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ABSTRACT. The relevance of Quantum Electrodynamics (QED) in contemporary atomic structure
theory is reviewed. Recent experimental advances allow both the production of heavy ions of
high charge as well as the measurement of atomic properties with a precision never achieved
before. The description of heavy atoms with few electrons via the successive incorporation of
one, two, etcetera photons in a rigorous manner and within the bound state Furry representation
of QED is technically feasible. For many-electron atoms the many-body (correlation) effects are
very important and it is practically impossible to evaluate all the relevant Feynman diagrams
to the required accuracy. Thus, it is necessary to develop a theoretical scheme in which the
radiative and nonradiative effects are taken into account in an effective way making emphasis
in electronic correlation. Preserving gauge invariance, and avoiding both continuum dissolution
and variational collapse are basic problems that must be solved when using effective potential
methods and finite-basis representations of them. In this context, we shall discuss advances and
problems in the description of atoms as QED bound states.

RESUMEN. Se hace una revisién del papel actual de la electrodindmica cudntica (QED) en la
teoia de estructura atomica contemporanea. Recientes avances experimentales permitn tanto
la produccién de iones pesados de alta carga como la medicién de propiedades atémicas con
una presicion sin precedentes. La descripeion de dtomos pesados con pocos electrones mediante
la incorporacién sucesiva de efectos de uno, dos, etcetera, fotones en forma rigurosa vy en el
marco de QED en la representacién de Furry es técnicamente factible. Para atomos de muchos
electrones los efectos de muchos cuerpos (correlacién) son muy importantes y es imposible en
la practica calcular todos los diagrames de Feynman relevantes con la presicion requerida. Es
entonces necesario generar un esquema en el que los efectos de QED, radiativos y no radiativos,
sean incorporados en forma efectiva dando énfasis a la correlcion electrénica. La preservacién
de invariancia de norma, la disolucién en el continuo y el colapso variacional son algunos de
los problemas que deben resolverse al elegir métodos en que se empleen potenciales efectivos y
representaciones matriciales de éstos. En este contexto se describen avances y dificultades en la
descripcion de los atomos como estados ligados en QED.

PACS: 31.30.Jv; 31.15.Pf; 31.15.Ax

1. INTRODUCTION

The development of Quantum Electrodynamics (QED) has been intimately related to
the understanding of atomic physics. This can be illustrated by the theoretical advances
in the late forties which finally led to a predictive formulation of QED [1]. They were
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inspired and motivated by the measurements of one fundamental property of the elec-
tron and two atomic properties: the free-electron gyromagnetic factor g, [2], the Lamb
shift [3] and the hyperfine structure in hydrogen [4]. Even nowadays, the excellent
agreement between experimental and theoretical evaluations of these quantities consti-
tutes a fundamental test of the validity of QED. However, there are important differ-
ences in the difficulties related to the evaluation and measurement of QED effects when
going from free electrons into atomic bound electrons. On the one hand, the unprece-
dented experimental accuracy achieved in the measurement of the free electron g.-factor,
ge = 2(1 + ae) with a, = (1159652188.4 +4.3) x 1072 [5] may be compared with the
most accurate rigorous calculation performed within any quantum field theory frame-
work, a, = (1159652208 + 52) x 1072 [6]. Corrections up to the four photon level were
included in this theoretical calculation and its accuracy is at present limited by the un-
certainty in the fine structure constant «. This constant measures the electron coupling
to the electromagnetic field and is the only physical parameter which must unavoidably
be introduced in the calculation. On the other hand, for atomic systems there are several
relevant physical parameters:

e « which determines the strenght of the interaction between electrons as well as
their selfinteraction.

e Za which conditions likewise the interaction between the electron and the nucleus.
It also determines indirectly the velocity of the electrons.

e N, the number of electrons in the system.

e m./M,, the ratio of the electron and nuclear masses used in the characterization
of the center of mass system.

e A, the number of nucleons. It sets the nuclear radius and, in combination with Z
it is also relevant for characterizing the strength of the nucleus-electron magnetic
and electroweak interactions.

Thus, even though the interactions among the electrons, as well as among the elec-
trons and the nucleus are well “understood”, being essentially of electromagnetic nature
(corrections due to weak interactions can be incorporated by introducing properly the
electroweak nonabelian fields) the complexity of the system necessarily requires reliable
approximation schemes to obtain concrete numerical predictions. Such schemes will de-
pend on the values of the physical parameters for each atom.

Lately, there have been experimental advances allowing to observe highly ionized few-
electron atoms. For these systems Za = 1, so that a nonperturbative treatment in Za of
QED effects is necessary. However, in general, these atoms exhibit small nuclear recoil
effects and the interelectron correlation may be evaluated perturbatively. Thus, these
atoms are used to test bound interaction picture QED in strong fields.

A more complex problem appears in high-Z many-electron atoms where electron
correlation is not negligible and radiative corrections are also important. The accurate
characterization of these atoms can be regarded as one of the farthermost limits of the-
oretical atomic physics.

Finally, for the other atoms, the great experimental advances in the last decade require
that electrodynamic relativistic effects have to be taken into account more frequently.
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In this work we shall make a brief review of advances achieved by several theoretical
groups in the last decade to incorporate QED effects in atomic systems. These effects
include both radiative and correlation properties derived from the quantum nature of the
electromagnetic and electron fields. The relevance of radiative corrections is particularly
important for high-Z few-electron ions. In the next Section, we shall mention some of
the experimental techniques presently used. Next, we shall briefly describe the bound-
electron QED formalism and how it has been used to obtain numerical predictions for
one- and two-electron ions. Then, we shall outline feasible approximation schemes to
accurately describe high-Z many-electron atoms. For these systems, the main radiative
corrections can be evaluated by similar techniques to those used for few-electron atoms.
So that, nowadays, the relativistic correlation problem is considered the bottleneck to be
overcome. The kind of problems that have to be solved and the ways used to circumvent
them will be described. In particular, the results achieved by our group will be briefly
presented in three sections at the end.

2. SOME EXPERIMENTAL TECHNIQUES TO OBTAIN HIGH Z FEW-ELECTRON IONS

Highly charged, high-Z ions can be obtained in several ways. Tokamaks and high-power
laser- produced plasmas may yield, e.g., nickel-like uranium, U At present, higher
charge states are studied basically by two techniques:

(a) Beam-foil or beam-gas techniques: After being accelerated at large velocities (veloc-
ities comparable to those of the K electron of the projectile to optimize ionization)
low-charge ions are sent into light targets where they can be fully stripped. Then
the ions go into a thinner “dressing” target where they capture few electrons gen-
erally in excited states [7-11]. The photons emitted in flight by the ions are then
observed with a detector in the laboratory frame. The Doppler effect limits the
accuracy of the data thus obtained mainly due to the uncertainty of the observation
angle. The most accurate reported spectroscopic data using this technique corre-
spond to the measurement of the Lambshift of the ground-state of hydrogenlike
uranium [11]. It required cooling the ions by electron beams and observing the
radiative recombination X-rays at an angle of almost 0°.

(b) Electron-beam ion trap: Trapped ions injected in low-charge states or as neutral
vapors are ionized to high-charge states by successive collisions with beam elec-
trons [12]. Because collisions with the electron beam results in a heating of the
1ons, light-ion cooling may be used to prevent detrapping of heavy ions. Notice
that electron-beam ion traps use the inverse of the accelerator based beam-foil or
beam-gas technique. Instead of a stationary electron target interacting with rel-
ativistic ions, the ions in the trap form an almost stationary target interacting
with a relativistic electron beam. The accuracy is limited Just by the counting
statistics [13]. In this way it has been possible to measure, e.g., the two-electron
contributions to the ground state of heliumlike Ge, Xe, W, Os and Bi (14], and
lonization cross-sections of heliumlike U+ and hydrogenlike U%1+ [13].

In the near future, these techniques will make it possible to obtain not only more
accurate measurements of atomic structure of very highly charged ions, but also to study
atomic dynamics in the high-Z regime.
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3. QED PERTURBATION THEORY IN THE BOUND INTERACTION PICTURE

In the eighties, Mohr proposed [15] to reconsider atomic systems in an unusual way. As
a first approximation, the atom would be regarded as a set of non-interacting Dirac elec-
trons and an infinitely heavy nucleus. The main roles of the nucleus would be to provide
an ezternal potential allowing atom formation and to define a privileged frame of refer-
ence for describing the system. Radiative corrections and electron-electron interactions
would be regarded as more or less important perturbations produced by interactions of
the electrons with the quantized electromagnetic field. The QED perturbation theory
built from the basis states of non-interacting Dirac electrons bound in the static field of
the nucleus [15, 16] is called bound electron QED. Naturally, these ideas are particularly
useful for describing high-Z few-electron ions.

Let us go over the essential features of this formalism. The zero-th order basis states
are eigenfunctions of the Dirac equation

hapn = [—ihe@ - V + V(&) + Bmc’| n(z) = Bnthn(z) (1)

for an external potential which in the simplest case is taken as the Coulomb potential
generated by a point source

2
Vi) = VZTG_E. (2)
|7]
Under these conditions 1, is analitically known both for bound and continuum states
and there is a closed expression for F,. When alternative not exactly solvable expressions
of the local potential V() are used it is necessary to compute numerically the functions
.} The electron-positron field operator ¥ is expanded in terms of the annihilation and

creation operators,

U(z) = ) angpiH (@) + ) b (@) (3)
with the usual anticonmutation rules
{an, ) =6, {an,dw} ={a],a},} =0, (4)
{bn, B} =0y {b b} = (B8} =0. (5)
The electronic vacuum is then defined as
én|0) = b, |0) = 0. (6)

The bound-state Green function Sr is given by,
(o|T [iﬁ(mz)ﬁ(ml )] ‘0> (7)

LI Ay thn (T2) 1y (T1) (8)

i E, — z(1 +16)

Sp(zg,x1)

— D0

with T the time-ordering operator.

'In fact, at present, numerical codes are written in such a way that even in the case of knowning {t, }
analytically it 1s more convinient to work with its numerical representations.
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In an analogous way, one starts from the quantized free electromagnetic field:

= ” y i v & = k” v
A,u = Ze;}[ckANketk * +CL/\Nk€ L ] (9)
kA
Here ef; denotes the unitary polarization vectors and N the normalization factor of the

k, electromagnetic mode. The usual commutation relations are imposed on the operators
Cry, that is

{eon iy} = dudan,  {Gentun} = {ehy,ey) = 0. (10)
The free electromagnetic vacuum is defined as

ék)\IO)EM =0. (11)

Thus, the Feynman gauge photon propagator Dy is given by
9 Dr(z2,m) = (0T [Au(z2)Afar)][0) (12)

47 g~ ik(z2—71)

d*k : 13
I 9m) / k2 +id )

As usual,the noninteracting field Hamiltonian density flg is defined by the normal
ordered operator

Hy =Hg + H™ (14)
HE = Ol (2)hT(z) : (15)
- R s

BM = v )

6 =1t Fu(2)F* (z) (16)

while the Hamiltonian density for the interaction between the electron-positron field and
the radiation field is

Hi(z) =: ju(z)A(z) : (17)

with j, = e@(x)‘y#@(m) the electron-positron current. In the bound state interaction
picture the state vector wavefunction evolves according to

g 0 ~ - 2w o |
zﬁa@(t)) = Hine|®(2)) Hyp = et e Mgt (18)
whereas any operator F evolves according to the equation
L 0 5 = =
~if P = [HO,F(t)]. (19)

The evolution operator ﬁ(t, to) satisfies the equation

—ih 4

50 (t.t0) = Hi U (t, o). (20)
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Now, one of the purposes of bound electron QED is the calculation of the energy shifts
due to the interelectronic interaction. This interaction is present all the time. Thus, in
order to apply the usual scattering techniques of standard QED, Gell-Mann and Low [17]
introduced the adiabatic Hamiltonian

Hurlt,y) = e YO H i =
wnr(t, ) =e Hinr(1) t—l}Iinoo’Y(t) 0. (21)
Usual QED is applied and at the end of the calculations the limit y — 0 is taken. The

energy shift due to the interaction of a state |¥0) with the quantized field is then given
by the Gell-Mann and Low expression

(8/9e) (99U, (0, —00) | ¥9)

AE, = lim ey — (22)
Ciad (¥21Uy (0, —00)|Tg)
or in terms of the scattering operator S, = U, (00, —00) [18]
1 de) (V9] S, | Y
AE, = = lim ie’y(a/ e) .“‘Sﬁl “>. (23)
290 (L2155199)
The perturbative expansion for the adiabatic scattering operator is as usual
~ oo .
S=1+) 89 (24)
j=1
with
o —d =
S(J) = ?- fd4ml /d4$2 e /d“;IjT[‘HINT(’Yﬂ‘-E])H[NT()‘Yj .Tz) - HINT(’Y’ J:J)] (25)

For the free atom, in the absence of external fields, the energy corrections contain only
S-matrix elements of even order. The reason is that the perturbation Hyy7 contains the
operators of the emission or the absorption of the photon and they should enter pairwise
in the final expression to give the photon vacuum state. The electron-positron state
|¥9(z)) is usually taken as an eigenstate of the bound state fermionic number operator,
the parity operator, the total angular momentum and its z component.

4. APPLICATION OF BOUND STATE FORMALISM TO ONE-ELECTRON IONS.

For this case, the first order and second order Feynman diagrams in «v are drawn in Fig. 1.
The first order diagrams are: (a) the self-energy (SE), and (b) the vacuum polarization
(VP) diagrams.

In order to isolate the divergences that arise in the calculation [19-22], the bound
state propagator can be expanded into a free-electron propagator, a first-order Coulomb
scattered term and higher order scattered terms. The higher order part can be written in
a compact form using a combination of free- and bound-electron propagators. The terms
that result divergent consist of combinations of free-electron propagators and photon
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F1GURE 1. One-photon and two-photon Feynman diagrams for one-electron atoms in the bound
formalism of QED. The one-photon diagrams are (a) the self-energy (SE), and (b) the vacuum
polarization (VP) diagrams. The two-photon diagrams are: self-energy-self-energy (SESE) [dia-
grams (c)-(e)], vacuum polarization-vacuum polarization (VPVP) [diagrams (f)-(h)], self-energy-
vacuum polarization (SEVP) [diagrams (i)-(j)], and self-vacuum-polarization-energy [S(VP)E]
[diagram (k)].

propagators which can be treated analytically so that the divergences are isolated and
substracted using standard QED techniques. In fact the many-potential part of the SE
diagram is free from divergences allowing its direct evaluation using techniques such as nu-
merical basis-set approaches. This has made it possible to include realistic nuclear charge
distributions such as two-parameter Fermi and deformed Fermi model distributions in the
calculation. An alternative to evaluate the SE correction was recently proposed (23, 24].
It consists in decomposing both the unrenormalized bound-state SE and mass term into
divergent sums over finite partial-wave contributions. The renormalization substraction
is then performed at the partial-wave level and a convergent renormalized bound-state
SE is obtained.

The VP correction is usually divided into a dominating Uehling part [25,26] and a
Wichmann-Kroll part [27]. The Uehling term gives an effective correction to the nucleus
potential which can be computed in a straighfoward way. The Uehling potential in



680 R. JAUREGUI ET AL.

coordinate space is

4 7 [
Vy=-=—[ d= (2+—
3
with p(Z) the nuclear charge density. Explicit evaluations of its contribution to the
energy correction can be found in Ref. 28. The Wichmann-Kroll correction evaluated to
all orders in Za by Soff and Mohr [29] gives a correction to the energy of the form
@ (aZ)!
3

\/E= /ds exp( Qm'rEl'F—f\)’ (26)

|7 —

A By H(aZ). (27)

n
State dependent values of the function H(«Z) are tabulated in Ref. 29 using a spherical
shell distribution for the nucleus.

The two-photon QED effects [30] are classified as self-energy-self-energy (SESE) [di-
agrams (c¢)—(e) of Fig. 1], vacuum polarization-vacuum polarization (VPVP) [diagrams
(f)=(h) of Fig. 1], self-energy-vacuum polarization (SEVP) [diagrams (i)-(j) of Fig. 1]
and self-vacuum-polarization-energy [S(VP)E] [diagram (k) of Fig. 1]. These corrections
represent separately gauge invariant sets. Almost all of them have been recently evalu-
ated for H-like uranium which has become the standard test case of QED in one-electron
ions. For this ion, the VPVP diagram (f) has been evaluated by Persson et al. [31, 32]
and the VPVP diagrams (g,h) known as Kéllén- Sabry contributions were computed by
Beier and Soff [33] and by Schneider et al. [34] in the Uehling approximation. The SEVP
corrections can be found in Ref. 31 while the S(VP)E correction in the Uehling approxi-
mation has been reported in Ref. 32. The SESE diagram (c) has been evaluated at the
irreducible part level [35]. It is gauge dependent. The value of the remaining part of (c)
and diagrams (d) and (e) have not yet been reported in the literature. This is due to
problems in the renormalization structure of SESE contributions.

Before performing a comparison with experimental values it is necessary to evaluate
nuclear recoil and polarization effects not taken into account in the bound-state QED
formalism. Nuclear recoil can be studied within the Salpeter formalism [36] and for H-
like uranium this has been done by Artemyev et al. [37]. The nuclear polarization effects
arise from the interactions between the electron and excited states of the nucleus [38].

By convention, all corrections beyond the point nucleus Dirac eigenvalue except the
non-relativistic reduced mass correction given by [m/(m + M)|E, and the contributions
due to hyperfine structure are called Lamb shift correction. Taking into account all effects
described in this section, the theoretical Lamb shift of H-like uranium gives [30] the value
465.5+2 eV with the main uncertainty arising from the SESE diagrams that have not been
calculated yet. The latest reported experimental value [11] is 470 = 16 eV. Substantial
experimental advances have been achieved lately so that important improvements in the
accuracy are expected.

5. TWO-ELECTRON HIGH-Z IONS.
The Feynman diagrams for the first-order expansion consist of the one-exchanged photon

correction, SE and VP. They are shown in Fig. 2. Within this formalism, the SE and VP
for the two electron atom are just equal to the corresponding one-particle corrections.



ATOMS AS Q_ED BOUND ATOMS 681

|
0. T ‘..J

J
|
|
r
I
'\
|

~
h‘/\.f\/ \Vs

(a) (b) (c)
FIGURE 2. For two-electron atoms, the Feynman diagrams for the first-order perturbative ex-

pansion in the bound formalism of QED are: (a) the one-exchanged photon diagram, (b) the SE
diagram and (c) the VP diagram.

The one-exchanged-photon correction to the energy can be written [15] as a direct
term which is real:

; 1
E;= 82/4%2[(1%1 \p‘f(;r:;_.,f})maff)a““)@(fg,f]), (28)
and an exchange term which is complex:
p " 5 etlnl|F2—11 y k
E, =g /d' m/d- T \pf(fz,,.-zfl)ma})aﬂ( (7, 5), (29)

with
n=[Eg — Eg]/h. (30)

The imaginary part of the exchange term corresponds to a partial width contribution to
the excited-state resonance associated to the decay to the ground state. The reminder of
the natural width arises from the imaginary part of the self energy. The real part of the
sum of the direct and exchange term gives the Feynman gauge form of the one-exchanged
photon correction. By direct calculation [39], it can be shown to be equal to the Coulomb
gauge expression which consists of a static Coulomb interaction:

T (31)

and the Breit interaction

(32)

822{ aj - iy + [51 - (B2 — -'fl)}[&z - (g = -’fi)]}

2 | [& -7 |72 — 213

when time retardation is neglected (n = 0).

The two-photon contributions to the electron-electron interaction of two-electron
atoms are shown in Fig. 3. The non-radiative correlation part corresponds to the lad-
der, (a) in Fig. 3, and crossed-photon diagrams, (b) in Fig. 3. They have been directly
evaluated for the ground state of He-like ions by Lindgren et al. [40] in both Feynman
and Coulomb gauge verifying gauge invariance to numerical accuracy. The two-electron
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FIGURE 3. The two-photon contributions to the electron-electron interaction of two-electron
atoms are: the correlations diagrams (a) ladder, and (b) crossed-photon; the two-electron Lamb
shift diagrams of VP, diagrams (c) and (d), and of SE, diagrams (e) and (f).

Lamb shift, i.e., vacuum polarization, (c) and (d) in Fig. 3, and self energy, (e) and (f)
in Fig. 3, have been directly calculated by Persson et al. [41] using a finite nucleus and
a uniform charge distribution. To a first approximation, (e) and (f) can be regarded as
a screening of the single-electron Lamb shift which can be estimated by modifying the
nuclear potential [23,42,43].

Experimentally, the ionization energy of heliumlike ions has been compared with
that of hydrogenlike ions. This has allowed to measure the two-electron contributions
to the ground state of He-like ions. However, the estimated theoretical uncertainty is
+0.1 eV [41], much lower than the reported experimental one which ranges from +1.6 eV
for Ge (Z = 32) to £14 eV for Bi [14].

6. MANY-ELECTRON ATOMS.

When dealing with more than two-electron atoms it becomes very complicated to treat
the system by evaluating one, two, ..., etc. photon diagrams in a successive way. At
least two alternatives have been explored.

The first one [44-46] corresponds to using effective one-particle local potentials Ueg in
terms of which the Furry representation is worked out. These model potentials try to take
approximately into account the interaction between electrons in atoms. In the simplest
cases they are taken as central potentials inferred from Hartree-Fock calculations. The
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S-matrix approach described in Sect. 3, is constructed and three different type of dia-
grams can be considered. The first class corresponds to photon exchange diagrams which
may be connected with many-body perturbation theory (MBPT) diagrams. The second
corresponds to pure radiative correction diagrams and the third to radiative-correlation
diagrams. This classification of diagrams has already been illustrated for two electron
atoms in Fig. 3. The difference is that the electron legs and electron Green functions
considered here include the effects of the effective local potential U.g . In general, radia-
tive QED corrections are dominated by the one-electron Lamb shift [45]. These SE and
VP corrections are evaluated using the techniques mentioned in Sect. 4 for hydrogenic
ions but considering the screening effect contained in Ueg(r) [46]. Thus, the third class
of radiative-correlation diagrams is expected to give a small contribution whenever the
local potential Ugg(r) gives a good zeroth-order approximation to the electron-electron
interaction. In principle the problem is basically reduced to evaluate the correlation
diagrams via MBPT. However, as we shall see below, besides possible convergence prob-
lems, relativistic many-body perturbation theory (RMBPT) has peculiarities of its own
requiring more than a simple extension of its nonrelativistic counterpart.

A second alternative is to define an N-electron Hamiltonian (40, 47],

N N N
H=Y M)+ Vmnt Y. Vimp+.... (33)
n=1 m<n m<n<p
Here hp is the single-electron Dirac Hamiltonian and Vinn, Vinnp, - - . , are effective two-,

three-, etc., electron potentials defined by means of QED in the bound state picture which
starts solely from the electron-nucleus interaction. Radiative effects are treated separately
and the radiative-correlation diagrams, sometimes called screened Lamb-shift diagrams,
must be taken into account in an accurate treatment. Actual calculations in general use
Just two-body potentials V;,,,. Explicit expressions for three-body potentials have been
obtained by Mittleman [48] using a formalism originally suggested by Schwinger [49].
This method decouples, via a unitary transformation, virtual photons in the radiation
field from the matter field. The contribution of the three-body potential to the binding
energy of a lithiumlike atom was found to be less than 0.021 eV [50].

In the scheme of work we are describing, it is necessary to establish a clear relationship
between the effective potentials Vinim, ..m,., the degree of accuracy of the N-particle
wavefunctions obtained using approximate schemes to solve Schrodinger-like equations
related to H, and the Feynman diagrams of QED. This point can be illustrated by studies
on gauge invariance within the Dirac-Hartree-Fock (DHF) formalism using single photon
potentials derived from QED. These studies show that potentials obtained in Feynman
and Coulomb gauges [51] lead to different numerical results in self-consistent field (SCF)
DHF calculations. As shown by Lindgren [62], this is a consequence of the fact that SCF
as well as any other method based on iterative use of single-photon potentials yields only
a part of the higher-order diagrams. In second-order, the crossed-photon diagram and a
part of the uncrossed-photon diagram are omitted. These effects have been shown to be
significantly larger in the Feynman gauge than in the Coulomb gauge. Thus even though
the results of QED are gauge independent in each order of perturbation theory, the
results obtained from effective potentials may be gauge dependent with this dependence
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conditioned by the method of solving the N-particle problem. Another example of this
problem corresponds to the use of the time-retarded Breit interaction, mentioned in
Section 5, beyond first order MBPT. Such a procedure is not meaningful unless virtual-
pair effects are considered also [40].

7. THE RELATIVISTIC MANY-BODY PROBLEM.

Once a relativistic many-body Hamiltonian has been obtained as an ever approximate
representation of the atom, it is necessary to find a numerical scheme to work it out. In
the beginning, it was expected that a direct generalization of the approximation methods
of the nonrelativistic many-body problem could be used. Usual nonrelativistic ab initio
methods are essentially of two types:

e The Hartree-Fock approximation obtained via either a numerical solution or a basis
set approximation.

e Beyond Hartree-Fock via either a perturbative approach or a variational approach,
the latter supported by a variational theorem.

In the late sixties and across the seventies, great efforts were devoted to the solution of
the Hartree-Fock equations which result from considering the Hamiltonian of the form
(34) with a two-body potential containing the Coulomb interaction,

N

N 5
E
He =Y hp(n)+ Yy —, (34)
=1 m<n T'mn
and, sometimes, unretarded Breit interaction,
N N 2 L 5 = - =
e e [@mi - O - (G - Ton) (B2 * T
Hep = Z hD('”«) + E : _ _[ n' i " TTS 7 ) ) (35)
n=1 m<n T'mn 2 T'mn Tmn

Computer algorithms for obtaining numerical finite-difference solutions were implemented
by Grant [53] and Desclaux [54]. Although for some atomic systems serious problems of
convergence could arise, these approaches led to the first DHF results. An alternative
to this numerical approach is to search for analytical approximations to DHF solutions.
Kim [55] pioneered the DHF self-consistent-field method using finite-basis representations
of the approximate wavefunctions. His work revealed a tendency for calculated energies
to fall below the variational limit. This effect is known as variational collapse [56] and
has been found in variational approaches of simpler systems such as hydrogenic ones.
That is, a naive variational calculation using a Dirac-like Hamiltonian may cause the
predicted eigenvalues to sink towards minus infinity. This phenomena is not surprising
due to the fact that, in general, Dirac Hamiltonians admit a continuum of negative-energy
eigenstates so that their spectra are not bounded from below. Thus, the applicability of
the usual quantum mechanical variational theorem is not direct. However, variational
collapse also arises because finite-basis representations of Dirac-like Hamiltonians do
not always reproduce essential qualities of the original operator. In order to illustrate
this point, let us remember that the eigenvalue equation for even a one-particle Dirac



AToMS As QED BOUND ATOMS 685

Hamiltonian hp is a system of coupled equations for the so called “small” and “large”
components. Thus, in order to be reliable, a finite-basis representation of hp must allow
the possibility of approximately representing such a coupling (57, 58].

Now, the implementation of nonrelativistic many-body perturbation techniques to
Dirac Hamiltonians is not straightfoward either. As first reported by Brown and Raven-
hall [59], a conventional perturbative calculation should start from a complete set of eigen-
functions of a zeroth-order Dirac Hamiltonian Hy. This complete set includes negative-
energy states. Second- and higher-order perturbative corrections would make such states
to appear as virtual electron-positron pairs which, however, are not experimentally ob-
served. Mathematically, it is not possible to apply naively standard perturbation theory
because the spectrum of a system of N noninteracting electrons will exhibit an infinite
order degeneracy due to the presence of the negative energy continuum in the spectrum
of each individual electron. This effect is known as continuum dissolution. Brown and
Ravenhall conclude from this that the use of an N-particle Hamiltonian is meaning-
less since starting from a noninteracting N-electron Hamiltonian “by turning on slowly
the electron-electron interaction the system can make real transitions to states where
one electron has a large negative energy and the other electron is in the positive-energy
continuum.”

In order to give a computational scheme which allowed the use of MBPT techniques
an approach known as no-(virtual)-pair approzimation was proposed [60]. It consists in
replacing the N-particle model Hamiltonian Hp, by its projected counterpart

HJF = AL HpA,. (36)

where A is the projection operator constructed as the product of one-particle positive
energy projection operators determined by a one particle Hamiltonian hg. The use of
such projection operators was formally proposed by Brown and Ravenhall who in fact
chose hg as the free-particle Dirac-Hamiltonian. Later Sucher [62] advocated the use of
such projectors, however numerical results on the hydrogen atom [63] led to very bad
estimates of the spectra showing its inapplicability. Thus, H AT is highly dependent on
the one-particle Hamiltonian hg used to define A, [61]. The important point is that the
definition of one-particle positive states depends on the Hamiltonian.?

Adequate projection operators, A, discriminating between (+) and (—) states were
proposed by a number of authors [45,61,65]. In particular, the AL which makes the
energy stationary when the wave function is a single determinant turns out to be precisely
the projection into DHF orbitals [65]. When working with a Hamiltonian with the
structure of Eq. (34) with two-body interactions, taking the one-particle Hamiltonian h
as hp guarantees that the no-pair approzimation is correct to order O(a?) [60]. However,
even with this choice, attempts to obtain explicit expressions for A have been sterile [66).
Meanwhile, people have resorted to very large basis sets from which a partition into (+)
and (—) states is made. A most successful scheme to construct (+) one-particle states

“In other areas of physics such as quantum theory in the presence of gravitational fields or quantum
optics the dependence of the positive- and negative-states definition on the wave-equation has been
lately exploited. In particular the Bogolubov formalism permits to quantify the mixing of positive- and
negative-states for different wave-equations with equal boundary conditions [64].
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was proposed by Johnson et al. [67] whereby hy = hp is placed in a cavity of radius
R = 40 a.u., viz., surrounded by an infinite potential barrier at » = R; also, each large
component is required to be equal to its partner small component at » = R in order
to avoid Klein's paradox. The basis sets are B-splines [68]. Using MBPT based on the
projected Hamiltonian H g P constructed in this way has led to quite precise estimates
for the lowest energies of some many-electron ions [45, 69-71].

For systems where high-order MBPT contributions are not negligible,

e.g. most neutral atoms, alternative schemes must be used to take into account
correlation in an accurate way. Among them there is the coupled cluster (CC) approach
which leads to all-order equations that upon iteration yield order-by-order expressions
for the Rayleigh-Schrodinger linked-diagram expansion [72]. Its reliable implementation
for relativistic many-body systems is a challenging problem to which several groups are
devoted and some applications have appeared lately [73].

Two other promising alternatives are the configuration interaction (CI) [76-81] and
the multiconfigurational Dirac-Hartree-Fock (MCDF) [74, 75] approaches. They are vari-
ational techniques which go beyond the independent particle model. Lacking a variational
theorem that can be directly applied to the N-particle Dirac equation, the reliability of
these approaches is not clear in general. In fact, whether the use of projection operators
is necessary or not in the MCDF case has been controversial [74]. In the next section, we
shall present a version of the variational theorem which, within the CI scheme, overcomes
variational collapse and continuum dissolution, and yields upper bounds to the energies
obtained with projection operators independently of the one-particle Hamiltonian used
to define them [81].

8. A VARIATIONAL THEOREM FOR RELATIVISTIC CONFIGURATION
INTERACTION.

One of the most useful tools in ab initio electronic structure calculations is configuration
interaction. It is a variational method which replaces the time independent Schrodinger
equation with a finite matrix eigenvalue equation:

H(I)i = E@i — HCt = EC;‘ (37)
via the approximation
& - Y .CPY, (38)
Kg
H - )P HI$E)). (39)

The configuration-state-functions ¢:K arc linear combinations of bla.ter determinants
Do associated to the configuration K . They are built so that each d) is an eigenvector
of the recognized symmetries of the Hamiltonian, thus

LY

ﬁb(Kg) = Z Dyo Cags (40)

a=1
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where g is a degenerancy index to distinguish configuration state-functions with the same
eigenvalues of the symmetry operators.
Here we shall consider an N-particle Dirac-like Hamiltonian,

N
H =Y hp(i) + Vee, (41)
=1
hp = cd - §+ fme* + Vy (42)

where Vy represents a central-nuclear potential and V,_, denotes the interaction between
the electrons. Thus, the configuration-state-functions are eigenfunctions of the total
angular momentum operators J? and .J, as well as the parity operator P. The Slater
determinants D, are formed from a one-particle basis set of bispinors Un,ijm;- The
“large” and “small” components must be continuously differentiable on r in (0,00). For
bound states, they decay at least exponentially for r — oo. They must also satisfy the
correct boundary conditions imposed by the nuclear potential V.

A variational theorem for relativistic CI can be formulated as follows (82]:
Let us consider a one-particle basis set B,(,P of dimension m of orthonormalized spherical
Dirac bispinors Wn,ijm;. With the one-particle basis BS-,}L) we can construct a finite-basis
representation hg of any one-particle Hamiltonian hg including hpp. We shall assume that
H; is hermitean.

Let Bg?rm) be the N-particle basis set of dimension K,, constituted by all possible

configuration-state-functions W, that can be constructed from B,(,,ll) and are eigenfunc-
tions of all known symmetry operators associated to H. With this basis a finite-basis
representation H” of the N-particle Hamiltonian H is uniquely determined by the one-
particle basis set. If H5 is hermitean then the eigenvalue equation

HP0E = R CP (43)
can be solved. The eigenvalues Efs are arranged in nondecreasing order:
Ef <Ej---<Ef_. (44)

A similar equation can be written for hy. The corresponding one-particle eigenfunctions
can be classified according to the sign of the eigenvalue ¢;. If there exist eigenvalues of
ho greater than zero, a one-particle basis set of dimension 0 < m,,'?'_’D < m can be formed
Just by the one-particle eigenfunctions with positive eigenvalues. We can consider the
corresponding full N-particle basis set B‘(,\{Yn) . and the corresponding finite-basis repre-

. ; : . NP)B
sentation of H. According to usual terminology the latter will be denoted by HSTJO P)L,
NP meaning no-pair, with a similar notation for the eigenvalues E})’:P)B.

Let us recall the bracketing theorem [83], known since 1847. It asserts that given
a hermitean matrix representation of an operator W in a given orthonormal basis of

dimension n with eigenvalues Wi < Wna - € Whm, upon increasing the basis by an
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extra orthonormal function the positions of the m + 1-th relative to the m-th eigenvalues
fulfill

Wm+1,1 < Wm,l S Wm+1,2 s S Wm-i—l,m S Wm‘m < Wm+1,m+l- (45)

This theorem is the theoretical basis for obtaining nonrelativistic approximate eigenval-
ues for excited states using the Rayleigh-Ritz variation method, of which configuration
interaction is an example.

As a corollary of this theorem, if mgu is strictly less than m it follows that

NP)B ;
BR e BR moias A5 L B (46)

In short, independently of the selection of the one-particle Hamiltonian hg, strict
upper bounds to the no-pair eigenvalues can be obtained by considering the correct
eigenvalue of the matrix H5.

9. ONE-PARTICLE BASIS SETS.

As mentioned in the last section, obtaining reliable finite-basis representations hg of
a one-particle Dirac Hamiltonian hg is not a trivial task. The spectra related to the
matrix hy may exhibit spurious unphysical solutions, an extreme sensitivity to the details
of the basis and may yield positive energies much lower than the exact energies. In
general, accurate representations of positive energy bound states require the basis to
satisfy correct boundary conditions and to yield the correct non-relativistic limit.

Let us consider a basis set of dimension 2m that permits to write the radial part of the
one-particle upper and lower components as linear combinations of m given P, (r) and
mQi(r) functions. If these 2m functions are properly selected the spectrum of hy will
contain just m positive energies which, under variational optimization of the parameters
in the basis, approximately represent the m lowest positive eigenvalues of the one-particle
Hamiltonian hg. The other m negative energies and eigenvalues are usually ignored. For
obtaining this controlled partitioning, it has proven necessary that the {Pi,.(r)} set be
functionally related to the {Q;,(r)} set by pairs. In our case, we find convenient to write
this 2m dimensional basis as an m-dimensional one-particle basis of normalizable Dirac
bispinors embracing n;.» irreducible representations:

\I’(t) - l ( Pnilj('f')ymnj ) ’ § = 12,2;([]), (47)
-

alimj iQn;I'j(r)y—xntJ

Nirr

=y () (48)

(L)=1

supplemented with another complementary set of m Dirac bispinors,

gltm) :1( Pots (7)Y em, ) (49)

naljm; T —i‘:Q,,,,{'j(?')yfmn‘_,
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differing from the first m in the minus sign preceding the lower components Q. We shall
call the first one-particle basis a single primitive (SP) set and the full 2m-dimensional
basis a double-primitive (DP) set. This kind of basis has been used for hydrogenic
Hamiltonians hp for states with & < 0 [84] and, with one exception [85, 86], in all finite-
basis DHF calculations [87-89).

In fact, there are several useful selections of {Fy;} and {Q;;} that have been intro-
duced in the literature. Some of these sets require that certain parameters characterizing
them are equal for several radial functions but are otherwise unrestricted. Other basis
sets are useful just in a restricted range of values of its parameters. A review of the actual
behavior of several basis sets for Z < 118 and a wide range of the nonlinear parameters
involved is given in Ref. 90.

Notice that a DP set is invariant under separate nonsingular linear transformations
of its upper and lower components. Also, in connection with having an equal number of
positive- and negative-energy one-particle functions, it may be noticed that the trace of
the kinetic energy operator cd - p for any DP set is identically zero, irrespective of the
values of the nonlinear parameters used to define P and @, and of [; quantum numbers.

10. RELATIVISTIC CI AND PROJECTION OPERATORS.

We will now focus on configuration interaction (CI) expansions in which all configuration
state functions that can be constructed from the given one-particle basis are included.
known as full CI. Full Cl is always an absolute invariant, viz., the spectrum is independent,
of linear transformations within the one-particle basis set.

Let us now consider a full CI expansion using the entire 2m-dimensional DP set. Its
full CI matrix, H, gives rise to an eigenproblem of dimension K (2mm),

HC; = E;C; i=1,2,...,K(2m). (50)

This equation refers to the complete spectrum of H, including negative-energy N-particle
states. Via a nonsingular linear transformation of the one-particle basis set, and a proper
arrangement of configuration-state-functions, the left upper corner of H up to rows and
columns of order K(m) can always be made to coincide with the matrix of a no-pair
Hamiltonian HNF constructed just from an m dimensional primitive basis of approximate
positive energy eigenstates of a Hamiltonian ho. If K~ (2m) = K (2m) — K(m), according
to Eq. (46),

EN < Ex-omyyis >0, (51)

indicating that the eigenvalues ENY of relativistic CI calculations with projected bases
will always lie below the eigenvalues Ej “(2m)+i of the CI matrix H, whatever choice of
hg is made.

The first question about Eq. (51) is what happens if the eigenvalues of order K~ (2m)+
¢, i >0, are minimized upon general variations of the nonlinear parameters defining the
DP basis. The general behavior will be illustrated with full CI for U+ 1s2 with a
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FIGURE 4. Behavior of selected eigenvalues of H for U%* 1s? as a function of a scaling parameter
1, exhibiting bound states above Ex - and continuum-dissolution at and below it.

DP basis of twelve 1s;/; orbitals [81]. Thus m = 6, the CI size is K(2m) = 78, and
K~ (2m) = 57. We use Egs. (48)-(50) with radial functions

n,tj(r) Qn,lj( ) = 7'767)\‘1-, (52)

y=K2—(aZ)?, A=mnat, i=1,. 6 (53)

We set b = 1.4, while a was optimized at the nonrelativistic level. The scaling parameter
n will be varied between 0 and 1. In Fig. 4 we show eigenvalues of H of orders 51
through 60 as a function of 7. For definiteness, V,_, = €*3 r-1. thus H is taken as the
Dirac-Coulomb Hamiltonian He, Eq. (34).

According to the definition of K~ (2m), we must look for a target eigenvalue of order
K~ (2m) + 1 = 58. However, for n = 1, Esg is seen to be located just below the line
signaling the zero of energy (fully ionized system), and high above its expected position
around —9651 a.u. Furthermore, we find an eigenvalue E, and an eigenfunction W,
closely resembling the sought after N-particle electron state, within the first K ~(2m)
eigenvalues, initially at position K, = 53 < K (2m). The resemblance of ¥, with a
bound state is linked to a bound character discussed below, associated to a dominant
configuration expected to represent it.
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FI1GURE 5. Amplification of the neighborhood of the last avoided crossing of Fig. 4.

Now we proceed to vary the scaling parameter 7 characterizing the radial functions
P and @Q, so as to lower as much as possible the target eigenvalue. This corresponds to
moving leftwards in Fig. 4. We find that eventually a minimum energy for the target
eigenvalue is reached at which point its eigenfunction represents faithfully the lowest
state of the given symmetry. In the process in which the original DP basis is being
changed into a relativistically energy-optimized DP basis, the energy E, of the state U,
varies slightly, while some of the eigenvalues above begin to approach E,. A bit later,
the lowest of them becomes almost degenerate with Ej,. At this point, coinciding with
an avoided crossing, there is a transfer of character from one state to another: the lower
state exchanges its bound character with the state immediately above. Thereafter, the
eigenvalue of order Ny, now deprived from its former bound-state character, starts to
sink down towards (N — 2)mc?, around —37 558 a.u. (after subtracting Nmc?).

We shall now delve into the nature of the variational eigenfunctions. In Fig. 5 we
amplify the region of Fig. 4 showing the last avoided crossing towards the build up of
the lowest bound state, corresponding to Esg, around —9651 a.u. and 1n = 0.5088. In the
vicinity of points A and A’, the eigenvalue of order 58 is appreciably above the eigenvalue
of order 57 which is at the approximately correct bound state energy . Points B and B’
are very close to the avoided crossing. Towards the left, points C and C’ show that while
Esg stays close to the correct bound state energy, Es; starts going down very fast. An
examination of the composition of the respective wavefunctions, W5, and Wrg, shows how
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the bound state character is transferred from level 57 to level 58 as the neighborhood of
B and B’ is crossed from right to left.

The composition of the wavefunction is conveniently analized using the one-particle
basis sets which guarantee a compact representation of the CI wavefunction. In this
context,the reduced first-order density matrix v(1,1'),

v(1,1') :N/\P*(I,Q,... JN)YU(1,2,... ,N)d(2,3,... ,N), (54)

plays a central role in nonrelativistic CI [91], as its eigenfunctions x;, called natural
orbitals (NO’s),

¥(1,17) =D naxi (Dxi(1) (55)

provide a fast-convergent one-particle basis for the N-electron CI expansion [92], thus
affording a compact representation of the wave function. The eigenvalues n; of (1, 1),
called occupation numbers, are a measure of the importance of x; in a CI expansion
expressed in terms of NO’s.

In Table I, the dominant configurations of the respective eigenfunctions are shown
through the CI coefficients a and b:

U~ alls(+)?] + b[2s(+)3s(—)], (56)
1 1
2s(4) = ﬁ[% +3s], 3s(—)= ﬁ[ZS — 3s]. (57)

In Egs. (57-58) 1s(+), 2s and 3s denote the first three NO’s while 2s(+) and 3s(—)
were constructed from corresponding NO's through Eq. (57) so that they are (+) and (—)
orbitals, respectively. (A (+) NO has positive expectation values of ca- p and of the mass
operator Smc?.) For n = 0.5090 the positive bound state orbital 1s(+) is almost doubly
occupied in level 57 with a very small contribution from the 25(+)3s(—) configuration
directly related to continuum-dissolution; meanwhile, level 58 exhibits a complementary
orthogonal composition. For = 0.5088, both levels show practically equal contributions
from the bound-state and continuum-dissolution configurations. Finally, for n = 0.5086
the bound character has been definitely transferred to level 58, as expected, while level
57 dissolves into 2s(+)3s(—).

The values of 7 in the previous paragraph are still far from the optimized value
n = 0.2635 yielding the actual minimum for Ess = —9651.385 651 88. The corresponding
eigenfunction for the optimal value of 7 is:

Wsg = 0.999999[1s(+)%] — 0.001388(2s(+)?]
— 0.000269[3s(+)?] + 0.000065[4s(—)?]
— 0.000028[5s(+)?] + 0.000010[65(—)*]. (58)

Its dominant configurations are formed by (+) NO's. Small contributions from (—)
NQO’s are present only in configurations with both electrons in the same orbital, whereas
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TABLE I. Variational parameter 7, energies and eigenfunctions of levels 57 and 58 in the neigh-
borhood of the last avoided crossing, Fig. 4; energies in a.u., ¢=137.0373.

n Es7 Usr
Esg Usg
0.5090 —0651.3874 0.99992[1s(+)?] + 0.01240[25(+)35(—)]
_9638.3541 —0.01240[15(+)2 + 0.99992[25(+)3s(—)]
0.5088 ~9651.5430 0.71503[1s(+)?] + 0.69817[2s(+)3s(=)]
—9651.2197 0.69817[1s(+)?] — 0.71593[2s(+)3s(-)]
0.5086 —9670.8307 0.00831(1s(+)?] + 0.99997[2s(+)3s()]
—9651.3841 0.99996(1s(+)2] — 0.00831[2s(+)35(—)]

continuum-dissolution (+)(—) configurations have completely disappeared. This result is
consistent with the QED prediction that to fourth-order perturbation theory continuum
dissolution terms vanish identically [94]; it also incorporates the expected presence of
configurations with both electrons in negative-energy states. In addition, the energy
contribution of these (—) NO’s, when using DP bases, will always be of positive sign as
a consequence of the interleaving theorem.

Many previous workers found these (—) N-particle states and concluded that their
existence would prevent the occurrence of authentic bound states. Because H is not
bound from below, the usual variational theorem cannot be applied to them. However,
according to Eq. (51), the eigenvalues Ey - ,; must be upper bounds to the eigenvalues
of the no-pair Hamiltonian. In fact, we find that all these eigenvalues reach real minima
corresponding to the ground and successive excited states: they do not dissolve into the
continuum as those of order K~ (2m) and below. As m is increased, convergence to an
eract bound state solution is always found; it may be from above, from below, or show
oscillatory behavior [90], in contrast with the familiar nonrelativistic situation where
convergence is from above. This suggests the existence of a variational principle for all
states above K~ (2m), for any value of m.

A second question about Eq. (51) is how do the eigenvalues of H and HY? compare
in actual calculations. In Table IT we show that constructing HY? from DHF positive-
energy eigenfunctions, the lowest eigenvalue of HN? for U+ 1s? sinks 3340 phartree
below Eg- 1, indicating that the effect of negative-energy one-particle states, included
in H but not in H¥? is far from negligible.

Notice that the K (2m) eigenvalues of H are entirely determined by the DP set, inde-
pendently of any a priori identification of (+) and (—) one-particle bases. Thus, the third
question about Eq. (51) is what happens if we mazimize the energies El—NP with respect
to a nonsingular linear transformation within the entire DP set? It immediately follows
that Eq. (51) contains a minimax theorem, whose numerical consequences are being ex-
amined [82], including the determination of best positive-energy orbitals in calculations
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TaBLE II. Full CI calculations for Fe?** and U%* 1s? ground states using a DP basis, and an SP
basis of positive-energy DHF eigenfunctions. The two calculations use the same nine s Slater-type
orbital bases. Energies in a.u., c=137.035981 for Fe?** and ¢ = 137.0373 for U%+.

Basis Fe?4+ Bl
DP —665.854646 —9651.385503
(+) DHF orbitals —665.854698 —9651.388843
beyond DHF.

Now one can ask a fourth question: is it possible, within a given DP basis, to find an
SP basis such that

BYY = Bg-wmaa?l (59)

In Ref. 93 it is shown this to be the case at the independent-particle-model level of
approximation, and this is the reason why our DHF results are in excellent agreement [93]
with finite-difference DHF calculations. However, in general, beyond DHF, Eq. (59)
cannot be satisfied.

It remains to answer the riddle posed by the Brown-Ravenhall argument concern-
ing continuum dissolution. The time-independent equation for stationary states can be
solved with V,._. replaced by xV._., where y is varied between 0 and 100, x = 1 cor-
responding to the actual physical situation. When considering a true atomic resonance,
like nonrelativistic He 252, the various excited eigenvalues associated with resonant states
as a function of y show a behavior like the one exhibited on the right side of Fig. 4, with
many saddle points and associated wavefunctions undergoing change of character in the
vicinity of avoided crossings, similarly as continuum-dissolution states discussed before.
Instead, if one returns to the relativistic problem and uses the optimal scaling parameter
n = 0.2635, one gets, for the relevant eigenvalues of order K~ (2m)+1,7 > 0, as a function
of x, a smooth behavior, without avoided crossings, even when x = 100, one hundred
times larger than its actual physical value. This behavior reinforces the argument about
the bound character of the pertinent variational eigenfunctions.

Summarizing, after climbing over the first K~ eigenvalues of H, the remaining eigen-
values are upper bounds to the eigenvalues of the no-pair Hamiltonian. Its corresponding
eigenfunctions are bonafide bound states, that is, without the Brown-Ravenhall disease.
A wealth of numerical results have been obtained thereby [81,82,90,93,95], including
excited states [90]; finite-basis DHF results of numerical quality for any open shells,
and translation of nonrelativistic into relativistic results [93]; elastic electron scattering
factors [95], and various applications in progress.

11. DISCUSSION AND OUTLOOK.

One of our aims has been to show that QED plays an important role in the understand-
ing of atomic structure. That is, quantum field theory concepts in atomic physics are
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important not just for describing the so called exotic atoms (positronium, muonium, etc.)
or for manipulating atomic properties via cavity QED phenomena. Even the simplest
atomic systems require for their complete description approximation schemes that are
expected to be derivable from quantum field theories let it be QED or its electroweak
extension.

Some atomic properties have not a perturbative character while standard quantum
field theories are formulated perturbatively. The bound state formalism has been con-
structed for taking into account some essential properties of the electromagnetic nuclear-
electron interaction in a nonperturbative way. Its main deficiency is that it does not
include other nuclear effects such as recoil. Fortunately, however, recoil effects are pertur-
bative for standard atomic systems (they are not for other systems such as positronium).
This has been exploited in the QED tests with high-Z few-electron atoms that we briefly
reviewed in the first sections of this article.

During the development of the bound-state formalism, it was learned that not just
nuclear effects can be introduced nonperturbatively. Some interelectronic interaction
effects can be taken into account by effective potentials from which a QED formalism
can start. Nevertheless, this fact has only been used to evaluate radiative corrections. For
more than two electrons, correlation effects are evaluated using many-body Hamiltonians.
There are at least two reasons for doing this. One of them is that seventy years of
nonrelativistic quantum mechanics have allowed the development of approximate schemes
such as the independent particle model which have proven their usefulness in innumerable
tests. The other is that the direct evaluation of multiphoton Feynman diagrams in the
Furry picture is not a trivial task. In this respect, it would be interesting to formulate
QED starting not from one-particle states but from N-particle states. This possibility
has not been properly studied and it is an alternative which, from the beginning, would
recognize atoms as correlated bound states. One of the difficulties for developing this
formalism is that the properties of an N-particle Dirac Hamiltonian are not well known.

After invoking the interleaving theorem to relate the eigenvalues of the no-pair Hamil-
tonian with those of the complete Hamiltonian, we have found that, contrary to current
wisdom, the N-body Dirac-Coulomb Hamiltonian does have bound states. We have ex-
emplified this finding with the calculations reported in the last section. This allows to
evaluate correlation effects in a nonperturbative way and without referring to one-particle
positive-energy projection operators selected a priori. We are presently exploring the be-
havior of N-particle Dirac operators and their relationship with QED.
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