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ABSTRACT. The action of the groups SU(2) and SO(3) as dynamical symmetry groups of the
two-dimensional isotropic harmonic oscillator and of the Kepler problem in two dimensions, re-
spectively, is analyzed and the corresponding quantum problems are solved employing these

groups.

RESUMEN. Se analiza la accién de los grupos SU(2) y SO(3) como grupos de simetria dindmica
del oscilador armoénico isétropo bidimensional y del problema de Kepler en dos dimensiones,
respectivamente, y se resuelven los problemas cuanticos correspondientes empleando estos grupos.

PACS: 03.20.+1; 03.65.Fd; 02.20.Qs

1. INTRODUCTION

The importance of the continuous symmetry groups in analytical mechanics is very well
known; if the Lagrangian function of a mechanical system is invariant with respect to a
one-parameter group of transformations on the configuration space, then there exists a
corresponding constant of the motion. However, for some mechanical systems, there exist
constants of the motion that are not related with symmetries of the configuration space;
nevertheless, these constants are always related to symmetry groups that act on the
phase space, leaving the Hamiltonian function of the system invariant. Such symmetries
are called “hidden symmetries” or “dynamical symmetries.” In quantum mechanics, a
constant of the motion that does not depend explicitly on the time corresponds to an
operator that commutes with the Hamiltonian, and the existence of such an operator
explains partially the degeneracy of the energy levels; when the degeneracy of the energy
levels is related to a hidden symmetry, the degeneracy is called “accidental” (see, e.q..
Refs. 1-3 and the references cited therein).

Two well-known examples of mechanical systems with hidden symmetries are the
Kepler problem and the isotropic harmonic oscillator. In both cases the potential is
spherically symmetric, which implies the conservation of the angular momentum, but
there exist additional constants of the motion whose existence does not come from obvious
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geometrical symmetries (see, e.g., Refs. 3, 4 and the references cited therein). For the
Kepler problem, there exists a conserved vector—the Hermann-Bernoulli-Laplace-Runge-
Lenz (HBLRL) vector—which lies on the plane of the orbit and points along its symmetry
axis passing through the center of force. The analog of the HBLRL vector was employed
by Pauli [5] to find the energy levels of the hydrogen atom, whose accidental degeneracy
is accounted for by the existence of this vector (see also Refs. 2 and 3). In the case of the
isotropic harmonic oscillator, one finds a conserved symmetric second-rank tensor whose
eigenvectors determine the axes of the orbit (see, e.g., Refs. 2-4).

The aim of this paper is to give an elementary analysis of the hidden symmetries of
the isotropic harmonic oscillator and of the Kepler problem (for bounded orbits) in two
dimensions and to show their application in finding the energy levels of the corresponding
quantum analogs. In particular, we discuss in some detail the manner in which the group
SU(2) acts as a dynamical symmetry group of the two-dimensional isotropic harmonic
oscillator (TTHO), pointing out the erroneous arguments employed in Refs. 1 and 4 in
order to identify this group from its infinitesimal action [see the discussion after Eq. (19)].
In Sect. 2 we show that the groups SU(2) and SO(3) are dynamical symmetry groups for
the TIHO and the two-dimensional Kepler problem with negative energy, respectively. In
Sect. 3, we show how these symmetry groups can be used to obtain the eigenvalues and
eigenvectors of the corresponding Hamiltonian operators. A more detailed account on the
application of the symmetry groups in the solution of the Schrodinger equation as well
as several examples can be found in Ref. 3 and the references cited therein. This book
includes a comprehensive list of references about hidden symmetries and the connections
between the harmonic oscillator and the Kepler problem.

2 EXAMPLES OF DYNAMICAL SYMMETRIES IN CLASSICAL MECHANICS

2.1. DYNAMICAL SYMMETRIES OF THE TWO-DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR

The Hamiltonian function of the two-dimensional isotropic harmonic oscillator (TTHO),

H=—21—M(p3+;}§)+%Mw2 (;c2+y2), (1)

can be expressed in the form

H= 5171)*1/)1 (2)
where
[t _ [+ Mwzx
= (’t/)g) - (ipy + Mwy) ' (3)

Equation (3) establishes a one-to-one correspondence between the points of the phase
space and the two-component complex vectors 1. Furthermore, we can use the complex
variables 1, 12, in place of the canonical coordinates. With the Poisson bracket defined
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in such a way that {z, p;} = 1, one finds that the Poisson brackets among the components
of 1 and their complex conjugates are

{4, ¥B} =0= (Y4, ¥g}, {a, ¥p} = —2iMwisp (4)

(A, B,... = 1,2). Except for a constant factor, the components 14 are the analogs of the
“destruction” or “lowering” operators employed in the usual treatment of the quantum
harmonic oscillator.

Let o be a 2 x 2 matrix, the (scalar) function f = ¢Tae) is real if and only if « is
hermitian, af = . In fact, f = ft = (Wtay)t = ylaty, which coincides with f if and
only if @' = @. On the other hand, making use of Eq. (4), one finds that the Poisson
bracket of the function f = ey with g = ' By, where (3 is another 2 x 2 matrix, is
given by

{f,9} = —2iMwy'l[a, gy (5)

Since the Hamiltonian is given by H = (1/2M ) Iy), where I is the 2 x 2 unit matrix
[Eq. (2)] and any matrix commutes with I, from Eq. (5) it follows that any function of
the form f = 1faa) is a constant of the motion:

{fH} = —iwyl[a, Iy = 0.

In particular, if a is a hermitian 2 x 2 matrix, ¥fay is a real-valued constant of the
motion.
The matrices

o1 = ([1) (1)) , BE (_(1) (1)) A (? _8) ’ (6)

together with the unit matrix, form a basis for the 2 x 2 hermitian matrices. The matrices
in Eq. (6) are the Pauli matrices (though not in the usual representation) and they satisfy
the commutation relations

[(Ti,(fj] = QiEiJk(J’k, (7)
the indices 7, 7,... run from 1 to 3 and a repeated index implies summation. According
to the results of the preceding paragraph, the three quantities

§i = ——ptow (8)

dMw
are real-valued constants of the motion which, by virtue of Egs. (5), (7) and (8), satisfy
2
{Si,S;} = —2iMw (Zl_ﬁi[—w) ¥ [oi,05]¢ = e46Sk. (9)
Making use of Egs. (3), (6) and (8) one finds the explicit expressions
S1 = ;P.T.py + @'-‘EU,
2Mw" ™ %
Sy = ﬁ; (s —22) + M;—w (v —=?) (10)

S3 = %(-’Epy - yp:r.)-
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The representation (6) was chosen so that the expressions (10) coincide with the defini-
tions given in Ref. 4, Sect. 9.7.

The conservation of S3, which is one half of the angular momentum with respect
to the origin, is a consequence of the invariance of the system under rotations on the
z-y plane about the origin. However, the conservation of §; and S, is not related to
symmetries in the configuration space, which corresponds to the fact that S; and S5 are
not homogeneous functions of first degree in the momenta. Nevertheless, since all the S;
are constants of the motion, each 5; is the generating function of a one-parameter group
of canonical transformations that leave the Hamiltonian invariant.

In order to find explicitly the canonical transformations generated by Sk, i.e., the
symmetry of H leading to the conservation of S, we recall that any function of the
coordinates and momenta, G, is the generating function of a one-parameter group of
transformations, parameterized by a variable s, in such a way that the rate of change of
an arbitrary function f under the transformations generated by G is given by

df
=6} (1)

Hence, from Egs. (4), (8) and (11), it follows that under the transformations generated
by Sk,

%: —Liogip, (12)
whose solution can be written as
W (s) = exp(—yisox)(0) (13)
or, since 0,2 = I, we also have
P(s) = {[cos(s/2)] I — i[sin(s/2)] ox } 1(0). (14)

Since oy i1s hermitian and traceless, U = exp(~%1',sok) is a unitary matrix with determi-
nant +1, i.e., U belongs to the group SU(2). It is easy to see directly that if U € SU(2),
the transformation ¢ — Ut leaves the Hamiltonian (2) invariant. As we have shown,
by construction, the transformation (13) is canonical. [It can also be verified directly
that the transformation v ~— U, for U € SU(2), is canonical since preserves the Poisson
brackets (4)].

Making use of Egs. (3), (6) and (14), the symmetry transformations generated by the
S, can be expressed in terms of the coordinates z, y, p,, and p,; one finds that under
the transformations generated by S; and S, the coordinates and momenta are mixed. It
should be noticed that the right-hand side of Eq. (14) is a periodic function of s, with
period 47, and that in order to obtain all the different transformations generated by each
Sk, the parameter s must range over an interval of length 4.

By substituting Eq. (14) into Eq. (8), making use of the fact that 0,0, = ;1 +1£, k0.
one can find the transformations generated by Sy on the S; themselves (see. e.g., Ref. 6).
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In this manner we find that under the transformations generated by S;, the functions S;
transform according to

Sl(s) = S] (0)7
Sa(s) = cos(s) S2(0) — sin(s) S3(0), (15)
S3(s) = sin(s) S2(0) + cos(s) S3(0),

which represents a rotation through an angle s about the S; axis in the (S, S5, S3) space.
By permuting cyclicly the subscripts appearing in Eqs. (15) one obtains the effect of the
transformations generated by Sy and S3. Note that for s = 27, the transformation given
by Eqs. (15) is the identity, but the sign of 1 is inverted [see Eq. (14)].

It should be noticed that Egs. (15) follow directly from Eqgs. (9). In fact, Eq. (11)
with G = S; yields

S

— = = )

ds {Slusl} )

dSs

i e = — 16
dS {32351} S31 ( )
ds; -

T = {53)81} = S’Z}

which leads to Eqgs. (15). However, if we consider the functions S; only, it would seem
that all the different transformations generated by S; are obtained by restricting s to the
interval 0 < s < 27, which, in the present case, would be wrong.

The values of the constants of the motion S;, S, and S3 label the solutions of the
dynamical system under consideration; in other words, through each point of the phase
space (which has dimension four), there passes one (and only one) curve that represents
the time evolution of the system; along each of these curves, S, 59 and S3 are con-
stant and there exists a one-to-one correspondence between these curves and the points
(51, S2,53). The orbits of the TIHO in the configuration space are ellipses centered at
the origin. The constants of the motion S, S, S3 can be expressed in terms of the
semi-axes of the ellipse, a, b (a > b > 0), and of the angle v formed by the major axis
with the z axis:

81 = 1Mw(a® — b?) sin2v,

Sy = —1Muw(a® - b?) cos 2y, (17)
S5 :I:%Mwab.

The value of S3 is positive or negative according to whether the ellipse is traversed
counterclockwise or clockwise, respectively. It may be noticed that, due to the symmetry
of the ellipse, the angle v is defined up to an integral multiple of 7; but this ambiguity
does not affect the value of the constants (17).
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Conversely, the parameters of the ellipse traced by the TIHO in the configuration
space can be expressed in terms of S}, Sy and S3. From Egs. (17) one finds that

2
2 g

2
2_ -
b = (\/512+5.§+S§_\/s$+55), (18)
vy = —lanarcta,n-‘Sl e? = 2y o+
2 S VS + 53+ 83 +\/51+ 83

where e is the eccentricity.

Under the action of the transformations (14) (and, hence, of any composition of them)
cach point of the phase space is mapped onto another point corresponding, in general,
to a distinct orbit in the configuration space (or to motion in the opposite direction),
but with the same energy, therefore a? + b? is invariant [note that H = %M w?(a? + b?)).
Making use of Eq. (18) we can easily find the effect of the transformations generated by
Sk on the orbit parameters. For instance, substituting Eq. (15) into Eq. (18), one finds
that under the transformations gencrated by S; the axes of the ellipse rotate and the
ellipse parameters change according to

2 . _ -
a® = T (\/512 + 82+ 55+ \/512 + [cos(s)S2 — sm(s)Sg]z) .

b2 = ﬂ% (\/512 - S% + 5% — \/Sf + [cos(s)S2 — sin(s )3 ) ; (19)

21/52 + [cos(s) Sz — sin(s)S3)”

" 524 58+ 5 + /52 + [cos(s) S — sin(s)Sa]”

These expressions are periodic functions of s, with period 7; therefore, for a given set of
values of a and b, there are at least four (in most cases, eight) distinct rotations generated
by S; leading to orbits with the same set of parameters and not only two, as claimed
without proof in Ref. 4, where such an assumed double-valuedness is employed to conclude
that the group generated by the S; is SU(2) and not SO(3), the group of rotations in three
dimensions. Similarly, in Ref. 1 the effect of the transformations generated by K = 25,
on the orbit parameters is considered and it is asserted that it takes a 47 rotation to
bring a given orbit into itself; however, all the different transformations generated by 2.5
are obtained if the corresponding parameter takes values in an interval of length 27 (note
that 25, generates the rotations (15) with s replaced by 2s [see Eqs. (16)]) and there are
two different rotations in the phase space that produce the same values of S; and, hence,
the same orbit. Thus, it would take a 7 rotation generated by 25; to bring a given orbit
into itself.

We close this subsection with the following remarks. The preceding results can be
casily extended to the isotropic harmonic oscillator in n dimensions. It can be readily
seen that Egs. (2), (4) and (5) hold if ¢ is a n-component complex vector defined in a
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similar way to Eq. (3). Then, if the matrices A, (a = 1,... ,n* — 1) form a basis for the
traceless hermitian n x n matrices, the scalar functions S, = )T \,10/(4Mw) are constants
of the motion and satisfy the Poisson bracket relations

{SaaSh} = fabcsm

where f,. are real constants such that [A,, As] = 2ifapeAe [¢f. Egs. (7-9)]. This simple
procedure to construct constants of the motion satisfying the relations obeyed by the
matrices A, contrasts with the cumbersome indirect method followed, e.g., in Refs. 2 and
3. The group of canonical transformations generated by the S, is SU(n) and, under these
transformations, the S, transform according to the adjoint representation of SU(n).

2.2. DYNAMICAL SYMMETRIES OF THE KEPLER PROBLEM IN TWO DIMENSIONS

The Hamiltonian function corresponding to the Kepler problem in two dimensions is
given by

1

H=—
oM

2 i k .
(e —= (20)
where r = \/z? 4+ y? and k is a positive constant. As in the case of the TIHO Hamilto-
nian (1), the only obvious continuous symmetries of the Hamiltonian function (20) (that
are, at the same time, canonical transformations) are the rotations about the origin.
Owing to the form of the Hamiltonian (20), we shall follow a different approach to that
employed in the preceding subsection in order to find additional symmetries.

The invariance of H under the rotations about the origin implies that the angular
momentum

L, = xpy — ypu, (21)

is a constant of the motion. As is well known, the Hermann-Bernoulli-Laplace-Runge-
Lenz (HBLRL) vector is a conserved vector that lies in the plane of the orbit in the
direction of the point of closest approach of the particle to the origin (see, e.g., Refs. 3
and 4). The components of the HBLRL vector are given by

Az =pyL, — Mkz/r, Ay = —p:L, — Mky/r (22)

and it is easy to see that their Poisson brackets with the Hamiltonian (20) indeed vanish
and that

{Az, Ay} =—2MHL,, { Ly, Ay} = Ay, {Lay Ay} = —Aq. (23)
Therefore, considering only bounded orbits, for which H < 0, from Eq. (23) it follows

that

A A,
S] = *—I. S-z = —"—, 53
—2MH —2MH

Il
™~

1]

(24)
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satisfy the Poisson bracket relations of the angular momentum [Eq. (9)]
{5i,S;} = €ijk Sk (25)

Since the S; are constants of the motion, they are generating functions of canonical
transformations that leave the Hamiltonian invariant; however, the use of Eq. (11) to
find the explicit form of the transformations generated by S; and S5 leads to sets of
differential equations that are difficult to solve. Nevertheless, the effect of the transfor-
mations generated by the S; on the S; themselves is already known since, as we have seen,
from Eq. (25) it follows that in the (S, S3,S3) space the transformations generated by
Sy correspond to rotations about the Sy axis, which are given explicitly by Eq. (15) and
similar expressions obtained by the cyclic permutation of the indices. In the present case,
S3 coincides with the angular momentum [¢f. Eq. (10)] which is the generating function
of rotations about the origin, under which (5}, S2) transforms as an ordinary vector; this
implies that, by contrast with the preceding case, the parameter s appearing in Eq. (15)
and those obtained by cyclic permutation of the indices now ranges over an interval of
length 27 and that the group generated by the constants S; is SO(3).

As in the case of the TIHO, the constants of the motion S; are related to the orbit
parameters and there is a one-to-one relation between orbits and points of the (57, 5, S3)
space. In the present case, the orbits are ellipses with a focus at the origin. Since the
magnitude of the HBLRL vector amounts to Mke, where e is the eccentricity, from
Eq. (24) one finds that

51 = VMka (ecosy), Sz =VMka(esiny), S3=+\/Mka(l—e€?), (26)

where a is the semimajor axis, «y is the angle formed by the HBLRL vector with the z
axis and we have made use of the relations H = —k/(2a) and L? = Mka(l — ¢?) (see,
e.g., Ref. 4). The sign of S3 is positive or negative according to whether the particle
moves counterclockwise or clockwise, respectively. The inverse relations to Eq. (26) are

St + 55 + 5 v = arctan 5 e i (27)
Qi =, = arctan —-, = : . ‘
Mk 31 \/5% + 83 + 2

[¢f. Eq. (18)]. From these expressions it is clear that the semimajor axis, a, is left un-
changed by all the transformations generated by the S; (which is also apparent from the
relation H = —k/(2a), since all these transformations leave H invariant); the transfor-
mations generated by S; and S, change the eccentricity, rotate the major axis of the
ellipse and change the direction of motion, while the transformations generated by Sy
only produce (rigid) rotations of the orbits, as expected.

3. SOLUTION OF THE SCHRODINGER EQUATION BY MEANS OF THE DYNAMICAL
SYMMETRY GROUPS

3.1. ENERGY EIGENVALUES AND EIGENVECTORS OF THE QUANTUM TIHO

Now we shall consider the quantum TIHO and we shall find its energy eigenvalues and
eigenvectors making use of the dynamical symmetry group discussed in Sect. 2.1. By
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considering the variables z, y, p, and p, appearing in Egs. (1) and (10) as operators in
the usual manner, it follows that the operators S; commute with the Hamiltonian and
satisfy the commutation relations [Eq. (9)]

[Si, S;] = theijn Sk, (28)

which are the commutation relations of the angular momentum, even though, in the
present case, only S3 is related to the angular momentum (in fact, S3 corresponds to
one half of the angular momentum). As is well known, the commutation relations (28)
imply that each operator S; commutes with S? = S? + 52 + 57 and, therefore, there exist
common eigenvectors of §% and Sj, Ysm,, such that

Szwsms = s(s+ l)ﬁz":bsm_qu S3them, = mshthsm,, (29)
with s = 0, %, 1,... and my = —s,—s+1,...,s. The half-integral values of the quantum
number s appear only in the representations of SU(2) which, as we have seen, is a
symmetry group of the TIHO. Alternatively, we can see that the half-integral values of
s and my are allowed because the eigenvalues of the orbital angular momentum L. are
integral multiples of & and S5 = %Lz. The normalized eigenvectors 1), can be chosen
in such a way that

Sithsm, = /s(s + 1) — mg(my £ 1) Athy o1 (30)
where, following the usual notation,
Sj:Eslﬁ:iSQ (.51)

[see, e.g., Refs. 2 and 7).
Making use of Egs. (1) and (10) and the commutation relations for the position and
momentum operators, one finds that

H* = w5 4 B (32)
and since H commutes with S3 and S?, from Egs. (29) it follows that
stms = (23 7+ l)ﬁwwsmss (33)

which means that the energy eigenvalues are of the form (2s + 1)kw and, since m, can
take the 2s+1 values —s, —s+41,... , s, the energy level (2s+ 1)hw has degeneracy 2s + 1.
From Eq. (10) and (31) one finds that

Fi

s R ” 2 2.2 ] v
S; = Mo [(pm +ipy)° + M w*(z * iy) ] (34)

hence, introducing the dimensionless complex variable

1/ %Ui (z +1y) (35)

¥4
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and making use of the expressions p, = —ihd/dz, p, = —ihd/dy, we have
T 1, * 1
_ g = — =5
S+ =1ih ( 322 42 ) " S_ = —ih (@ = ZZ ) : {36)

According to Eq. (30), the wavefunction 1, must obey S s = 0, i.e., 921y, /07° =
12%1ss; hence,

Ygs = Cseizgf2f(z)a (37)

where C is a norma.liz_apion constant and f(z) is a function of z only. We exclude
solutions of the form e?%/2f(z), since they are not square-integrable.
On the other hand, one finds that
h( 0O Jd
S = = —_— = ]

33 (z Bz zaz) (38)
therefore, from the condition S31)ss = shi),, making use of Eq. (37) and (38), one obtains
z0f |0z = 2sf, which yields f(z) = 2%, thus

Mw

$ 9 2N 4
e = Ope 1252 = 0, (2] MM o i (39)
i
It is easy to see that |Cs|? = Mw/[hn(25)!] and making use repeatedly of Eq. (30)

one finds

Ysm, = Jie (40)
Using Eq. (30), (36) and (39), one can prove by induction that, for ms > 0,
"7[).91;':,_. A= e—zE/ZZETrL,..PS_mN (ZE), (41)

where Py, is a polynomial of degree k (which turns out to be an associated Laguerre
polynomial). Note that, since my takes integral or half-integral values, the wavetfunction
(41) is single-valued.

3.2. THE QUANTUM TWO-DIMENSIONAL KEPLER PROBLEM

In the case of the quantum-mechanical Kepler problem in two dimensions, owing to the
fact that L, does not commute with p, and p,, one has to replace the constants of the
motion A, and A, [Egs. (22)] by the operators

1 Mkz 1 Mk
A = §(pyLz + szy) = ) Ay = '5(?&[1: + L.ps) — —rfj (42)

r

where L, = zp, — yp:. Then one can verify that A,, A, and L. commute with the
Hamiltonian and satisfy the commutation relations

(Ag, Ay) = —ih2MHL,, (L., A;] =ihdy,  [L:, Ay] = —ik4,, (43)
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which are analogous to the Poisson bracket relations (23). In order to define the analogs
of S; and S [Egs. (24)], one replaces the Hamiltonian operator appearing in Eq. (43) by
one of its eigenvalues E; this amounts to restrict Eq. (43) to the subspace formed by the
eigenvectors of H with eigenvalue E. Then, assuming £ < 0 (bound states), we define

Sy

Il
&f
Il

S3=1L,. (44)

These operators satisfy the commutation relations of the angular momentum [Eqs. (28)]
and, therefore, there exist eigenvectors of H with eigenvalue E, v, , that are eigenvec-
tors of S? and Sy satisfying Eq. (29), where s = 0,1,2,... and mg = —s,—s + 1,... , s,
(integral values only) since the eigenvalues of the orbital angular momentum L, = S3
must be integral multiples of ii. This restriction on the values of s is equivalent to the
fact that the group generated by the operators S; is not SU(2) but SO(3).

Using the canonical commutation relations one finds that on the subspace of eigen-
vectors of [ with eigenvalue E,

ME® R?
$=—%5 T (45)
hence, the energy eigenvalues are given by
2MK?
E=——rprr—— (46)

(25 + 1)2°

and have degeneracy 2s + 1.
The explicit expression of the energy eigenfunctions can be obtained as in Sect. 3.1.
In terms of the polar coordinates we have

J ; 0 10 a i
Le=—i—, Az +1i4, = e {FF (i'——— )(—:t—) —Mk]
a0 =% Yor roe)\ae T2
(47)
or, introducing the dimensionless variable
ME
P=G3T (48)
we obtain
5 d 10 Jd o
Ay +iA, = Mke*? (:tz' - -—) ( + —) - 1] , 4
. 2 dp pob) \ob 2 vy
therefore, writing ,,(r,8) = f(f‘)eisg, the condition S, 1. = 0 is equivalent to
d 2 E
l -+ (— = j) f =10
dp 254+1 p
thus, f(p) = C,p*e~2°/(Z5+1)  where Cs is a normalization constant. The remaining
wavefunctions can be expressed as in Eq. (40). One finds, by induction, that for m, > 0,
Ysm, = e PP (p)e™e?, (50)

where Py is a polynomial of degree k. (It can be shown that, also in this case, Py obeys
the associated Laguerre equation.)
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4. CONCLUDING REMARKS

As pointed out in Ref. 1 and the references cited therein, the two-dimensional isotropic
harmonic oscillator is an interesting example because of the appearance of the Pauli
matrices, or of half-integral angular momentum quantum numbers, even though the spin
angular momentum is not taken into account.

The examples considered here are particularly convenient in order to show the role
of the dynamical symmetry groups, owing to the presence of quantities that satisfy the
Poisson bracket (or commutation) relations of the angular momentum, since the repre-
sentations of operators satisfying such relations are relatively simple and well-known.

ACKNOWLEDGMENTS

This work was supported in part by CONACyT.

REFERENCES

1. H.V. McIntosh, Am. J. Phys. 27 (1959) 620.

2. L.I Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968), Chap. 7.

3. O.L. de Lange and R.E. Raab, Operator Methods in Quantum Mechanics, (Oxford University
Press, Oxford, 1991).

4. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass, 1980).

5. W. Pauli Jr., Z. Physik 36 (1926) 336, reprinted in B.L. van der Waerden, (ed.), Sources of
Quantum Mechanics, (Dover, New York, 1968).

6. G.F. Torres del Castillo, Rev. Mexz. Fis. 40 (1994) 119.

7. S. Gasiorowicz, Quantum Physics, (Wiley, New York, 1974), Chap. 10.





