-
Lenz (HBLRL) vector-which lies on the plane ofthe orbit ami points along its symmetry
axis passing throngh the c(mter of force. The analog of the I1I3LRL vector was employed
by Pallli [5] to find the energy levels of the hydrogen atom, whose accidental degeneracy
is accollnted for by the existence of this vector (see also Refs. 2 and 3). In the case of the
isotro¡)ic hannonic oscillatclr, OlIC fillds a cOIlserved sytlllIlctric secolld-rank t.ensor wil()sC
eigenvectors determine the axes of the orbit (see, e ..'I., Hds. 2-4).

The aim of this papel' is f.o give an elemcntary allalysis of thc hiddcn sYlIllllctries of
the isotropic harmollic oscillator and of the Kepler problem (fill' bOllnded orhits) in two
dimcllsions allcl tú sho\\' their application in finding thc encrgy lcvels of the corrcspondillg
qualltlllll étllalogs. In particular, we disCllSS in :-IOllledetail thc mauner in which t,he group
SU (2) <tcts a.."ia dyuamical syrnmctry grOllp 01' tite two-<iinlcllsional isotrol>ic imrIlUlllic
oscillator (TIBO), pointing out the errOllCOllS argulIlctlts cmployed in fiefs. 1 alld tI in
order to identify tbis grollp from its infillitesimal action [see the disclIssion after E<¡. (1a)].
In Sect. 2 we show that the gronps SU(2) and SO(3) are dynalllical sYllllllet.ry groups for
the '1'1110 amI the two-dilllensional Kepler problem with uegat.ive ener~y, respecti\'ely. In
Sect. 3, we shO\\' hm\' these sYIllmdry grollps can he Ilsed to ohtain t.}¡c eigcllvalucs and
cigenv('ct.ors of the correspollding llallliltonian operators. A more detailpd aCCollut ()Jl the
application of the sYlllllletry. grouP" in t.he solutiou of the Schriidiuger e<¡uation as well
as several examples can be fonnd in HeL :1and the references cited therein. This book
illcllHles a cOlJlprchcllsive list uf rcfercnces abaut Iliddell symmd.rics aIHI thc COIlllcctioIlS
betweeu the harlllouic oscillator aud the Keplcr problelll.

2. EXAMPLES OF DYNAMICAL SYMMETRIES IN CLASSICAL MECHANICS

2.1. DVl\'AMICAL SYMr-..lETHIES OF TIIE TWO-DII'vIE:\'SIONAL ISOTHOI'IC IIAHMO;\,lC OSCILLATOR

The lIamiltonian functiou of the two-dinlPnsioual isotropic hanuonic oscillator ('1'1110).

1 (2 2) 1 2 (2 2)JI = - 1',+1'" + -¡\fw .r +y .2M . 2

can bp expressed in lhe fOrIU

1JI = _",1.',.2M' ,.

whcn~

, == (1/)1) == (iV' + Mwer) .
tjJ "/)2 '1"1 + M w)/

(1)

(2)

(:J)

Equation (;~) (~stahlishes a Ollc-tO-OJlC (,olTcSpOndcllce IwtWI'CIl the points (jf the phase
spac(' and tiJe two-compommt cOlllplex vpdors 'l/J. Furt.1H'rmorc. we call use lite cOlllpie:x
varia1Jl('s 1/'1, 1/'21 ill place ()f the rallonicai ('()ordinates. \Vith t he Poissoll hracket dditled
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in ,uch a way that {x, ]Jx} = 1, one ¡ind, that the Poisson bracket, among the components
of 1/J and theÍr complex conjugates are

(4)

(A, n, ... = 1,2). Except for a constant factor, the component, 1/JA are the analog' of the
"destruction'1 or "lowcrillg~loperators cmployed in thc usual trcatment of the quantull1
harmonic oscillator.

Let a he a 2 x 2 matrix, the (,calar) fnnction 1== 1/J 1a1/' i, real if and only if o is
hermitian, al = a. In fact, J = 11= (1/Jla1/J)1 = 1/Jlal1/J, which coincides with 1if and
only if al = a. On the other hand, making use of Eq. (4), one find, that the Poi"on
hraeket of the fnnction 1== 1/Jla1/J with 9 == 1/,1{31/J,where {3 i, another 2 x 2 matrix, i,
given hy

{j,y} = -2iMw1/Jl[n,,B]1/J. (5)

Sinee the lIami!tonian i, given by 1I = (l/2M)1/JII1/J, where 1 i, the 2 x 2 unit matrix
[Eq. (2)] and any matrix eomnlUte, with 1, fmm Eq. (5) it follow, that any function of
the form 1= 1/Jtn1/J is a constant of the motion:

{j,H} = -iw1/Jl[a,lJ1/J = o.
In particnlar. if a IS a hennitian 2 x 2 matrix, 1/,la1/J i, a real-valued constant of lhe
Blotioll,

The matrices

(-1 0) (0 -i)
a2 == O l' a3 == i O' (6)

together with the unit matrix, form a basis far the 2 x 2 hennitian matrices. The matrices
in Eq. (6) are the Panli matrices (though not in the usual repre,entatiou) and they ,atisfy
t.11e COInIlllltatioll relatiolls

[Oil aj) = 2icijl •.Okl

t}¡c illdices i: j, ... nlll from 1 to 3 alld a rcpeatcd index implies SllBlIllatioIl.
1.0 the result, of the preceding paragraph, the three <¡uautities

I
Si == 4Mw1/Jlai1/J

(7)

Ac('oniing

(8)

are real-valned constants of the motion which, hy virtne of Eqs. (5), (7) and (8), satisfy
2

{S"S]} = -2iMw (_1_) 1/JI [ai, aj]1/J = ci],ih. (9)
4Mw

Making use of Eqs. (:1), (ti) and (8) 'lile fiuds the explicit expressions

I Mw
SI = 2MwJ!.,]Jy + -2-:r:y,

( 10)
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The representation (6) was chosen so that t.he expressions (10) coincide with the defini-
t.ions given in Ref. 4, Sec!.. 9.7.

Thc conservation of S31 which is aIle half of thc angular rnomentulll \vith respect
t.o the origin, is a consequence of t.he invariance of the system under rot.ations on the
x-y plan. about. the origino I/owever, the eonservation of SI and S2 is not. relat.ed to
symmetries in t.he configuration space, which corresponds t.o the fact. t.hat SI an<l S2 are
not homogeneous fundions of first <legree iu t.he moment.a. Nevertheless, since all t.he S;
are constants of the motian, each Si is thc gCllcrating fUllctioll of a O1IP-pararneter grollp
of cananical transformations that lcave the Hamiltoniall invariant.

In arder to find explicit.ly the canonieal t.ransfonnat.ious generat.ed by Sk, ;.c., the
symmet.ry of H leading to the eonservation of Sk, we reeall that any fundion of the
coordinatcs and Illomcnta, G, is the gcncrating functioll of a onc-parameter grollp of
transfOfmations, parameterized by a variable s, in such a way that thc rate of challgc of
an arbit.rary funetion J under t.he t.ransformat.ious generat.e<l by C is ¡.>;ivenby

dJ-¡ = ¡¡,C}
(S

( 11)

Hence, from Eqs. (4), (8) and (11), it follows t.hat under t.he t.ransformat.ions generated
by Sk,

( 12)

whase sollltion can be writtcll a.o.;

0[, sitler 0k2 = J, wc al so have

( 13)

1jJ(S) = ([cos(s/2)J 1 -; [sin(s/2)J ak\ 1jJ(O). ( 14)

Sincc Gk is hermitian alld traceless, U == exp( -1isak) is a 1I1litary lIlatrix with detenni-
nant +1, ;.e., U belongs to the ¡.>;ronpSU(2). It. is easy t.o see tlirecl.ly that. if U E SU(2),
t.he t.ransformation 1jJ >-+ U1jJ l"aves t.he Hami1tonian (2) invariant. As we have shown.
by construct.ion, the t.ransfonnation (13) is eanonical. lIt. can al so be verified direet.ly
that. the transformation 1jJ >-+ U1jJ, for U E SU(2), is eanonieal sinee preserves t.he Poisson
braekets (4)].

Makiu¡.>;use of Eqs. (3), (6) and (14), t.he symmetry t.ransfonnations ¡.>;enerated by the
S; eau be expressed in terms of the coordinates x, y, JI" and Py: (lIle finds t.hat. lIuder
the t.rallsforlllations gencrated hy S} and S2 tlw coor<iillah's and lIlüllH~nt.a are mixpd. It
ShOllld IH~ Iloticed t.}¡at the right-halld sid(~ of Eq. (14) is a periodic i'UIlCtiOll uf ...•.with
perio<i '17r 1 alld tita!. ill ordcr to ohtaill a.ll tite difl'ercllt t.rallsformatiolls gPIlPrated h,Y(':tcli
:h:, t.l)(~ parametcr s must raIlge over an illtprval of ICllgt.h '11T.

!l"' substitutin¡.>; 1''1. (14) inlo 1''1. (8). makiug IIse of t 11<' fael thal (T,(T) = ái,! +i''1¡(T¡.
OIW cau ¡¡nd the trallsforlllatiolls J,!;t'IJ('rat.l'd hy f:h 011the Si t.l1t'ltls('I\'('S (Sl'e. e.,I} .. H('L ti).
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In this manner we find that under the transformations generated by SI, the functions Si
transform according to

S](s) = SI (O),

S2(8) = cos(s) S2(0) - sin(s) S3(0),

S3(S) = sin(s) S2(0) + COS(8)S3(0),

(15)

which represents a rotation through an angle s about the S] axis in the (SI, S2, S3) space.
I3y perInuting cyclicly the subscripts appearing in Eqs. (15) one obtains the e!fect. of the
transformations generated by S2 and S3. Note that for s = 2rr, the transformation given
by Eqs. (15) is the identity, but the sign of ¡/J is inverted [see Eq. (14)).

It. ,hould be noticed that Eqs. (15) fol1ow directly from Eqs. (9). In fact, Eq. (11)
wit.h G = S] yields

dS]
ds = {SI,S¡} = O,

dS2
-d = {S2,S¡} = -S3,s
dS3
ds ={S3,S¡}=S2,

(IG)

which lead, t.o Eqs. (15). However, if we consider t.he funct.ions Si only, it would seem
t.hat al1 t.he different. transforInat.ions generated by S] are obtained by restrict.ing 8 to the
intervalO :s: s < 2rr, which, in the present C11$e,would be wrong.

The values of the constants of the motion S], S2 and S3 label the solutions of the
dynamical systcJIl undcr cOllsideration; in ather words, through each point of the phase
space (which h'k' dimen5ion four), there p'k'5eS one (and only one) curve that represents
the time evolutioll of the systcm; alollg each of thcse curves, Si, 52 alld 53 are COII-
stant and there exists a one-to-one correspondence between these curves and the points
(S],S2,S3). The orbits of the TIHO in the configuration space are el1ipses centered at
the origino The constant.s of the motion S], S2, S3 can be expressed in terms of the
semi-axes of the el1ipse, a, b ((1 :::: b ::::O), and of the angle , fOrIned by the major axis
wit.h the x axis:

SI = !Mw(a2 - b2) sin2"

S2 = -tMw(a2 - b2) cos2"

S3 = :l:~Mwab.
(17)

'fhe value of S3 is poslt.lve or negative according to whether the el1ipse is traversed
c(Jlluterc1ockwisc al' c1ockwisc, respcctively. It may be noticed that, due to t.hc sYIJIIllctry
of the el1ipse, the angle , is defined up to an integral multiple of rr; but this ambiguity
does not. alfed the value of the constant.s (17).
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ConverRely, the parameters of the el!ipse traeed by the TIllO in the configuration
spaee can be expressed in terms of SI, S" and 5.3. From Eqs. (17) one fillds that

(18)

1 SI
, = -- aretan-,

2 S" "e =

wh"r" " is the eeeentrici ty.
Ullder the action of the transformations (14) (amI, henee, of allY compositioll of them)

cac}¡ point of thc phase space is mapped outo <tnothcr point correspolldillg, in general,
to a distillct orbit in the configuratiOll spacn (01' f.o motion in the opposite direction),
bllt. with the same energy, thercfore ,," + 1'" is invariallt ["0t" that II = 1Mw"(,," + {¡")J.
l'vIaking IIse of Eg. (18) we can easily filld the df"et of the trallsforInatiolls g('llerat.ed by
Sk 011 the orbit parameters. For inst.ance, slIbstit.llting Eq. (15) illto Eq. (l~). one finds
t.hat IInder t.he t.ransformat.ions gen"rat.ed by SI t.he axes of t.h" dlipse rot.at.e and t.he
ellipsc paramctcrs changc according to

a" = !I:W ( VS¡ + si + sf + JS¡ + [COS(8)S"- Sill(S)SI]") .

b"= !v:W (JS¡+Si+S:¡- JS¡+ [cos(s)S"-Sill(S)S3]")'

2 /S¡ + [<:os(s)S" - sin(s)S3]"
c2 = -=====V==-_--;o===========JS¡ + Si + S:¡ + JS¡ + [cos(s)S" - sin(s)S;¡J"

(19)

Thcse exprcssiolls are periodic futlctioIlS of 8, with pcriod 7r; thercforc, [OI' él givcn sct of
vallles of" ami b, there are at least Jom' (ill most. cases, eight.) dist.illct. rot.at.ions gellerat.ed
by SI I"ading t.o orbit.s wit.h t.he same sel of paramet.ers and not. only t.wo. 'LSdaimed
wit.hollt. proof in ReI. 4, where snch an 'Lssllm"d dOllble-valuedness is employed t.o condude
t.hat t.he group generat.ed by t.he S, is SU(2) and not. SO(3). t.he group ofrot.at.ions in t.hree
dimensions. Similarly, in ReI. 1 t.he dfect of t.he t.rallsformat.ions gellerat.ed by f( == 251
on thc orbit paramcters is considcred alld it is a..<;serted that it takC!s a ,In rotatioll to
brillg a given orbit. into it.self; however, al! t.he differellt. t.rallsforIllatiolls gellerat.ed by 251
are obtaincd if thc corresponding parameter tales values in an interval 01' length 27r (note
t.hat 251 gellerates t.he rot.at.iolls (15) wit.h" r"plae"d by 28 [see Eqs. (lü)]) ami t.here are
t.wo difr(~rellt rotations in the p}¡a....,e space t.hat produce the sanw vaIlles (JI' Si and, hcnce,
the same orbit. Thus, it would take él. 7r rot.ation gcncratcd by 251 t.o brin/!;a given m'bit
illto itselI.

\Vc clase this subsection with the following rClIlarks. The prec('ding results can be
ea...r..;ily extended to the isatropic harlllollic oscillator in n dimcnsiolls. It can be readily
seell t.hat. Eqs. (2), (4) alld (5) hold if 1/) is a n-compollellt compl"x v"ctor d"filled ill a
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similar way to E'I. (3). Tiren, if tire matrices Aa (" = 1, ... , ,,2 - 1) form a basis far tire
traceless Irermitian" X" matrices, tire scalar fllnctions Sa '= 1/JtAa1/J/(4lv!w) are constants
of thc Illotion and satisf.y tite Poissoll bracket relatiollS

wlrere fa/w are real constants snclr tlrat [A,,, Ab] = 2ifabcA,. [ej. Eqs. (7-9)]. Tlris simple
procedure to construct constants of tire motion satisfying tire re!ations obeyed by tire
matrices Aa contrasts witlr tire cllmbersOlne indirect metlrod followed, e.g., in Refs. 2 and
:l. Tire grollp of canonical transformations generated by tire Sa is SU (n) and, lInder tlrese
transformations, tire Sa t.ransform according to tire adjoint representation of SU(,,).

2.2. DYNA~lICAL SYMMETHIES OF TIIE KEPLEH PROBLEM IN 1'\\'0 DH...tENSIONS

Tire Hamiltonian fllnct.ion corresponding t.o t.lre l<epler problem in t.wo dimensions IS

givcn by

1 (2 2) k
11 = 2M I'x +1'" -~' (20)

wlrere T '= Jx2 + ¡p ami k is a positive constant. As in tire case of tire TIHO Hamilto-
nian (1), t.lre only obvions cont.inllolls symmetries of t.lre Hami!tonian fnnct.ion (20) (t.lrat
are, at tite SaIne time, cflnonica! transformatiolls) are tite rotatiolls abont the origino
Owing lo t.lre farm of t.lw lIamilt.onian (20), we slrall follow a different approaclr to t.lrat
employed in t.lre preceding sllbsection in arder t.o lind additional symmetries.

The illvariallce of Ji lIndel' t.hc rotat.iolls ahollt the origin irnplics that the angular
Illoment 1111l

(21 )

is a const.ant of tire motion. As is well known, tire Hermann-Bernolllli-Laplace-Rllnge-
Lenz (IlBLRL) vect.or is a conserved vect.or tlrat. lies in t.lre pI",,,, of tire orbit in t.lre
direction of tire point of dosest approaclr of tire particle to tire origin (see, 8.g., Reis. 3
and 4). Tire component.s of tire llBLRL vectar are given by

(22)

and it is ''''''Y t.o see tlrat tlreir Poisson brackets wit.1rtire llamiltonian (20) indeed vanislr
and tlrat

Tlrerefore, considering only bOllnded orbits, for wlriclr II < O. from Eq. (2:1) it follows
t.lrat.

SI -
Ax

v-2l\IH
S - JI"
2 = -.¡;=-""2""i\f""'¡"'! (24)
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satisfy the Poisson bracket rc1ations of the augular momentum [Eq. (9)]

{S;, Sj} = E;jkSk. (25)
Sillce the Si are constants of tite motioll, thcy are generating functiolls of canonical

transformations that leave the I!ami1touian iuvariant; however, the use of Eq. (11) to
fiud the explicit form of the trausfonnations geuerated by SI aud S~ leads to sets of
dilferential equations that are difficult to solve. Nevertheless, the elfect of the transfor-
mations generated by the S; on the S; themsclves is already knowu siuee, iL' we have seeu,
from Eq. (25) it follows that in the (SI, S2, S3) space the trausformatious geuerated by
Sk eorrespoud to rotations about the Sk axis, which are giveu explicitly by Eq. (15) ami
similar expressions obtained by the eydie pennutation of the indiees. In the present case,
S3 coincides with the angular mOUIeutum [ef Eq. (IO)J whieh is the geueratiug fuuetion
of rotations about the origin, uuder whid1 (SI, S2) transforrns as an ordiuary vector; this
implies that, by contrast with the preeeding case, the paramet.er s appearing in Eq. (15)
ami those obtained by cyclic permut.at.ion of the indices uow rauges over an int.erval of
length 2" ami t.hat. the group generat.ed by t.he const.ants S; is 50(:3).

As iu t.he case of the TIHO, t.he eoust.auts of the motion S; are relat.ed t.o t.he orbit.
paramet.ers and t.here is a one-t.o-one rclat.ion bet.ween orbit.s and poiut.s of t.he (SI, S2, S3)
spacc. In the prcscnt case, the orbits are cllipscs with a foens al the origino Since the
magnitllde of the HBLRL vector amollllts to Al ke, \vhere e is the ccccIltricity, [raIn
Eq. (24) one fiuds that

SI = JMka (eC051) , S2 = Jt,fka (esin,), S3 = r.JMka(1- e~), (26)

where a is t.he semimajor axis, , is t.he augle formed by t.he HBLHL veet.or with the x
~ 2axis and we have made use of the relat.ious H = -k/(2a) and L, = M ka(1 - e ) (see,

e.!I., Hd. 4). The sign of S3 is posit.ive or negative accordiug t.o whether t.he part.ide
moves eouutercloekwise or cloekwise, respeet.ively. The inverse relat.ious t.o Eq. (26) are

(l=
S~

, = aretan SI' e- (27)

[ef Eq. (18)]. From these expressions it. is clear t.hat. the semimajor axis, a, is Idt. un-
ehanged by all the transformatious generat.ed by t.he S; (whieh is also appareut. from t.he
relati0l1 II = -k/(2a), since all t.hese t.ransformations ¡eave II iuvariant); t.he t.rausfor-
matious geuerated by SI ami S~ ehauge t he eccentricity, rotate the major axis of the
ellipse and chauge t.he direction of mot.iou, while the transformat.ious geuerat.ed by S3
only produce (rigid) rotations of the orbit.s, as expeeted.

3. SOLUTION OF TIlE SCIlRODtNGER EQUATtON BY MEANS OF TIlE DYNAMtCAL

SYMM~;TRY GROUPS

3.1. ENEH(;Y EIGENVALUES AND EIGENVECTOHS OF TIIE QUA¡'¡TU~l TillO

Now \Ve shall cOllsider the qllantuIII TIllO ami we shall find its ClIel'g:y eigellvalllcs and
eigenvectors making use of the dynamical sYllIlllctry group discllssed in Sed,. 2.1. By
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considering the variables x, 1/, Px and Py appearing in Eqs. (1) and (10) aB operators in
the usual Itlanner, it fol1ows that the operators Si colllmute with the Hallliltonian and
satisfy the eOlllltlutation rclations lEq. (9)]

(28)

which arc the comIllutation relations of the angular rnomcntulll, even though, in thc
present case, only S3 is related to the angular ItlOlllentultl (in fact, S3 eorresponds to
(lile half of the angular moltlentum). As is wel1 known, the collllllutation relations (28)
imply that eaeh operator Si conunutes with S2 == Sr + si + sJ and, therefore, there exist
common cigenvectors of 82 and 83, 'ljJsm~, slleh that

(29)

with s = o, ~, 1, ... ami "'" = -s, -8 + 1, ... , s. The half-integral values of the quantulll
Il1lIllber .5 appear only in the rcpresentations of SU(2) which, as we have seeu, is a
sYlllllletry group of the TIllO. Alternatively, we can see that the half-integral values of
salid rns are allo\,",cdbecause thc cigenvaIllcs of thc orbital angular momclltllIll Lz are
inlegral multiples of Ií and S3 = ~Lz. The nonnalized eigenveetors ,p"m, can be ehosen
in s1Ich a way that

S",p""" = V8(s + 1) - "',('''., :f: 1) Ií,p"m,,,¡

wiJere, fol1owing lhe usual notation,

(:lO)

(:n)

[see, e.y., Befs. 2 and 7).
Making use of Eqs. (1) and (lO) and lhe eOllllllutation rclations for the position and

1Il0mcntlllIl opcrators, DIle finds that

(32)

(:l4 )

and sinee ¡¡eOlllltlules wilh S3 and S2, frolll Eqs. (29) it fol1ows liJal

which means thal the energy eigenvalues are of the fonn (28 + I)I/W and, sinee "', can
take the 2.' + 1 values -s, -8 + 1, ... ,8, the energy level (2s+ 1)1iw 1,,", degeneraey 2s+ 1.

From Eq. (10) and (31) one finds that

S" = 4::w [(Px:f: ip,Y + M2w2(:":f: i1/)2]

hcuce. illtrociucing the dimensionlcss complex variable

JMWz== h(x+iy) (:l5 )
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and making use of the expressious I'x = -ihD/D:I:, l'y = -ihD/Dy, we have

(
2 ). D 1 2s+ = ,h - --ziJz2 <1 ' (36)

According to Eq. (30), the wavefundion ,p.,., mnst obey S+ ,p.,., = O, i. c., {)2,p." / Dz2 =
!z2V}s,~; hence,

(37)

where es is él llofmalizatioIl constant and I(z) is a fUllctioll of Z onl)'. \Ve exc1udc
solutions of the forIll cz"Z/2 j(z), since they are not sqnare-integrable.

On the other hand, OIle finds that

S3 = ~ (z.!!- - z.!!-). 2 {)z {)z
(38)

therefore, froIll the condition S;¡,p." = "h,p,." Illakin¡,; nse of Eq. (37) and (38), one ohtains
z{)j /{)z = 2sj, which yields j(z) = z2" thus

(39)

lt is easy to see that IC.,12 = Mw/[tm(28)!] amI makin¡( nse repeatedly of Eq. (:lO)
QIle finds

~!. _ r7Tl,.-s ( .••.+ 1n,~,)! S,.:;-ms~/.
'n", .• - t (2.)1 ( . )1 - 'P.'.'.,••.• 'i - 1H.~ .

Using Eq. (30), (36) and (:l!J), one can prove by imlnction that, for "', 2: 0,

./ , -z"Z/2 2m. P ( -)
'1J.HIt.• = L Z' .~-1I1.• Zz ,

(40)

(41 )

where Pk is él po,lYllomial of degree k (which tllrns Ollt \'0 be au associatcd Lagllcrrc
polynomial). Note that., since "'., t.akes int.e¡(ra! or half-int.egral valnes, the wavefnnction
(41) is single-val ued.

3.2. TIIE QUA~TUM T\VO-DIME~SIO~AI. 1<EI'I.EIl 1'1l01ll.EM

In the case of the quantuIll-mechanieal Kepler problem in two dimensions, owing t.o the
fact that Lz does BOl, COllllllutc with Pr and ]111' one ha.')to rcplacc the constallts of the
Illotion Ax and Ay IEqs. (22)1 by t.he operat.ors

1 Mb:
Ax = -(pyL, + L,p,,) - --,2 • r

(42)

whefe Lz = XPy - Y]Jr' Thcn 0I1C can verify that A.T~ Ay and L:: cotnlllute \\-,¡th tite

Hamiltonian and satisfy the comIllutatiOll relati0I1S

[A" Ay] = -if¿2AIIl L,. IL,. Av] = -ihAx. (4:l)
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which are analogous 1.0 the Poissou braeket relations (2:l). In order 1.0 d"fine the analogs
af SI and S2 lEqs. (24)], ane replaces the Hallliltonian operatar appearing in Eq. (43) by
one af its eigenvalues E; this alllaunts ta restriet Eq. (43) 1.0 the snbspace farllled by the
eigenvectors af H with eigenvalue E. Then, assullling E < O (baund states), we define

S = Ax
1- V-2ME'

s = Ay
2 - V-2ME' (44)

Thcse operatars satisfy the eOllllllutation relations of the angular IIlOlllcntulll lEqs. (28)1
and, thcrcforc, thcrc cxist eigcnvcctors of f{ with cigcnval11c E, 'lj.Jsm~1 that are cigcllvcc-
tors 01"S" and S" satisfying Eq. (29), where 8 = O, 1,2, ... and "'" = -s, -8 + 1, ... ,S,

(integral values only) sinee the eigenvalucs of the orbit.al angular 1ll0lllentulll Lz = S3
IIlUSt.be integral lIlultiples of Ii. This rcst.rietion on t.he values of .9 is equivalent. 1.0 the
faet that t.he group generat.cd hy thc operat.ors Sí is not SU(2) but SO(3).

Using: thc canonica! COlIlIllutatioll rclatiolls aue fillds that OIl thc slIbspacc of cigcn-
vect.ors of Ji with eigcnvalnc E,

" Al k2 {,"S =----
2E 4

heBer, t.he cncrgy pigcnvalucs are givcn by

(45)

(46)

amI have degeneracy 28 + J.
Tlw cxplicit cxprcssion of the cllcrgy CigCllfuIlctiolls can be obtaincd as in Sed. :Llo

In terms of thc polar coordinatcs \Ve have

, críO [ "( ,D l iJ) ( iJ i ) ]Ax:!: ¡Ay = e h :!:¡- - -- -:!: - - lvIk
, Dr l' DI! DO 2

(47)

aL illt.roeiucing the dimcllsionicss variable

Alk
p =: -2-1'.Ii

\Ve obt.aill

I 'A \11. críO [( . iJ l iJ) ( iJ i) ]J:r::f:z y=J r.:e :f:z-,---- -::f:- -} ,
iJp p DI! DO 2

1.herefore , writing 1/1",,(1',I!) = J(r)eí.,o, t.he condition S+1/1.", = O is equivalent 1.0

(48)

(49)

dJ (2 ")-+ ---- J=O
dp 28 + 1 l'

t.hus. J(I') = c.,I)"e-2p/(2'+I), where c." is a norlllalizat.ion const.an!.. The rClllaining
wa\'cfllllctions can he expressed as in Eq. ('10). OIlC fillds1 by inductioIl. that for 1n,~~ O,

./, = ,,-2P/(2'+I)I/"''P (1))";,,,.,0
'f'STTI.. .'i-TTls ' ~ (50)

wheH' Pk is a polYllolllial af dcgr('(~ k. (It. can be ShO\\OIl t.hat. aIso in litis casco PI.: oheys
the ass()ciatcd Lag;llcrre equatiOlI.)
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4. CONCLUDING REMARKS

As pointed out in ReL 1 and the references cited therein, the two-dilllensional isotropic
harlllonic oscillator is 'In interesting exalllple because of the appearance of the Panli
matrices, al' of half-integral angular monlentum qualltuIIl 1l111ubers, CVCllthough the spin
angular IIlOmcntlllll is Bot takcn ¡nto account.

The exalllples considered here are particnlarly convenient in order to show the role
of the dynalllical sYlllllletry gronps, owing to the presence of '1uantities that satisfy the
Poisson bracket (or cOllllllutation) relations of the angular lIlomentum, since the repre-
sentations of operators satisfying snch relabons are relatively simple and well-known.
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