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ABSTRACT. \Ve present calculatiolls for the electromagnetic reflectance spectra of finite Ilmltilay-
ered systems (superlattices) made of very thin films of different thickness. In contrast to quantum
resonances, for which there is only one kind of propagating wa\'cs, the electromagnetic resonances
exhibited by these systems for non normal inciden ce are duc to the longitudinal electrornagnetic
wavcs (or guided plasmons) cOllplcd to the wmal long-wa\'elcngth transverse electromagnetic
waves. \Ve employ a transfer matrix formalism rOl'the laycrcd system togcther with a hydrody-
namic Ulodel fol' the electron dynamics. For 'realistic \talues of film thickness, a larger numbcr of
such resonances could be observed in multilayered systems fonned by highly doped semiconductor
layen~ rather than in systems formed by metallic layers.

RESUfo.1EN.Presentamos cálculos de espectros de reflectancia electromagnética de sistemas finitos
de multicapas (superredes), hechas de películas muy delgadas de diferentes anchos. A diferencia
de las resonancias cuánticas, para las cuales hay un sólo tipo de ondas que se propagan, las
resonancias electromagnéticas mostradas por estos sistemas en incidencia no normal son debidas
a las ondas electromagnéticas longitudinales (plasmones guiados) acopladas a las bien conocidas
onda.s electromagnéticas transversales. Utilizamos el formalismo de la matriz de transferencia para
el sistema de multicapas junto con el modelo hidrodinámico para la dinámica de los electrones.
Para valores realistas de los anchos de las películas de estos sistemas de multicapas, se pueden
observar un mayor lllÍmero de resonancias en sistemas formados por capas de semiconductores
altamente dopados que en sistemas formados por capas metálicas.

PAes: 4I.20.Jb; 78.66.-w; 42.30.Yc

l. INTRODUCTION

1.1. ANALOGIES BETWEEN QUANTUM ANO ELECTROMAGNETIC WAVES

\Vithin the spirit of establishing useful analogies in the propagatiOll of waves between
quantuIIl lnechanics and other ficlds of physics, thc onc-particle propagatioIl in one-
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dimensional multiple quantum well systems has been compared with the propagation
of transverse electromagnetic waves in stratified media. An appropriate mathematical
tool to describe quantum mechanical, e1ectromagnetic and e1astic phenomena in layered
media is the transfer matrix formalism [1].

As we will see, they can propagate in material media two kinds of e1ectromagnetic
waves; the well known transverse waves (for example, infrared and optical among others)
and the longitudinal waves. In a homogeneous media the former have the e1ectric !ield E
perpendicular to the direction of propagation q, whereas the latter have E and q parallel.

In this article we apply the transfer nmtrix formalism to systems made of layers of
di!ferent thicknesses, where both longitudinal (L) amI transverse (T) e1ectromagnetic
waves are present together with the so called hydrodynamic model which describes the
dynamics of the charged carriers. We also discuss the L-T coupling in interfaces, the
propagation of confined L waves (or guided plasmons) amI their e!fects in the reflectance
of multilayered systems.

1.2. LONGITUDINAL AND TRANSVERSE ELECTROr-,.IAGNETIC WAVES AS SOLUTIO~S OF

MAXWELL EQUATIONS

To show how both longitudinal and transverse electromagnetic waves mise from !irst
principies we take

E(r,t) = Eexp[i(q. r -wt)]

and

B (r, t) = Bexp [i(q. r - wt)]

together with Maxwell's equations to gel,

[
2 22 ]'J 6ij - 'Ji'Jj - (w Ic ) tij (q,w) E] = O, i = 1,2, :3,

(1)

(2)

where tij are the components of the dielectric tensor. In general it is convenient to write
the solutions of the last equation in the form q = q (w), with w real and q complex,
or w = w (q), with q real and w complex; these are the dispersion re1ations for tI",
e1ectromagnetic waves. If the medium is isotropic tij (q,w) can be written in the fonn

w}¡erc we have introduecd longitudinal amI trallsversc projection (tenson;¡)

(4)

I,T - j.. 1'1,
lJ - (1) - 1) (5)

ami the longitudinal and transverse dielectric functions t¡,( IJ, w) ami c.r( 'J, w), which are
scalars. I3y writing E as a SUlIl of transvcrsc and longitudinal COlUpOllcnts,
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we can decompose E<¡. (3) into separa te e<¡uations for the transverse and lon¡>;itudinal
fields:

[l- (w2jc2) ET ('1,w)] &1' = O,

EL ('l,w) EL = O.

(7)

(8)

Therefore, the dispersion relation for transverse waves for which q.E = O, is the solution of

(9)

and the dispersion relation for longitudinal waves, for which q x E = Oami B = D, is the
solution of

EL ('l,w) = O. (10)

This decomposition of E and E'j into trausverse and longitudinal components is valid if
the wave vector is complex, q = q' + iq", with the real ami imaginary parts in difIerent
directions. In this case, the conditions q . E = O or q x E = O do uot signify that q is
perpendicular or parallel to E, since q does not have a definite direction.

1.3. HYDRODYNAMlC MODEL

1'0 ¡>;oheyond local models for the dielect.ric function of an electron gas (such 'L' the
common Drude mode!) we can use t.he hydrodynamic mode! or hydrodynamic approx-
irnatioll to take iuto account in a simple ma.uncr that t.hc carriers fOfm a comprcssible
gas. In this approximation the dielectric function is calculated by ne¡>;lecting the thermal
ve!ocit.y of the partides; only the average ve!ocity u appears. Let us consider au e!ect.ron
gaB with no stat.ie applied clect.ric and magnetic ficlds (Eo = O and Bo = O) and use
a lillca.riza.tioIl proccdure in slIlall induccd quantitics slIch a..,;;¡E, B, fiuctuatioll ctllTcnt
densit.y j, etc. That is in the following derivation of t.he dielectric tensor we will make
use of a linearization procedure in which fie!ds such a.' E and B and the average partide
velocit.y (often referred to 'L' drift velocity) 'L'5ociat.ed with the elect.romagnetic waves are
cOIlsidcrcd to be ~Hllallquantitics. For simplicity we lIlodcl the ious a..,;;a hOIllOgCllcous
posit.ive background (jellium model) in order to keep the syst.em electrically neutral. The
e<¡uation of motion of the elect.rons is [21

\1p

(>
(11 )

wherc 1T¿ and e are the ma..'iS and chargc of the eledrolls and p is thc chargc-dcIlsity
fluct.uat.ion induced in t.he electron gas. The last t.erm in E<¡. (11) would not be included
in tbe local Drude model. Some many-body e!fects are t.aken int.o account. part.ially by
t.he la_,t.t.erm which represents the force per partide due to t.he pressme gradient. \11'. The
negativc sign of this tenn indicat.cs, as cxpectC'(L that partieles tClld t.u move away from
high density regions. \Ve could also have illduded a term proport.iollal t.o t.he velocit.y
simulatillg the damping force dile to collisiolls. Sillce \11' = (01'/0(»\1(>, we can d"fine
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a characteristic velocity {3by {32= (lip/lip) and use the e<¡uatiou of state p = p(p) to
relate this velocity 1,0 the thermal velocity in a elassical gas and to the Fermi velocity in a
degenerate gas. {3is called the "sti£fnes," of the gas, since it measures its compressibility
and is responsible for the spatial dispersion or nonlocality. One can use the equation of
continuity (or conservation of partiele number)

to linearize Eq. (11) to get

lipTi + 'V . (pu) = 0,

. eE {32iq(q.u)
-~wu = -- - -----

1n w'

( 12)

( 13)

where we have neglected the tenn containing (u/c) x B. For definitcness, it is convenient
to take q in the z direction. Then Czz == c¡,(q, w), the longitudinal dielectric function,
txx = Cyy == ET(q,W), the transverse dielcctric function, and ti) = O ir i =1 j. From
j = -epu and

we find

j;(q,w) = (Jij (q,w)E] (q,w),

Cij (q,w) = liij + (411"i/w) (Jij(q,W),

(14)

(15)

(16)

(17)

where wp = (411"pe2/m) is the plasma fre<¡uency of the electron gas. The absence of
q-dependence of Drude-like éT indicates that the pressure gradient force does not alfect
the components of c that describe transverse IIlotion, where there is no density change.
For a degenerate electron gas we choose {32= 3v}/5, where vp is the Fermi velocity.
This value can be obtained from a long-wavelength expausion of Lindhard's dielectric
response model [3]' which is a better model for the dynamics of the eleetron gas than
the hydrodynamic mode!. The hydrodynamic model can also inelude the coutriblltion of
bOllnded eleetrons and the elfect of collisions 1,0 yield

2Wp
eL (q,w) = cB(W) - ( +. / {322)'

W ZW T - q
2wp

C"[' (q, w) = cB(W) - ( +. / )'
W ZW T

(18)

(19)

whcre EH is the bOllud clectron cOlltributioll to tite dielectric response (which in general
depends 011 the frcquency w) alld T is a phcnotllcllological damping constant which ariscs
from a trivial generalization of Er¡. (10) if a fridiou force is inelllded. The dependene" of
th" diel"etrie fuuction ou q makes the hydrodynamie model a non loeal one.
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FIGURE 1. Vacuum-conductor interface. \Vithin a non local ruodel the wave \"(~c.t.ors of t.he trans-
verse (T) and longitudinal (L) waves are ShOWIl together with a."'isoci;üpdelectric ami magnetic
in thc conductor. Incident, reflccted and transmitted waves are indicated by the suosc.ripts i,
r and t, respectively. The charge density fluctuations produced by the ion~itudinal wave are
schematiealIy depicted by thc different shaded regions.

A detailed analysis of the dispersion relations [Eqs. (U) and (10)] shows that in the
hydrodynamie approximation the ratio of the wavclengths ).,T/).,L ::e e/f3::e e/vF is large,
whieh means that ).,L is smal!. Thus, the resonanees due 1.0 longitudiual waves ("longitudi-
nal" Fa]¡ry-Perot resonanees) are ]¡etter o]¡served in thin films [4]. Experimental and the-
oreüeal work on the effeets of spatial dispersion or nonloeality are found in Refs. 4 and 5,
respeetively. Nouloeality can be taken into aeeount by including longitudinal plasmons
(a..'5in our work) or clectron-hole pain; creation.

2. ApPLICATIONS TO MULTILAYERED SYSTEMS

2.1. COUPLING OF LONGITUDINAL AND ELECTItOMACNETIC WAVES AT I\N INTERFACE

It was shown in Sec!.. 1.2 that in a homogeneous medium transverse (T) waves are not
eoupled 1.0 longitudinal (L) waves. In other words, in a homogeueous medium longi-
tudinal waves eannot be exeited by light or other eleetromagnetie waves consisting of
transversc waves. However, thc presence of an interface can produce L-T coupling [4,5]
cinc to the following proccss. Lct us considcr, for simplicity, the simple ca..o,;eof an trans-
verse p-polarized wave (for wbieh the eleetrie ficld lies on tbe plane of ineidenee) traveling
from vacuum to a non-local mediulIl. For non normal incidence, the normal componcnt
of the total eleetrie ficlrl in the non-local mediUln does not vanish, and the impiugiug
\I•.'ave \viII gencrate reflected and transmitted transverse waves, and OIlClongitudillal wave
as showl1. This longitudinal wave is produccd by Ez which comprcsses the carriers to-
wards the barrier at the interface. 111 other words, the physieal meehallism tha!. allows
the generatioll of plasmolls by transverse waves eOllsists of the collfillemellt of the movillg
charges by the interface, whid. in tUl"n prodll('(~sregiolls of iower alld higlwr compn'ssibil-
ity. In Fig. 1 we depict the reslllting wavcs produccd by an incident. trans\'crse \\'fl\'C 011

a vaclIulll-insulator interface. In contrast to transversc waves , which propagate cit.her in
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FIGURE2. Finile syslem of allernaling conc!ucling (C) ami insulaling (1) layers in vacuulll.

vaclIum ar material media, the longitudinal wavc~ ollI)' propagate in material media and
lhey are beller observed in very lhin layers of lhickness d for which AL '" d. It musl be
emphasized lhal lhese plasmons are excilalions lhat occur in the b"lk and thus should
not be confused with the e1ectromagnetic surface plasmons.

Here we present an example of resonances formed by pla.,mons or longitndinal elec-
tromagnetic wavcs in a clcctroIl ga.'o; cOllpled to transvcrsc clcctromagllctic waves in the
interfaces of multilayered systems (or superlattices) consisting of alternating insulating
and conducting layers, as shown in Fig. 2. 1'herefore, in each conductor, such resonances
can be regarded as gnided plasma waves interacting among themselves. 1'he conducting
layers of the superlattice must have free earriers, so they can be made either of metals
or highly doped semiconductors. For the latter ,:;~'" our formalism woul,1 describe the
electrons in the conduction band of t.he semiconductor.

2.2. TRANSFEH tvIATH.IX FOIUvlALlSM

Let lIS cOllsidcr a. Illultilaycrcd systclIl cOllsistillg of altcfnatillg immlating ano condllcting
layers, st.acked along t.he Z direcl.ion, on which p-polari,ed (that is, plane-polarized trans-
verse waves where t.he electrie field ¡ies on t.he plane of incidence :f,z) and longitnuinal
waves (or pla.'1nons) propagat.e (see Fil" 2). In an isot.ropie syst.em t.here is no coupling
of transversc ami longitudinal waVCH. lIowcvcr, as mClltioned hcfore thc presence of the
interface alld p-polarizcd wa,vcs allows such coupling. Wc do Hot cOllsider s-polarized
waves since they do not couple lo IOllgitudillal pla..")molls. In whal f01l0W8 me may use
indistinctly thc tenns e1ectromagllctic 1001gitudinal wave or 1)laSllloll.

It is convenicnt to make use of the simple trallsfer-matrix fonnalism developed in
Ref. 6 1.0 st.nuy t.he cffecl. of pla.'1na waves on t.he elect.romagnet.ic modes ami t.he re-
flectance of cOllciuctor-insulator supcrlatticcs. This fOrtllalisIIl takcs illto account, within
t.he hydrodynamic modcl, t.he nonlocal e!!"ct.s (or spalial dispersion) due to lhe pres-
ence of plaslIlons anrl thcir cOllpling lo trallsvcr.sc \vavcs. Thlls, the construction of the
transfer matrix illvolvcs two p-polarizcd wavcs; olle with positive alld other with Ilegative
component. of lhe wave vect.or alonl; t.he Z direct.ion, t.hal is, K = (e¿, O, :1:/,;) obeying

/,;"= El: (w) w" _ ('"
(:2 G , (20)
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ami two longitudinal waves with wave vector Ix = (Q, O, :l:l) oheying

f~;(lx,w)=O, (21 )

(22)

where fe is the transverse and f~ the longitudinal dielectric funelion of the conductor.
For Nharp interfaces it is showll [5] how thc cont1uctor's 4 x 4 trallsfer matrix collapses
to a 2 x 2 matrix whenever the film is hounded in both sides hy insulators, aB in our
case. As usual, the reflectance R = 1,.12 of an n-Iayer superlattice is given, in terms of
the impedances of the vacuum Zv ami of the superlattice and Z hy

Zv - Z
1" = ---Zv + Zl

and

Z = ZvM22 - Ml2 ,

Mil - ZvM21
(23)

(24)

where M is the 2 x 2 transfer matrix of the full superlattice resulting from the product
of all n transfer matrices. For instance, the trans!er matrix M = MI Me corresponding
to a syst.em of one conductor and one insulator is given by Eq. (24) of Ref. 6.

As in the electronic band st.ructure of solids where there is a periodic arrangement
of atoms, a periodic arrangement. of layers can produce allowed ami forbidden bands in
t.he propagation of electromagnet.ic waves. In Ref. 6 the presence of such bands in the
propagation of coupled transverse and longitudinal electromagnetic bands was shown.
The transfer-matrix formalism summarized aboye was employed in Ref. 6 to calculat.e
the properties of periodic (and infinite) superlattices and in this artide this formalism
will be applied to finite superlattices.

2.3. NUMEItICAL RESULTS

Figure 3 shows our calculation for the reflectance of a very thin (d = 30 A) single metal
film where the free-eleelron data for alllminllm [7,8] (fH = 1) were used. There are
propagating blllk modes, made 11f>of "gllided" plasrnons, in freqncncies whcrc no prop-
agat.ion is expect.ed if spatial dispersion or longitudinal plasmons are neglect.ed. Within
t.he hydrodynamic model these modes manifest themselves as a series of sharp peaks in
t.he reflectan ce spectra due to the strong mismatch of impedanccs near the singlc- film
resonance [re<¡uendes Wn given, as indicated hy Eq. (lO), by approximately the zeros of

2
1 ( ) _ Wp
fe Ix,W -flJ- [w+iwIT-¡J2(Q2+12)],

where 1, the z-component of the wavector is qllantized amI equal to mr1d (or d = n),/2).
These fre<¡lIencies are given by

w~= w~+ {i2 [el + (mr) 2] ,
f¡¡ d n = 1,2,3, .... (25)
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FIGURE 3. Local (dashed line)and nonloeal (solid line) ealculation of the eleetromagnetie re-
f1eetanee of a metal/ie film of width dM = 30 Á for an angle of ineidenee B = 70° deseribed
by Drude transverse dieleetrie funetion amI hydrodynamie longitudinal dieleetrie funetion both
with CH = 1. \Ve ehose for the film the values eorresponding to the free-eleetron data for alu-
mininm [7,8]; No = 1.81 X 1023 em-3, hwp = 14.7 eV, T = 192/wp and {3= 5.23 X 1O-3e, where
e is the speed of light. For simplicity we ehose for the insulator Cl = 1.

These guided plasmons are coupled among themselves by only the long-wavelength
transverse waves they induce in the insulating layers since there are no longitudinal waves
in the insulator layers. The sharp structure of the non local calculation corresponds to
the freguencies of the odd-numbered guided plasma waves [odd n in Eg. (25)]' whereas
the even numbered plasmons are barely noticeable, since when n is even the electric
field outside the conducting films is very small (in this case each film is similar to a
capacitor, except from a smooth charge modulation along the x direction given by e;QX).
The detailed shape of the features in the reflectance spectra depends obviously of the
strength of the coupling between transverse and longitudinal waves at the interface. This
coupling, in turn, is sensitive to the microscopic surface structure. For example, in more
complete models such as the RPA self-consistent jellium, in which the e1ectronic density
does not fall sharply to zero at the interface and in which excitation of electron hole pairs
is possible, this coupling is smaller than in the hydrodynamic model [9). However, the
presence of the main features of the resonant structure within the hydrodynamic model
seems to remain in any better non-local theory.

If we compare these results with those of an infinite superlattice [6]' we notice that
the main differences are the following. In the first place, the local calculations in the
infinite and finite case (without longitudinal plasmons) have a very different shape, ami
as we will see in the next figures, the shape remains practically the same in the finite
case when the number of layers is small. This is due to the fact that the wavelength
of the transverse wave (which is reponsible for the local result) is much larger than the
width of the superlattice (recall that AT/AL::: c/(3). In second place, as expected from
Eg. (25), the resonances due to the guided plasmons are more localized in freguency in
the periodic case (since all conducting layers have the same width) than in the finite case
for which we chose different widths).
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FIGURE4. Same as Fig. 2, but with £B(W) adjusted to the optica! experimental data oC alurninum
as it was done in Ref. 9 to incorporate the bound elcctron contribution.

In Fig. 4 we follow a modified hydrodynamic model [10) for aluminum to include the
contribution from bound e1ectrons, in which £fl(W) is adjusted to fit the experimental
local dielectric function £exp(w) from the measured refractive index data [7J according to

Wp
£ B (w) = £exp (w) + ( . / )

W +IW T
(26)

The structure obtained in the reflectance is similar to that of Fig. 3, but with
the guided plasmon peaks slightly sharper that in the simpler model corresponding to
£B(W) = 1. Also, from Eq. (25), it can be seen that for a single film plasman resonances
get closer in frequency when the thickness of the film is increased. \Ve note that in both
figures the resonances lie very clase together, so it will be diflicult, within the experimen-
tal range of thin films, lo accommodale more resonances in multilayer systems wilhin
a givcn rauge in units of w/wp. Tú look for the same resanances in sinülar systems,
we calculated in Fig. 5 the reflectan ce spectra of four highly-doped semiconductor films
where the width of lhe semiconductor fihns decreases linear1y (alternated with vacuum
layers), for which lhe same Drude and hydrodynamic models apply, but due to much
smaller e1ectronic density lhan in a metal (approximately 106 t.imes smaller), t.he same
number of guided plasman resonances lie over a wider range of frequencies (in units of
the plaBma frequency) than in the met.al films of t.he same width. This is due to the fact
t.hat. for a single layer of constant width the separation between peaks is proportional
t.o /32/wp ex Ng/3 / No = NO-

1
/
3

, being No the conduction e1ect.ronic density. \Ve also
introduccd for a doped sCIniconductor a largcr T than in a metal, since for 1>oth metals
and semiconductors, T could be expressed as the time between two successive collisions
T = slv, (s is the distance between two succesive collisions ami v is t.he random velocity
which, in tUrIl, is of the arder of the Fermi velocity), being s approximately t.he same for
Inetals a.ncl scruiconductors alld v Illuch larger for scmiconductors. 011 thc othcr hatld,
since the rcgion aroulld the rninimulIl of the conduction band in typical semicollductors
does not over1ap with ot.her bands, the Drude model can be llpplied for the electrons
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FIGURE 5. Nonlocal ealculation of the electromagnetic reflectance for an angle of inciden ce
e = 70° of a superlattice made of alternating vaCUllmlayers (éJ = 1) and four highly-doped
semiconductor layers. The layer that l¡es claser to the incident radiation has the width d~) and
the width of aH the insulatillg layers are the same; dJ = 100 A. The widths are conseclltively
decreased 6 A, that is; d~) = 100A, d~) = 94A, d~) = 88 A and d = 82 A. Each filmis described
by Drude transverse dieleetric function and hydrodynamic longitudinal dielectric function both
with éH = 1. The parameters we chose for the film are T = 1000/wp, No = 2.33 X 1017 cm-3,
nwp = 1.67 x 10-2 eV, and f3 = 5.70 X 1O-5c, where e is the speed of light. In the definition of
the plasma frequency we use for simplicity the bare mass of the electron as the effectiv€ mass.

populating the conduction band of a semiconductor. In other words, in general it is
not necessary to improve the Drude model by inclllding the bound electron contriblltion
(éB(W) # 1) as we did in Fig. 5, in metals.

In Fig. 6 we calculated the reflectance spectra of a system made of six higly-doped
semiconductor layers with alternating insulator layers, where again the width of the
semiconductor films was also choose to decrease linearly. Figure 7 is the same as Fig. 6,
bllt with a a logarithmic scale in the vertical axis in order to appreciate the relative
heights of aH the peaks in the reflectance. Since the wavclength of the transverse waves
is much larger than the wavelength of the longitudinal waves, we always chose for the
insulator films a constant width and él = 1. That is, the reflectance of the system is not
sensitive to the composition or width of the insulating layers. In aH calculations shown
here, the intensity of the guided plasmon peaks is ahnost the same in both a single-film
system and in a multilayered system. This comparison shows how weak the interactions
are among such guided plasmOllS.

Concerning the separation of the guided plasmons peaks in Figs. 5, 6, and 7 we
notice that we obtained for each family associated to a n-resonance an n-dependent
separation É>w". The lat ter figures shows a region of fre<¡uencies where peaks of the
families corresponding to n = 5 and 7 mix. Thc scparation of the resonances 6.wn is Bot
constant sillcc a constant separation would requirc, instead of a siluplc linear dependence
of the width of lhe films, a more complicated dependence to adjllst the widths. In the
case of a large number of layers of the same or similar wirlth each family (labelerl by n)
wiH produce a n-band of longitudinal plasmons.
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FIGURE G. Same as Fig. 4, but instead of four layers there are six semiconductor layers with
. Al' 1(1) 100 \ 1(6) - ~oÁwldths dccrcased also 6 , t 1al 15, (s = 1 , ... , (s - I .
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FIGURE 7. Samc as Fig. 5, hut with a a logarithmic scale in the vertical axis.

In summary, to obtain '1ua.qi-independent resonances in the coupling at the interfaces
of electromagnetic transverse amI longitudinal electromagnetic waves (or plasmons), we
applied a hydrodynamic model together with a simple transfer-matrix formalism to the
calculation of the e1ectromagnetic reflectance of multilayered systems made of alternated
metallic or semiconductor and insulator layers of different thickness. In order to be
abIe to observe many guided-plasmons peaks sufficiently separated in units of the plasma
frequency, \Ve chose in OUT calculations laycrs of the same matcrials hut differcnt thickncss
and we found that. t.he widt.h of t.he layers can be varied t.oaccommodat.e various peaks in
the case of layers made of highly doped semiconduct.ors. In contrast., in the C'L'eof syst.ems
made of mctallic laycrs dc.scribed by Drude models, we fOllnd t.hat CVCIl for very thin la.yers
(of the order of 30 A) t.he reflectalI<:e peaks are so closely packed t.ogether that. it. would
not be possible to accollllnodate (ar resolve easily in units of t.he plasma frequency) the
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peaks resulting of the different families of guided plasmons. Iu contrast to Ref. 6, where
an infinite conductor-insulator superlattice with layers of constant widthwas studied,
here we analyze a jinite superlattice made of ouly a few layers with different widths
(which for many cases it might he a more realistic system), so it can he thought that
hoth works are complementary. On the other hand, we hope that the physical coucepts
discussed here can help the reader to get a better understanding of the electromagnetic
longitudinal-transverse coupling and of the powerful transfer matrix formalismo
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