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ABSTRACT. We present calculations for the electromagnetic reflectance spectra of finite multilay-
ered systems (superlattices) made of very thin films of different thickness. In contrast to quantum
resonances, for which there is only one kind of propagating waves, the electromagnetic resonances
exhibited by these systems for non normal incidence are due to the longitudinal electromagnetic
waves (or guided plasmons) coupled to the usual long-wavelength transverse electromagnetic
waves. We employ a transfer matrix formalism for the layered system together with a hydrody-
namic model for the electron dynamics. For realistic values of film thickness, a larger number of
such resonances could be observed in multilayered systems formed by highly doped semiconductor
layers rather than in systems formed by metallic layers.

RESUMEN. Presentamos calculos de espectros de reflectancia electromagnética de sistemas finitos
de multicapas (superredes), hechas de peliculas muy delgadas de diferentes anchos. A diferencia
de las resonancias cudnticas, para las cuales hay un sélo tipo de ondas que se propagan, las
resonancias electromagnéticas mostradas por estos sistemas en incidencia no normal son debidas
a las ondas electromagnéticas longitudinales (plasmones guiados) acopladas a las bien conocidas
ondas electromagnéticas transversales. Utilizamos el formalismo de la matriz de transferencia para
el sistema de multicapas junto con el modelo hidrodindmico para la dindmica de los electrones.
Para valores realistas de los anchos de las peliculas de estos sistemas de multicapas, se pueden
observar un mayor nimero de resonancias en sistemas formados por capas de semiconductores
altamente dopados que en sistemas formados por capas metalicas.

PACS: 41.20.Jb; 78.66.-w; 42.30.Yc

1. INTRODUCTION

1.1. ANALOGIES BETWEEN QUANTUM AND ELECTROMAGNETIC WAVES

Within the spirit of establishing useful analogies in the propagation of waves between
quantum mechanics and other fields of physics, the one-particle propagation in one-
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dimensional multiple quantum well systems has been compared with the propagation
of transverse electromagnetic waves in stratified media. An appropriate mathematical
tool to describe quantum mechanical, electromagnetic and elastic phenomena in layered
media is the transfer matrix formalism [1].

As we will see, they can propagate in material media two kinds of electromagnetic
waves; the well known transverse waves (for example, infrared and optical among others)
and the longitudinal waves. In a homogeneous media the former have the electric field E
perpendicular to the direction of propagation q, whereas the latter have E and q parallel.

In this article we apply the transfer matrix formalism to systems made of layers of
different thicknesses, where both longitudinal (L) and transverse (T) electromagnetic
waves are present together with the so called hydrodynamic model which describes the
dynamics of the charged carriers. We also discuss the L-T coupling in interfaces, the
propagation of confined L waves (or guided plasmons) and their effects in the reflectance
of multilayered systems.

1.2. LONGITUDINAL AND TRANSVERSE ELECTROMAGNETIC WAVES AS SOLUTIONS OF
MAXWELL EQUATIONS

To show how both longitudinal and transverse electromagnetic waves arise from first
principles we take

E(r,t) = Eexpli(q r — wt)] (1)
and
B(r,t) =Bexp[i(q-r — wt)] (2)
together with Maxwell’s equations to get
[ch&j - qiq; — (w?/c?) &35 (q,w)} Ii= =128, (3)

where ¢;; are the components of the dielectric tensor. In general it is convenient to write
the solutions of the last equation in the form q = q(w), with w real and q complex,
or w = w(q), with q real and w complex; these are the dispersion relations for the
electromagnetic waves. If the medium is isotropic € (q,w) can be written in the form

eij (q,w) = Phey, (q,w) + P er (q,0) (4)

where we have introduced longitudinal and transverse projection (tensors)
: T L .

Pi=aqi/a’,  Pj=0;-P; (5)

and the longitudinal and transverse dielectric functions ¢,(¢,w) and e7(g, w), which are
scalars. By writing E as a sum of transverse and longitudinal components,

E = (P"+PT)E:EL+ET, (6)
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we can decompose Eq. (3) into separate equations for the transverse and longitudinal
fields:

[¢* = (@¥/¢*) er (g,w)] Br =0, (7)
er (q,w) By, = 0. (8)

Therefore, the dispersion relation for transverse waves for which q-E = 0, is the solution of

[ = /) ex (q,0)] =0, (9)

and the dispersion relation for longitudinal waves, for which q x E = 0 and B = 0, is the
solution of

L(g,w) = 0. (10)

This decomposition of E and &;; into transverse and longitudinal components is valid if
the wave vector is complex, q = q' + iq”, with the real and imaginary parts in different
directions. In this case, the conditions q- E = 0 or g x E = 0 do not signify that q is
perpendicular or parallel to E, since q does not have a definite direction.

1.3. HYDRODYNAMIC MODEL

To go beyond local models for the dielectric function of an electron gas (such as the
common Drude model) we can use the hydrodynamic model or hydrodynamic approx-
imation to take into account in a simple manner that the carriers form a compressible
gas. In this approximation the dielectric function is calculated by neglecting the thermal
velocity of the particles; only the average velocity u appears. Let us consider an electron
gas with no static applied electric and magnetic fields (Eg = 0 and By = 0) and use
a linearization procedure in small induced quantities such as E, B, fluctuation current
density j, etc. That is in the following derivation of the dielectric tensor we will make
use of a linearization procedure in which fields such as E and B and the average particle
velocity (often referred to as drift velocity) associated with the electromagnetic waves are
considered to be small quantities. For simplicity we model the ions as a homogeneous
positive background (jellium model) in order to keep the system electrically neutral. The
equation of motion of the electrons is [2]

dua u Vp
md—t-— 6[E+(E)XB]——p‘, (11)

where m and e are the mass and charge of the electrons and p is the charge-density
fluctuation induced in the electron gas. The last term in Eq. (11) would not be included
in the local Drude model. Some many-body effects are taken into account partially by
the last term which represents the force per particle due to the pressure gradient Vp. The
negative sign of this term indicates, as expected, that particles tend to move away from
high density regions. We could also have included a term proportional to the velocity
simulating the damping force due to collisions. Since Vp = (dp/dp)Vp, we can define
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a characteristic velocity 8 by 3% = (6p/dp) and use the equation of state p = p(p) to
relate this velocity to the thermal velocity in a classical gas and to the Fermi velocity in a
degenerate gas. f3 is called the “stiffness” of the gas, since it measures its compressibility
and is responsible for the spatial dispersion or nonlocality. One can use the equation of
continuity (or conservation of particle number)

op
g + N - (pu) =0, (12)
to linearize Eq. (11) to get
2, _
e ) (13)

m w

where we have neglected the term containing (u/c) x B. For definiteness, it is convenient
to take q in the z direction. Then ¢,, = e1,(q,w), the longitudinal dielectric function,
€rz = €yy = er(q,w), the transverse dielectric function, and gij = 0 if ¢ # j. From
j= —epu and

ji (@, w) = 045 (q,w) Ej (q,w), (14)
€ij (@,w) = by + (4mi/w) 0ij(q,w), (15)
we find
W2
€L (q,w)=1—w—;22—q2), (16)
sT(w)zl—:Jj'Z-, (17)

where w, = (4mpe?/m) is the plasma frequency of the electron gas. The absence of
g-dependence of Drude-like e7 indicates that the pressure gradient force does not affect
the components of ¢ that describe transverse motion, where there is no density change.
For a degenerate electron gas we choose (3% = 3v% /5, where vp is the Fermi velocity.
This value can be obtained from a long-wavelength expansion of Lindhard’s dielectric
response model [3], which is a better model for the dynamics of the electron gas than
the hydrodynamic model. The hydrodynamic model can also include the contribution of
bounded electrons and the effect of collisions to yield

w2
£L (q,(AJ) = EB(w) - (w-{-zw/:—ﬁZqQ)’ (18)
(0) = eaw) - — 22 19)
er (¢,w) = ep(w G il (

where ep is the bound electron contribution to the dielectric response (which in general
depends on the frequency w) and 7 is a phenomenological damping constant which arises
from a trivial generalization of Eq. (10) if a friction force is included. The dependence of
the dielectric function on q makes the hydrodynamic model a nonlocal one.
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FIGURE 1. Vacuum-conductor interface. Within a non local model the wave vectors of the trans-
verse (T) and longitudinal (L) waves are shown together with associated electric and magnetic
in the conductor. Incident, reflected and transmitted waves are indicated by the subscripts ¢,
r and ¢, respectively. The charge density fluctuations produced by the longitudinal wave are
schematically depicted by the different shaded regions.

A detailed analysis of the dispersion relations [Eqs. (9) and (10)] shows that in the
hydrodynamic approximation the ratio of the wavelengths A /AL =~ ¢/B ~ c/vF is large,
which means that A, is small. Thus, the resonances due to longitudinal waves (“longitudi-
nal” Fabry-Perot resonances) are better observed in thin films [4]. Experimental and the-
oretical work on the effects of spatial dispersion or nonlocality are found in Refs. 4 and 5,
respectively. Nonlocality can be taken into account by including longitudinal plasmons
(as in our work) or electron-hole pairs creation.

2. APPLICATIONS TO MULTILAYERED SYSTEMS

2.1. COUPLING OF LONGITUDINAL AND ELECTROMAGNETIC WAVES AT AN INTERFACE

It was shown in Sect. 1.2 that in a homogeneous medium transverse (T) waves are not
coupled to longitudinal (L) waves. In other words, in a homogeneous medium longi-
tudinal waves cannot be excited by light or other electromagnetic waves consisting of
transverse waves. However, the presence of an interface can produce L-T coupling [4, 5]
due to the following process. Let us consider, for simplicity, the simple case of an trans-
verse p-polarized wave (for which the electric field lies on the plane of incidence) traveling
from vacuum to a non-local medium. For non normal incidence, the normal component
of the total electric field in the non-local medium does not vanish, and the impinging
wave will generate reflected and transmitted transverse waves, and one longitudinal wave
as shown. This longitudinal wave is produced by E, which compresses the carriers to-
wards the barrier at the interface. In other words, the physical mechanism that allows
the generation of plasmons by transverse waves consists of the confinement of the moving
charges by the interface, which in turn produces regions of lower and higher compressibil-
ity. In Fig. 1 we depict the resulting waves produced by an incident transverse wave on
a vacuum-insulator interface. In contrast to transverse waves . which propagate either in
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FIGURE 2. Finite system of alternating conducting (C) and insulating (I) layers in vacuum.

vacuum or material media, the longitudinal waves only propagate in material media and
they are better observed in very thin layers of thickness d for which A;, ~ d. It must be
emphasized that these plasmons are excitations that occur in the bulk and thus should
not be confused with the electromagnetic surface plasmons.

Here we present an example of resonances formed by plasmons or longitudinal elec-
tromagnetic waves in a electron gas coupled to transverse electromagnetic waves in the
interfaces of multilayered systems (or superlattices) consisting of alternating insulating
and conducting layers, as shown in Fig. 2. Therefore, in each conductor, such resonances
can be regarded as guided plasma waves interacting among themselves. The conducting
layers of the superlattice must have free carriers, so they can be made either of metals
or highly doped semiconductors. For the latter case our formalism would describe the
electrons in the conduction band of the semiconductor.

2.2. TRANSFER MATRIX FORMALISM

Let us consider a multilayered system consisting of alternating insulating and conducting
layers, stacked along the z direction, on which p-polarized (that is, plane-polarized trans-
verse waves where the electric field lies on the plane of incidence zz) and longitudinal
waves (or plasmons) propagate (see Fig. 2). In an isotropic system there is no coupling
of transverse and longitudinal waves. However, as mentioned before the presence of the
interface and p-polarized waves allows such coupling. We do not consider s-polarized
waves since they do not couple to longitudinal plasmons. In what follows me may use
indistinctly the terms electromagnetic longitudinal wave or plasmon.

It is convenient to make use of the simple transfer-matrix formalism developed in
Ref. 6 to study the effect of plasma waves on the electromagnetic modes and the re-
flectance of conductor-insulator superlattices. This formalism takes into account, within
the hydrodynamic model, the nonlocal effects (or spatial dispersion) due to the pres-
ence of plasmons and their coupling to transverse waves. Thus, the construction of the
transfer matrix involves two p-polarized waves; one with positive and other with negative
component of the wave vector along the z direction, that is, K = (Q, 0, £k) obeying

K= Q7 (20)
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and two longitudinal waves with wave vector 14 = (Q, 0, £!) obeying
ElC (l:b w) = 07 (21)

where e¢ is the transverse and €., the longitudinal dielectric function of the conductor.
For sharp interfaces it is shown [5] how the conductor’s 4 x 4 transfer matrix collapses
to a 2 x 2 matrix whenever the film is bounded in both sides by insulators, as in our
case. As usual, the reflectance R = |r|? of an n-layer superlattice is given, in terms of
the impedances of the vacuum Z, and of the superlattice and Z by

Ly— 2
= ! 22
T Bt (22)
and
ZyMys — My
B SN R 23
My, — Z, My (23)

where M is the 2 x 2 transfer matrix of the full superlattice resulting from the product
of all n transfer matrices. For instance, the transfer matrix M = M;Mg¢ corresponding
to a system of one conductor and one insulator is given by Eq. (24) of Ref. 6.

As in the electronic band structure of solids where there is a periodic arrangement
of atoms, a periodic arrangement of layers can produce allowed and forbidden bands in
the propagation of electromagnetic waves. In Ref. 6 the presence of such bands in the
propagation of coupled transverse and longitudinal electromagnetic bands was shown.
The transfer-matrix formalism summarized above was employed in Ref. 6 to calculate
the properties of periodic (and infinite) superlattices and in this article this formalism
will be applied to finite superlattices.

2.3. NUMERICAL RESULTS

Figure 3 shows our calculation for the reflectance of a very thin (d = 30 A) single metal
film where the free-electron data for aluminum [7,8] (eg = 1) were used. There are
propagating bulk modes, made up of “guided” plasmons, in frequencies where no prop-
agation is expected if spatial dispersion or longitudinal plasmons are neglected. Within
the hydrodynamic model these modes manifest themselves as a series of sharp peaks in
the reflectance spectra due to the strong mismatch of impedances near the single- film
resonance frequencies w, given, as indicated by Eq. (10), by approximately the zeros of

w2

l p
e (li,iw) =g — : ! 24
where [, the z-component of the wavector is quantized and equal to nr/d (or d = nA/2).
These frequencies are given by

2
- w -
wh=-"L+p
EB

2
(224_(%):,: = 2.3 o5 s (25)
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FIGURE 3. Local (dashed line)and nonlocal (solid line) calculation of the electromagnetic re-
flectance of a metallic film of width dy; = 30 A for an angle of incidence § = 70° described
by Drude transverse dielectric function and hydrodynamic longitudinal dielectric function both
with eg = 1. We chose for the film the values corresponding to the free-electron data for alu-
minium [7,8]; No = 1.81 x 10 cm™3, hw, = 14.7 eV, 7 = 192/w, and § = 5.23 x 10~°¢, where
¢ is the speed of light. For simplicity we chose for the insulator ey = 1.

These guided plasmons are coupled among themselves by only the long-wavelength
transverse waves they induce in the insulating layers since there are no longitudinal waves
in the insulator layers. The sharp structure of the non local calculation corresponds to
the frequencies of the odd-numbered guided plasma waves [odd n in Eq. (25)], whereas
the even numbered plasmons are barely noticeable, since when n is even the electric
field outside the conducting films is very small (in this case each film is similar to a
capacitor, except from a smooth charge modulation along the z direction given by e'“7).
The detailed shape of the features in the reflectance spectra depends obviously of the
strength of the coupling between transverse and longitudinal waves at the interface. This
coupling, in turn, is sensitive to the microscopic surface structure. For example, in more
complete models such as the RPA self-consistent jellium, in which the electronic density
does not fall sharply to zero at the interface and in which excitation of electron hole pairs
is possible, this coupling is smaller than in the hydrodynamic model [9]. However, the
presence of the main features of the resonant structure within the hydrodynamic model
seems to remain in any better non-local theory.

If we compare these results with those of an infinite superlattice [6], we notice that
the main differences are the following. In the first place, the local calculations in the
infinite and finite case (without longitudinal plasmons) have a very different shape, and
as we will see in the next figures, the shape remains practically the same in the finite
case when the number of layers is small. This is due to the fact that the wavelength
of the transverse wave (which is reponsible for the local result) is much larger than the
width of the superlattice (recall that Ap/AL =~ ¢//3). In second place, as expected from
Eq. (25), the resonances due to the guided plasmons are more localized in frequency in
the periodic case (since all conducting layers have the same width) than in the finite case
for which we chose different widths).
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FIGURE 4. Same as Fig. 2, but with £ p(w) adjusted to the optical experimental data of aluminum
as it was done in Ref. 9 to incorporate the bound electron contribution.

In Fig. 4 we follow a modified hydrodynamic model [10] for aluminum to include the
contribution from bound electrons, in which ep(w) is adjusted to fit the experimental
local dielectric function €exp(w) from the measured refractive index data [7] according to

Wp

PEmE) )

€B (W) = €exp (W) +

The structure obtained in the reflectance is similar to that of Fig. 3, but with
the guided plasmon peaks slightly sharper that in the simpler model corresponding to
eg(w) = 1. Also, from Eq. (25), it can be seen that for a single film plasmon resonances
get closer in frequency when the thickness of the film is increased. We note that in both
figures the resonances lie very close together, so it will be difficult, within the experimen-
tal range of thin films, to accommodate more resonances in multilayer systems within
a given range in units of w/wp. To look for the same resonances in similar systems,
we calculated in Fig. 5 the reflectance spectra of four highly-doped semiconductor films
where the width of the semiconductor films decreases linearly (alternated with vacuum
layers), for which the same Drude and hydrodynamic models apply, but due to much
smaller electronic density than in a metal (approximately 10 times smaller), the same
number of guided plasmon resonances lie over a wider range of frequencies (in units of
the plasma frequency) than in the metal films of the same width. This is due to the fact
that for a single layer of constant width the separation between peaks is proportional
to B2 /wp o Nd?/ 3/Ng = Ny 2 ® being Ny the conduction electronic density. We also
introduced for a doped semiconductor a larger 7 than in a metal, since for both metals
and semiconductors, 7 could be expressed as the time between two successive collisions
7 = s/v, (s is the distance between two succesive collisions and v is the random velocity
which, in turn, is of the order of the Fermi velocity), being s approximately the same for
metals and semiconductors and v much larger for semiconductors. On the other hand,
since the region around the minimum of the conduction band in typical semiconductors
does not overlap with other bands, the Drude model can be applied for the electrons
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FIGURE 5. Nonlocal calculation of the electromagnetic reflectance for an angle of incidence
# = 70° of a superlattice made of alternating vacuum layers (¢; = 1) and four highly-doped
semiconductor layers. The layer that lies closer to the incident radiation has the width dg) and
the width of all the insulating layers are the same; d; = 100 A. The widths are consecutively
decreased 6 A, that is; d§’ = 100 A, d) = 94 A, d = 88 A and d = 82 A. Each film is described
by Drude transverse dielectric function and hydrodynamic longitudinal dielectric function both
with eg = 1. The parameters we chose for the film are 7 = 1000/wp, No = 2.33 x 10'7 cm~3,
hwp = 1.67 x 1072 eV, and 3 = 5.70 x 10~ 5¢, where c is the speed of light. In the definition of
the plasma frequency we use for simplicity the bare mass of the electron as the effective mass.

populating the conduction band of a semiconductor. In other words, in general it is
not necessary to improve the Drude model by including the bound electron contribution
(e(w) # 1) as we did in Fig. 5, in metals.

In Fig. 6 we calculated the reflectance spectra of a system made of siz higly-doped
semiconductor layers with alternating insulator layers, where again the width of the
semiconductor films was also choose to decrease linearly. Figure 7 is the same as Fig. 6,
but with a a logarithmic scale in the vertical axis in order to appreciate the relative
heights of all the peaks in the reflectance. Since the wavelength of the transverse waves
is much larger than the wavelength of the longitudinal waves, we always chose for the
insulator films a constant width and €; = 1. That is, the reflectance of the system is not
sensitive to the composition or width of the insulating layers. In all calculations shown
here, the intensity of the guided plasmon peaks is almost the same in both a single-film
system and in a multilayered system. This comparison shows how weak the interactions
are among such guided plasmons.

Concerning the separation of the guided plasmons peaks in Figs. 5, 6, and 7 we
notice that we obtained for each family associated to a nm-resonance an n-dependent
separation Aw,. The latter figures shows a region of frequencies where peaks of the
families corresponding to n = 5 and 7 mix. The separation of the resonances Aw, is not
constant since a constant separation would require, instead of a simple linear dependence
of the width of the films, a more complicated dependence to adjust the widths. In the
case of a large number of layers of the same or similar width each family (labeled by n)
will produce a n-band of longitudinal plasmons.
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FIGURE 6. Same as Fig. 4, but instead of four layers there are six semiconductor layers with
widths decreased also 6 A, that is, d(s]) =100 4, ..., d(;) =70 A.
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FIGURE 7. Same as Fig. 5, but with a a logarithmic scale in the vertical axis.

In summary, to obtain quasi-independent resonances in the coupling at the interfaces
of electromagnetic transverse and longitudinal electromagnetic waves (or plasmons), we
applied a hydrodynamic model together with a simple transfer-matrix formalism to the
calculation of the electromagnetic reflectance of multilayered systems made of alternated
metallic or semiconductor and insulator layers of different thickness. In order to be
able to observe many guided-plasmons peaks sufficiently separated in units of the plasma
frequency, we chose in our calculations layers of the same materials but different thickness
and we found that the width of the layers can be varied to accommodate various peaks in
the case of layers made of highly doped semiconductors. In contrast, in the case of systems
made of metallic layers described by Drude models, we found that even for very thin layers
(of the order of 30 A) the reflectance peaks are so closely packed together that it would
not be possible to accommodate (or resolve easily in units of the plasma frequency) the
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peaks resulting of the different families of guided plasmons. In contrast to Ref. 6, where
an infinite conductor-insulator superlattice with layers of constant widthwas studied,
here we analyze a finite superlattice made of only a few layers with different widths
(which for many cases it might be a more realistic system), so it can be thought that
both works are complementary. On the other hand, we hope that the physical concepts
discussed here can help the reader to get a better understanding of the electromagnetic
longitudinal-transverse coupling and of the powerful transfer matrix formalism.
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