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ABSTRACT. The relevanee of Quantum Electrodynamics (QED) in contemporary atomic structure
tlwory is re\'iewed, Recent experimental advances aIlo\\" hoth the produetion of heavy ion s of
high charge as well as the mea..'iurement of atomic properties ,vith a precision ne"er achieved
hefore. The description of hea"y atom~ with few electrons "ia the successive incorporation of
one, two, etcetera photons in a rigorotls manller ami within the hound sta te Furry representation
of QED is techllically feasible. For many-elf'ctron atoms the many-body (correlation) effects are
very importallt and it is practically ilIlpossihle to evaluate aH the relevant Feynman diagrams
to the required accuracy. Thus, it. is Ilecessary to devf'lop a thporetical scheme in which the
radiative and nonradiativc effccts are takeIl iuto account in an effedive way making emphasis
in e1ectrollic correlation. Preserving gaugc invariallce, ami avoidinp; ooth contilluum dissolution
and variational collapse are basic problelll~ that IllllSt. be solved when nsing effective potential
methods a.ml finite-basis represcntatioIls of t.hem. In this context, we shall discuss advallces and
prohlems in the description of atollls as QED iJolltlcl stat.es.

RESUMEN. Sc hace lIna revisión <id papel actllal de la electrodinámica cu<-Íntica (QED) en la
t.eoía de estructura atómica contcmporálH'a. Hecicntes avanc('s experimentales permitn tanto
la producción de iones pesados de alta carga como la medici61l de propiedades atómicas con
lIlla presición sin precedentes. La descripción de <Í.t.OIllOSpesados con pocos electrones mediante
la illcorporación sucesiva de efectos de HilO, dos, et.cctl'ra, fotones en forma rigurosa y en el
marco de QED en la represC'lltaci6n de FlIITYl'S t.t'cnicamente factible. Para átomos de muchos
electrolles los efectos de muchos cuerpos (correladólI) son muy important.es y es imposible en
la. práctica calcular tocios los diagramcs de FeYllInan relevant.es con la presicióll requerida. Es
entonces nccesario generar 1II1 esqucma en pi que los ('fectos de QED, radiat.ivos y no radiativos,
sean incorporados en forma efectiva dando {'nfasis a la correlción el(>ctrónica. La preservación
de invariallcia de norma, la di~olllción ('11 ,,1 cont.inuo y ('1 colapso variacional son algunos de
los problemas que deben resolverse al ('l('gir métodos ell que se empleell potcnciales efecti,.os y
representaciones matriciales de éstos. En este' contexto se d('srriiJell avances y dificultades en la
desrripcion de los át.omos COIIIO estados lig;ad()~1'11 QED.

PAes: 31.30 ..Jv; 31.15.Pf; 31.15.Ar

l. INTRODUCTlON

The devel0plIlent of QuantulIl Electrodynalllics (QED) has heen intilllately related 1.0
the lludcrstanding of atolllic physics. This call he illustrated hy fhe thl'oretical advancps
iu lhe late forties \Vhich finally ¡cd 1.0a prcdictivc forlllulatiou of QED [1]. They \Vere
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inspired and motivated by the measnrements of one fnndamental property of ¡he elec-
tron ami two atomic properties: the free-electron gyromagnetic factor .'le [2]' the Lamb
shift [3] and the hyperfine structure in hydrogen [4). Even nowadays, the excellent
agrecmcnt between experimental alld thcoretical evaluatiollR of t}¡cse qllantities consti-
tutes a fundamental test of the validity of QED. However, there are important differ-
ences in the difficulties related to the evaluation and measnrement of QED effects when
going from free electrons into atomic hound electrons. On the one hand, the unprece-
dented experimental accuraey achieved in the measurement of the free eleetron ge-factor,
!le = 2(1 + ae) with ae = (1159652188.4:!: 4.3) X 10-12 [5]lIlay he colllpared with the
1Il0st accnrate rigorous calculation performed within any quantulll field theory frame-
work, ac = (1 159652208 :!: 52) x 10-12 [6]. Correetions up to the fonr photon level were
induded in this theoretica1 calculation and its accuracy is at present lilllited by the un-
certainty in the fine structure constant n. This constant measures the electron coupling
to the electromagnetic field and is the only physical para meter which lIlust unavoidably
he introduced in the calculation. On the other hand, for atomic systellls there are several
relevant physical parameters:

o n which determines the strenght of the interaction hetween electrons ¡¡B well as
their selfinteraction .

• Zn: which conditions likewise the intcraction betwecn the electroll and thc nucleus.
It also determines indirectly the velocity of the electrons.

o N, the number of e¡ectrons in the system .
• 711e/Al1l1 the ratio of the electroll ami nuclear Illasses llsed 111tlle characterization

of the center of mass system.
o A, the number of nueleons. It sets the nudear radius aIl<I, in colllhination with Z

it is also relevant for characteri"ing the strength of the nudeus-elect.ron lIlagnetic
<Llld c1cctroweak interactiOlls.

ThllS, cvcn though thc illtcrac:tiollS :tlIlong the elf~ctroIls, as well a.."\élIllong the elec-
trolls and thc nucleus are \Vell "uudcrst.ood", heing cssentially of eleetromagnetic natllre
(corrcctions dlle to weak illtcractions can be incorporated by introducing properly the
electroweak nonabelian fields) the colllplexit.y of the systelll neeessarily requires reliable
approximation schemes to obtain COllcrete Illuuerical predictions. Such scheulCs wiII de-
pend on the values of t.he physieal parallleters for each atolll.

Lately, there have been experinwntal ,,,Ivances allowing to observe highly ionized few-
electron atoms. For these systcms Zo::::::::L so that a nonperturuativc treatmcnt in Zo: of
QED cffect.s is necessary. However, in general, t.hese at.ollls exhibit slllall nuelear recoil
efrect.s ami t.he int.erelect.ron eorrelatiOll lIIay be evaluat.ed pert.urhat.ively. Thus, t.hese
at.otIls are usen to test bOllud interactiOll pidure QED in strong fideIs.

A more complex prohleut appears in high-Z many-elcctrOlI atollls whcrc clectron
cOlTelalioll is Bot negligible and radiative corrections are also import.anL The accurat.c
characíerization of thcsc at.ollls can IJ(~ H'gardcd a.<.;OIleof t.he fart.ilPrlllost. limit.s of t.hc-
ord.ical atomic physics.

Finally, for the other atollls, thc great experimental advances in tile la.."itdccade requirc
t.hat electrodynamic rclativistic effects have to he takc!I iat.o accouut. more frequcntly.
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In this work we shall make a brief review of advances achieved by several theoretical
groups in the la.st decade to incorporate QED e!fects in atomic systems. These e!fects
include both radiative and correlation properties derived from the quantum nature of the
electromagnetic and electron flelds. The relevance of radiative corrections is particularly
important for high-Z few-electron ions. In the next Section, we shall mention some of
the experimental teclllliques presently used. Next, we shall hriefly describe the bound-
clectron QED formalism and how it has been used to obtain numerieal predictions for
one- and two-electron ions. Then, we shall outline feasible approximation schemes to
aeeuratcly descrihe high-Z many-electron atoms. For these systems, the main radiative
correetions can be evaluated by similar teclmiques to those used for few-eleetron atoms.
So that, nowadays, the relativistic correlation problem is considered the bottleneek to he
overcome. The kind of prohlems that have to be solved and the ways used to eircumvent
them will be described. In particular, the results achieved by our grou!, will he briefly
presented in three seetions at the end.

2. 50ME EXPERIMENTAL TECHNIQUES TO OIlTAIN HIGH Z FEW-ELECTRON IONS

Highly charged, high-Z ions can be obtained in several ways. Tokamaks and high-power
laser- produeed plasmas may yield, e.9., niekel-like uranium, U64+ At present, higher
charge states are studied basically by two techniques:

(a) I3eam-foil or beam-gas techniques: After being accelerated at large velocities (veloc-
ities comparable to those of the J( electron of the project.ile to optimize ionization)
low-charge ions are sent into light targets where they can be fully stripped. Then
the ious go ¡uto a. thinner "dressing" targct whefe thcy capt ure few elcctrolls gCIl-
erally in exeited states [7-11]. The photons emitted in flight by the ions are then
observed with a detector in the laboratory frame. The Doppler e!fect limits the
accuracy of the data thus obtained lIlainly due to the uncertainty of the observation
'Ingle. The most accurate reported spectroscopic data nsing this technique corre-
spond to the measurement of the Lambshift of the ground-state of hydrogenlike
uraniulll [11l. It reqnired cooling the ions by electron beams and observing the
radiativc rccOIuhinatioll X-rays al an anglc of almost 00.

(b) Electron-beam ion trap: Trapped ions injected in low-charge states or as neutral
vapors are ionized to high-charge states by successive collisions with beam elec-
trons [12). I3ecause collisions with the electron beam results in a heating of the
ions, light-ion cooling may be used to prevent detrapping of heavy ions. Notice
that electron-beam ion traps nse the inverse of the accelerator based beam-foil or
b"am-gas technique. Instead of a stationary electron target interacting with rel-
ativistic ions, the ious in the trap fonn an almost stationary target interactiug
with a relativistic electron beam. The aecuracy is lilllited just by the counting
statistics (13]. In this way it ha..."i bcell possible to IIlca.....mre, C.g., the two-clectroIl
contributions to the ground state of heliumlike Ge, Xc, W, Os and I3i [14), and
iOllizatioIl cro~~-scctioIlSof hcliumlike U9CJ+ and hydrogclllike U91+ [13J.

In the ncar futurc, thcse techlliqucs will makc it possibJe to obtaill IlOt oIlIy more
aCCllrate IIlC;:L"illremellts01'atomic strueture of very Itighly charged ious! hut also to stlldy
atomic dynamics in the higlt-Z regimc.
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3. QED PERTURBATION THEORY IN THE BOUND INTERACTION PICTURE

In the eighties, Mohr proposed (15) to reconsider atomic systcrIls in au uIlllslIal way. As
a first approxirnation, the atorn would be regarded as él sct al' non-interacting Dirac elec-
trons and an infinitely heavy nueleus. The main roles of t.he nueleus would be 1.0 provide
an external potential allowing atom fonnation and 1.0 define a privileged frame of refer-
ence [ol' describing the systern. Radiative corrcctiolls and eledron-eleetron intcractioIlS
would be regarded as more or less important perturbations produced by interactions of
the electrons with the quantized electromagnetic field. The QED perturbation theory
built from t.he basis states of non-int.eracting Dirac electrom bound in the static field of
the nuelens [15,16] is called bound elec!.ron QED. Naturally, these ideas are particularly
useful for describing high-Z few-electron ions.

Let us go over t.he essent!al features of this formalismo The zero-t.h order basis states
are eigenfunctions of the Dirae equation

(1)

(2)

for an external pot.ent.ial which in t.he simplest case is t.aken as t.he Coulomb pot.ent.ial
generated by a point source

Ze2
V(:i') = --I~I.,.

Undcr these conditions 'ljJn is analitically knowIl both fOf bOllnd and cOlltil1lll11Il statcs
ami t.here is a elosed express ion for E". When alternat.ive not. exactly solvable expressions
of t.he local potential V(:i') are used it is necessary 1.0 compute numerically the functions
,p".¡ The clectron-posit.ron field operat.or .¡, is expanded in t.enns of the annihilation ami
creatioIl operators,

with the usual anticonmutation rules

(:1)

- - -t -t{h",I",,} = {hn-hn,} = O.

(4)

(5)

The elec!.ronic vacuum is then defined as

án 10) = hn lO) = O.

The bound-state Green function S F is given by,

S¡.-(X2,X¡) = \OI'f[ijí(:I:2);I;(1'¡)] lo)
1 1'= "" 1/Jn(:C2)1jj,,(:I'¡)= - dz L- ---~~--

27ri _= E" - z( 1 + úl), 11

with f the time-orderiug operator.

(5)

(7)

(8)

1In fact, at prescnt, numerical codes are wriUen in ~Il(,}¡a \vay that eVf'H in the ca.se of kn()wnin~ {0n}
anal,yticall,y it. i:"more convinÍcnt lo work with it.:"Illlllll'rical rCJlre~('nt.at.ioll:",



(9)
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In an analogous way, one starts frOln the quantized free clectromagnetic field:

A' - '" e!'[c' N e'kvx
v + ¿:t N e-.kvxV]~- L. ~ k!. k kA k .

k!.

Here e~ denotes the nnitary polarization vectors and Nk the normalization factor of the
kv clectromagnetic mode. The usual commntation rclations arc imposed on the operators
i:k).., that is

{' , } {'t ,t } OCk>",Ck')..' = ck),'ck,).., = . ( lO)

The free electromagnctic vacuum is dcfined as

Thus, the Feynman gauge photon propagator DF is given by

g,w DP(X2, x¡) = EM (oifl4,,(:r2)Av(x¡)] [O) CM

As usuaI.thc noninteracting ficld Hamiltonian density Ha is defined
ordercd operator

Ha =Ho + HgM

Ho = : ilít(x)¡,ilí(x) :

HEM __ 1_ . F (x)F'W(".).o - 16,,' ~v •. .

(11 )

( 12)

( I:J)

by the normal

(14)

(1S)

( 16)

while the Hamiltonian dcnsity for the interaction bctween the e!ectron-positron field and
thc radiation ficld is

H¡(x) =: l,.(x)A" (x) : (17)

with j" = e1J!(xh~ilí(x) the e1ectron-positron cnrrent. In the bound state interaction
picture the state vector wavefllllctioll evolves according lo

H~ - eiJíot H~e-iifot
¡ST - 1 , ( 1~)

wherea..., allY opcrator F evolves according lo thc equation

D--in Dt F = [ifa, F(t)j.

The evolntion operator fJ(t, to) satisfies the "quation

( 19)

(20)
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Now, one of the pnrposes of bound electron (lED is the calculation of tbe ener¡!;y sbifts
due to the interelectronic interaetion. This interaction is present aU the time. Thus. in
order to apply the usual scattering techniques of standard (lED, GeU-Mann and Low [17]
introdueed the adiabatic Hamiltonian

lim ')'(1.) = O.
t-+.:!:oo

(21 )

Usual QED is applied and at tbe end of the calculations tbe limit ')' -+ O is taken. The
energy shift due to the iuteraction of a state 11I~}with tbe Cjuantized ¡¡eld is then given
by the GeU-Mann and Low expression

hE l' . (a/ae)N~IDo(r), -oo)l<¡'~)
u •a = 1111 le 'Y------~~---~

0-+0 (lIgIU,(O, -oo)llIg)

or in terms of the scatteriug operator S, = (¡,(OO, -00) [18]

~Ea = ~ lim ie (a/ae)(\~~I.s\llI~).
2,-+0 ')' (lIgISolllg)

The perturbative expa.llsion for the adiabatie scattcrillg opcrator is a.s usual
00

So = 1+ :LsV)
j=!

(22)

(23)

(24)

with

sU) = ~~j J ,¡'lx¡ J ,¡4X2 ... J ,¡4:r/T[HINTb,:¡;¡jHINTb, :r2)'" !IINTb, x])]. (25)

For the free atom. in the absence of external fields, the energy corrections contain ouly
S-matrix elmuents of eveu ordeL The reason is that the perturbation HIN'!' contains the
operators of the emission or the absorption of the photon and they should enter pairwise
in tite final expressioll lo givc thc photon VaCll111ll statc. Tite dectroll-positroIl statc
11I~(x)) is usuaUy taken as au eigenstate of the bound state fermionic number operator.
the parity orerator. the total angular momentum ano its z component.

4. ApPLICATlON OF BOUND STATE FORMALISM TO ONE-ELECTRON IONS.

For this case, the first arder and scrolld ordcr Fcyulllan d.iagrams itl o: are drawll in Fig. 1.
The ¡¡rst oroer oiagrams are: (a) the self-energy (SE). amI (1)) the ,""cuum polarization
(VP) diagrams.

In arder to isolate the divcrgcllccs that aris(~ in the calculatioll [19-22], tite bOUlld
statc propagator can be expalldcd ilIto a frec-eiectroll propagator, a first-orc1er Coulomh
scattcred tefln and higher order scattered terms. Tlw higher order part can he \vritten in
a compaet form using a combinatioll 01' free- ami hOllIld-electroll propagators. The terms
that result divergent consist of comhinatioIls 01' fn'p-electroIl propagators and photon



'.
=-~=

(a)

ATmlS AS QED BOUND ATOMS 679

=.==~
(b)

(e)

o ('
S ;;= ..=OJ =

(1)

=-=-=-.-.-
(d)

I\J)

c~
( ,
;;

=.=
(g)

..-.~-
(e)

~~~~=
(h)

-.-.=.---
\

(0

(k)

(j)

5.

FIGURE l. One-phototl and two-photon Feynman diagralJl~ COI'onc-electroll atoms in the bound
forlllalislll of QED. The one-photon diagrallls are (a) lhe self-energy (SE), ami (b) the vacuulll
polarizatioll (VI') diagrallls. The two-photon diagrallls are: self-energy-self-energy (SESE) [dia-
grallls (e)-(e»), vacuulll polarization-vaeuulll polarizatioll (VI'VP) [diagrallls (f)-(h)], self-euergy-
vaeuulll polarization (SEVI') [diagrams (i)-(j)], and self-vaeuulll-polarization-energy [S(VP)E]
[diagralll (k)J.

propagators which can be treated analytieally so that the divergenees are isolated and
substraeted using standard QED teehniques. In faet the many-potential part of the SE
diagram is free frolll divergences allowing its difect cvalllatioll llsillg tcchniqllcs such as IlU-
merieal ba"is-set approaehes. This has made it possible to inehule realistie nuclear eharge
distributions sueh as two-parameter Ferrni and deformed Fenni model distributions in the
ealeulation. An alternative to evalnate the SE correetion was renmtly proposed [23,24].
It cOllsists iu decomposillg both the unrenormalized hOllud-statc SE and ma..."iS term iuto
(livergcllt SlIlllS over finitc partial-wavc cOlltriblltiollS. Thc rellorJllalizatioll sllbstraction
is thcn performcd al thc partial-wave level alld a couvergellt rCllormalizcd boulld-state
SE is ohtainc<l.

Thc VP corrcction is llsually divided iuto a eiomillatillg UehliIlg part [25,26] and a
\Vichmauu-Kroll part [27]. Thc Uchling ter m gives an effedive correctioll to the nucleus
pot(mtial which cal! he computcd iu a straighfoward way. Tite Uehling potcntial in
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(26)
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coordinatc spacc is

v = _ C.
I
Z 100 d= (2 ~) V=.2- I J ¡.J.. (.~) exp( -2mr='lt - il)

U 3 - + -2 -2 ( .1.(' .l. - - ," o=:=: Ir - xl
with p(i) the nudear eharge densit.y. Explieit evaiuat.ions of Íts cont.ribut.ion to the
energy eorreetion can be found in He!".28. The Widnnann-Kroll eorreetion evaluated to
all orders in Z" by Soff and Mohr [29] gives a eorreetion to the energy of the form

" (aZ)4 ,
t::.EII"f{ = ---.J-H("Z).

" n
State dependent values of the funet.ion fl(aZ) are t.abulat.ed in Ref. 29 using a spherieal
shell distribut.ion for the nudeus.

The two-phot.on QED effeet.s [3D) are classified ,1.' sell~elJergy-self-energy (SESE) [di-
agrams (e)-(e) of Fil'. 1), vaeuum polari"ation-vaell1ml polarization (VPVP) [diagrams
(f)-(h) of Fig. 1), self-energy-vaeuum polarization (SEVP) [diagrams (i)-(j) of Fil'. 1)
and self-vaeuum-polarization-energy [S(VP)EI [diagram (k) nf Fig. 1]. These eorreet.ions
represellt scparatcly gauge iuvariant sets. Ahllost aH nf thclIl have becll rcccntly evaiu-
at.ed for H-like uranium whieh 11:1., beco me the standard t.est. case nf QED in one-eleetron
ions. For this ion, t.he VPVP diagram (l") has been evalualed by Persson el al. [31,32]
and the VPVP diagrams (g,h) known ,1.' Kiillén- Sabry con!.ributions were compuled by
Beier and So!!"[:1:1] and by Sehneider el al. [34] in Ihe Udlling approximat.ion. The SEVP
correetions can be found in Re!".31 while !.he S(VP)E correetion in the Uehiing approxi-
mal ion has been reported in Re!". 32. The SESE <Iiagram (e) has been evaluated at the
irreducible parto level [35]. It is gauge dependent. The value nf Ihe remaining par!. of (e)
and diagrams (d) and (e) have not. yel been reported in !.he lileralme. This is dne to
problems in the renormalization st.rnet.me of SES E eonlribut.ions.

Befare pcrforming él comparisoll with experimental valllcs it is lleccssary to cvalllate
Iluclear recoil and polarizatioll cffects Bot takcn into aCCOllllt in thc bOIlIHI-statc QED
formalism. Nuclear reeoil can be st.udied within the Salpeter formalism [:lG] and for H-
like uranium t.his 11:1., been done by Art.emyev el al. [:17]. The nudear polarizat.inn effeet.s
arise froIll thc intcraclions bct\\'ccll t.hc electroIl and cxcit.cd states of thc Iltlclclls [38].

£3y cOIl\'cntioll, al! corrcct.iolls bCYOlld tite point. nllclells Dirac eigenvallle except thc
lIo11-relativistic rcduccd mass correctioll givcll by [1!t/(l1t + A1)]En alld thc cOlltributions
dne to hyperfine strneture are caBed Lalll!>shift eorrect.ion. Taking into aeconnt aH e!feets
described in this sect.ion, t.he t.heorct.ical Lamb ,hin. o!"Il-like uraninm gives [:1O] t.he valne
465.5:t2 eV wit.h t.he main nneertaint.y arising from t.he SESE diagrams that have not. !>een
ealenlated yet. The latest reported experiment.al valne [111 is 470:t 16 eVo Su!>st.ant.ial
experimental adval1ces have beeu achieved lat.ely so tita!' important improvclIlents in the
aCCllracy are expeetcd.

G. TWO-ELECTlWN HlGH-Z IONS.

Tbe FeYllman diaJ..';rams rOl' the first-orc1"r expansioll nmsist (jf t.hc OIlC-f~xdlallged photon
C()ITC'ctiOIl,SE allll VP. Thcy aw showll in Fig. 2. \Vit.hill this formalislIl. the SE alld VP
rOl' the two dectroll at.olll are jllst ('qllal t.o t.he (,OlT(,spolI<!ing olle-part.i{"!f~ ('OITPctiOIlS.
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--'= ...=
(a)

(( J)

?===::==- •.= ===

(b)

===== •.=====~¡
(e)

FIGUHE 2. For two-plectroll atoIl1s. tiJe FeYlllllan diag:rams rOl' the first-order Iwrturhative ('x-
pansioIl in lhe bound formalism of QED are: (a) the one-exchanged pbotoll diagram, (h) lhe SE
diagram and (e) ¡he VI' diagram.

Tite onc-exchallgcd-photoll corrcctioll lo thc ellcrgy call be written [15J as a dircct
term \vhich is real:

E - ,2/ ¡'l. f ¡3 ",1(- ,-) 1 (2) 1'(1)."(,-,, .-)ti - L (X2 (Xl!' X2~.r:l 1'-: "7 IO,t n: '!' .1'¿,XI 1

• .1''2 -1'1

and aH cxchallge term which is complcx:

with

TI = [E¡n - EO,)/I"

(28)

(29)

(:1O)

Thc imaginary part of thc cxchangc t.erm correspollds lo a partial width contriblltion 1.0
the excitcd-state rcsonallcc associatcd to t}¡e <leca,}' to tIle grolllld statc. The rcmilldcr 01'
lhe nat.ural width arises from t.he imaginary part. of t.he self energy. The real part. uf t.he
snm of t.he direet. and exehange t.erm gives t.he Feynman gau¡:;e furm of t.he one-exehanged
photon corrcctioll. By dircct calculatioll [3!JL it can be showll tu he eqllal lo the Coulomb
g:augc cxprcssion which cOllsists of a st.atic Coulomb interaction:

alld tlw Breit interactiOlI

1- - l':1-'2 - Xl
(:ll)

(32)

when time retardat.iun is negleeted ('1 = O).
Tlw two-phototl cont.riulltiolls t.o the dectroll-c1ectron interact.ioIl of two-e1ectroJl

atoms are s}¡own iJl Fig. :!. The IlOlI-radiat.i\'c conc1atioll par!' corn~spollds to tlle hui-
der, (a) in Fi¡:;. 3, and erossed-phut.on dia¡:;rams, (b) in Fig. 3. They have been direetly
('valnated for t.he ground st.ate of He-like ions hy Lindl'ren el al. [401 in bot.h FeYIllnan
alld Coulomb gauge verifying gallge illvariallte to IIl1merical accuracy. The two-electroll
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1~.
(a)

~~

~;~~.=======

(b)

(e)

=~=.--.-

S
(el

(di

~. ~_.~

(1)

FIGURE 3. The two-photon ('ontrihutions to thc electron-clcctroll interaction of two-clectron
atoms are: tile correlatioIls diagrams (a) laddcr, ami (b) crosscd-photon; the two-elertron Lamb
shift diagr:uns of VP. diagrams (e) and (d). aud of SE. diagrams (e) and (f).

Lamb ,hift, i.e., vaeuum polarization, (e) aud (,1) in Fig. :1. and self energy, (e) and (f)
in Fig. 3, have been direet1y ealculated by Pers,on et al. [41J using a finite nudens ami
a nnifol"ln charge distribution. To a first approximation, (e) aud (f) can be regarded as
a screening of the single-eleetron Lamb shift whieh can be estimated by modifying the
nuclear potentia1 [23,42, 43J.

Experimentally, the ionization energy of heliumlike ions has been eompared with
that of hydrogenlike ions. This has allowed to measure the two-eleetron contribution~
to the grollnd state of He-1ike ions. However, the estimated theoretica1 IIncertainty is
:1:0.1eY [41]' mlleh lower than the reported experimental olle which ranges from :1:1.6eY
for Ce (2 = 32) to :1:14eY [or l3i [14J.

G. l'vIANY-ELECTRON ATOMS.

\Vhell dealing with l110re than two-electrOlI atoIlls it hecomes very complicated lo treat
the systclll by evaluating mWl two, ... , dc. photan diagrams in a successive way. At
lcast two alternatives have becn explored.

The first one [44-46] corresponds to IIsing effective one-partide local potentia1s Vol! in
terms of whieh the Furry representation is worked out. These modd potential, try to take
approximately into account the interactiull between clectrolls in atoms. In the simplest
cases they are taken as central potentials inféred from Hartrcc-Fock calc1l1ations. The
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S-matrix approach described in Sect. 3, is constructed and three different type of dia-
grams can be considered. The first elass corresponds to photon exchange diagrams which
may be connected with many-body perturbation theary (MBPT) diagrams. The second
corresponds to pure radiative correction diagrams and the third to radiative-correlation
diagrallls. This elassification of diagrams has already been illustrated for two electron
atoms in Fig. 3. The difference is that the electron legs and electron Creen fllnctions
considered here inelude the effects of the effective local potential Upff . In general, radia-
tive QED corrections are dominated by the one-electron Lalllb shift [45). These SE amI
YP corrections are evaluated llsing the techniques mentioned in Seet. 4 far hydrogellic
ions but considering the screening effect contained in Udf(r) [46]. Thus, the third elass
of radiative-correlation diagrams is expected to give a slllall contriblltion whenever the
local potential Ueff(r) gives a good 7.eroth-order approxilllation to the eleetron-electron
interaction. In principIe the problelll is basically reduced to evaluate the correlation
diagrallls via MBPT. However, as we shall see below, besides possible convergence prob-
lems, relativistic many-body perturbation theory (RMBPT) has peculiarities of its own
requirillg more than a simple cxtensioll of its nonrelativistic counterpart.

A second alternative is to define an N-electron Hamiltonian [40,47].

N N

H =L hn(n) +L \~nn+
n:::=1 m<n

N

L Vmnp+ ...
m<n<p

(33)

Hcre !LD is the single-electron Dirac Hamiltonian alld V"l1l1 \!;.lInpJ ... , are effectivc two-,
three-, etc., electron potentials defined by means of QED in the bound state pictme which
starts solely from the electron-nueleus interaction. Radiative effeels are treated separately
and the radiative-correlation diagrams, sOIllctirnes caBed scrccllcd Lamb-shift diagrams,
must be takcn iuto accouut in au accurate trcatmcnt. Actual calclllations iu general use
jllSt two-body potentials v,nn' Explicit expressions for three-body potentials have been
obtained by Mittleman [48) using a formalism ariginally suggested by Schwinger [49].
This IIlcthod decouples, via a llllitary transformatioIl, virtual photolls in the radiatioll
field from the matter field. The contrilHltion of the three-body potential to the binding
energy of a lithiumlike ato m was found to be less than 0.021 eY [50].

In the schcrue of work we are describing, it is necessary to cRt.a,blisit a clear relationship
hetween the effective potentials Vm,m) ...m" the degree of accuracy of the N-partide
wavefunctions obtained using approximate schemes to solve Schródinger-like e<¡uations
related to H, and the Feynman diagrams of QED. This point can be illustrated by studies
on gauge invariance within the Dirac-Hartree-Fock (DHF) formalism using single photon
potentials derived from QED. These studies show that potentials obtained in Feynman
and Coulomb gauges [51J lead to different numerical results in self-consistent field (SCF)
DIIF calculations. As shown by Lindgren [52], this is a conse<¡uence of the fact that SCF
'L' well as any other method based on iterative use of single-photon potentials yields only
a part of the higher-order diagrams. In second-arder, the crossed-photon diagram and a
part of the uIlcrosscd-photon diagram are omitted. These effects have bCCIlshoWIl to be
significantly larger in the Feynman gauge than in the Coulomh gallge. Thus even thollgh
the results of QED are gauge independent. in eaeh arder of pertnrhatioll theory, t.he
results obtaincd froIll effective potentials lila)' be gauge depcndcnt with this depcndencc
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cOllditiolled by the method of solvillg the N-particle problem. Allother example of this
problem corrcsponds to thc use of thc timc-retarded I3reit interactioll. Illcntioncd in
Section 5, beyolld first order MI3PT. Such a procedure is 1101. mealliugful unless virtual-
pair effeds are eonsidered also [40].

7. THE RELATIVISTIC MANY-1l0DY PROIlLEM.

Once a relativistic lually-hody Hamiltoniall ha..'i bCCIlobtaillcd (1..'; an cver approxiInate
reprc.scntatioll of the atolll1 it is Ilcccssary to find a IllIIllcrical schcme to work it. uut. In
the bcgiuuillg, it was expcctcd that a direct gCIlcralizatioIl of the approximatioll Illcthods
of the nonrelativistie mally-boc\y problem eould be used. Usual lIonrelativistie af¡ i1litio
meI.hods are essentially of two types:

• The lIartrcc-Fock approximatioll obtaincd vía eit}¡cr a Jlulllcrical solution nr a hasis
.set approxiluatioll .

• I3eyolld Hartree-Fock vía either a perturiJativc approach ar a variational approach,
the latter supported by a variatiollal theorem.

In the late sixtics and across thc sev{mtics. great cfforts \'lerc devokd lo thc sollltiOll of
t.hc Hartrec-Fock eqllat.ious which rcsult frolll considcriuf!; t,hc Hallliltonian of LIJe fonu
(:J4) with a t.wo-body potelltial collt.aillillg 1.1", COlllomh illteraetioll.

S IV 2

He = ¿hD(n) + ¿ 1.
e

,
1t=1 '''<71 7HII,

aud
1
sOInetimcs, lluretarded l3rcit interactioIl.

t,; ,v '2 2-- ( )
""" """ e e [0'111' an (~Hl . r,nn) ((-;2 . 17,,,n ]He/l = L.. hLJ(n) +L.. -- - - ---+ .¡ .

1'm1l 2 1'mn r~rlTl
11= 1 m<n

(:)4)

Compllter algorithms for ohtaining Illltllerical finitc-diffcrcnce sollltions were impicmcnted
hy Grant (5:3J alld Dcsclallx [54]. Altl1011gh for SOtllCatomie systcJIls seriolls problcms of
convcrgence cOllld arisc, t.hcse approaciles lcd t.o the nrst. DHF rcslllts. An altel"native
to this numcrical approach is to scarch for allalyt.ical approximatiolls to DHF sollllious.
Kim [55J piolleerec\ the DHF self-colIsist.ellt-field melhod llsillg fillite-h'L,is represelltatiolls
of the approximalc wavefuuctious. Bis \vork revealed a tendency for ealcl1lat.ed cucrgics
to JaU bclow lhe variatiollal limit.. This effcd is knowll as v(ll'iati07w{ cullap8e [56) ami
ha.o.;been fOllUd in variational approaches of simpler systcms such a..'! hydrogcnic (mes.
That is, a naive variational caleulalion using " Dirae-likc [{"millonian may cause the
lHulicted eif}f?1lvalues to si1lk tow(lnls minus ill..finity. Tllis I>henomCllft is not sllrprising
due to the fad. that, in gcncral

1
Dirae lIamiltollialls admit a cOlltinllUIII 01'ncgative-ellcrgy

cigenstates so t.hat their spectra an~ not boulldt'd from \H'low. Thlls. the applicahility ol'
the usual qllalltulI1 mechallicaI varial.ional t.1H'orem is uol. direct. Ilo\",.cver. variational
collapsc aIso arises bccal1se finite-ha ....•is represclltatious of Dirac-like Hamilt.ollialls do
BOÍ- always reproduce essclltia.l qllalit.ies oi' tlw original opcrator. lu ordcr to illllstrat.e
tIJis point

1
let us remcmber that the cigellvahw cqllatioll 1'01'CVCIla olle-pa.rticle Dirac
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Hami1tonian hD is a system of coupled equations for the so called "small" and "Iarge"
components. Thus, in order to be reliable, a finite-basis representation of ho rnust allow
the possibility of approxirnately representinp; such a coupling [57,58).

Now, the implclnentation of nonrelativistic many-hody perturbatioll techlliqlles to
Dirac Harniltonians is not straip;htfoward either. As first reported by Brown amI Raven-
hall [59), a conventional perturbative ealculation should start from a complete set of eigen-
fUllctions of a zeroth-ordcr Dirac Hami1tonian Ho. This complete set includes Ilcg:ativc-
energy states. Second- and higher-order pertnrbative corrections would rnake such states
to appear as virtual electron-positron pairs which, howcver, are Bot cxperimelltal1y oh-
served. Mathematically, it is not possible 1,0 apply naively standard perturbation theory
because the spectrum of a systern of N noninteracting electrons will exhibit an infinite
order degeneracy due to the presence of ti", negative energy continuum in the spectrum
of each individual eleetron. This effect is known a.S c0711i71uu1T!dissolulioTl. Brown ami
Ravenhall condude from this that the use of an N-partide Hami1tonian is rneaninp;-
Icss sincc starting froIn a noninteracting N -clcctroll Hamiltonian "by turning 011 slowly
the elcctron-electron interactioll thc systclIl can make real transitions to statcs whefe
one electron ha.., a Iarge negative enerp;y and the other eleetron is in the positive-energy
cOlltiuuUIll.ll

In order to give a eomputational scheme which allowed the use of MBPT techniques
an approach knowII a.', no-(virtual)-pair apPT"(Jximation was proposed [60]. It cOlIsists in
replaeing the N -partidc mode! Hamiltonian HO by its projeeted counterpart

where 1\+ is thc projectioll opcrator constrllcted a.''; tlw product of oue-particlc positive
PIlcrgy prajection operators dctcrmined by a aue particle Hami1tollian ho. Thc use of
sueh projeetion operators wa..s fonnalIy proposed hy Brown aud RavenhalI who iu fact
chose 11.0 'LSthe free-particIe Dirac-Hamiltonian. Later Sucher [(j2) advocated the use of
sllch projectors, howcvcr Ilumcrical reslllts OIl the hydrogcn af,om [63] led to very bad
estimates of the speetra showinp; its inapplicability. Thus, H¡;/> is hip;hly dependent on
the one-partide Hamiltonian ho used 1,0 define A+ [(j1J. The important point is that the
definition of one-partide positive states depends on the l!amiltonian2

Adequate projeetion operators, A+, discriminating between (+) amI (-) sta tes were
proposed by a number of authors [45,61, (j5). In particular, the A+ whieh makes ti",
energy stationary whcn tite wavc function is a single determinallt. t.urns out t.obe lH'pcise1y
the projeetion into DHF orbitals [65). When workinp; with a Hamiltonian with the
structnre of Ec¡. (34) with two-body interactions, takinp; the OI"'-particIe l!ami1tonian ho
as hD gllarantces that thc no-pair approximatio!l is corred to ordcr 0(0'2) [noJ. Howc\"cr.
cvcn with this choice, attcmpts f.oobtain explieit expressiolls rOl" A+ havc becll stcrile [titi].
Meanwhile, people have resorted to lIe,.y larye ba..sissets from whieh a partition into (+)
and (-) sta tes is made. A most sllecessfll! scheme to construet (+) one-particIe sta tes

JIn other arca..;;of ph)"sics surh a.•. quanttllll theor.y in tlll' prf:'S(,IlCf'of ¡:!,rayitational fil'lds or fjllantllfll
Ollt.ics tlH~ deIH'udence of the positi\"{'- and ucgatiye-stat('s defilliliou UII the wan'-equat.ioll ha.." "(,I'1l
latel)" exploited. In particular t.he Bogolllbo\' formillislIl p('nnit~ to qllalltif\ th" mixing (lf positin>- aud
IH'gativ('-statf'~ for diff('rent wave-eqlliltiolls with ('qual houlldary nlllditiollS [64].
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was proposed by .Johnson et al. [67] whereby ha = h[) is placed in a cavity of radius
R '" 40 a.u., viz., surrounded by an infinite potcntial barrier at r = R; also, each largc
compollcnt is reqllired to be equal to its partner sIIlall componcllt at r = R in arder
to avoid Klein's paradox. The basis sets are B-splines [(;8]. Usiug MBPT based on the
projected Hallliltonian HfjP constructed iu this way has ¡ed to quite precise estimates
for the lowest energies of some many-electl'Ou ions [45,69-71).

For systems where high-order MBPT contributions are not negligible,
C.g. most neutral atoms, alternativc schclIlcs 1I1118tbe llsed lo take iuto arCollnt

correlation in an accurate way. AlIlong them there is the coupled cluster (CC) approach
which lcads to aH-order equations that "1'011 iteration yield order-by-order expressions
for tbe Rayleigh-Schr6dinger linked-diagram expansioll [72]. Its reliable implementation
for relativistic many-body systems is a chaHenging problem to wbich several gronps are
devoted amI some applications bave appeared lately [73].

Two other promising alternatives are the configllration interaction (CI) [7(; -81] amI
tbe multiconfigurational Oirac-Hartree-Fock (MCOF) [74,75] approaches. Tbey are vari-
ational techni,,"es which go beyond the illdependent particle 1Il0del. Lacking a variational
theorem that can be directly applied to the N-partide Oirac eqllation, the reliability of
these approac}¡cs is Bot clcar in ~cncral. 111fact, whether the use of projectioll opcrators
is ncccssary or 110t in the MCDF case ha..o.; been controversia1 [74]. In the next SCctiOIl1 we
shall present a version of the variational theorcm which. withill thc el SCheJIlC.ovcrcolIlcs
varia.tiollal collapsc and contill11111Ildissollltioll. alld yields uppcr hOllUds to the cnergies
obtaincd with projcction opcrators indepclldcntly of "he ouc-partide Hamilt.ollian tlsed
to define them [81].

8. A VARIATIONAL THEOREM FOR RELATIVISTIC CONFIGURATION

INTERACTION.

Que of the most tlscf1l1tools in ab initio e1eetronic strllclllre calclllations is configuratioll
interaction. It is a variationa! method which replaces the time independent Schr6dinger
equatioll \vith a finite matrix eigcnvaluc <'qllation:

via the approximation

fl<j>; = E'I'; -+ HC; = EC;

(l)i -+ ¿c'g)<jJ(g)ln J\'
Ky

Ji -+ )<jJ~)IHI<jJ\;.h

(37)

(38)

(39)

Tlte configllratioll-state-fullctiolls 4>}~) an~lincar cOIIl!Jillatiolls uf Slater deterlllillallts

DKn assoeiated to the configllrat.ioIl I< . They are lmilt. so t.hat each (p}~) is <ln eigellvector
lIf the recognized sYlIlmctrics 01'lile Hallli1tolliaIL thlls

"1,
(g) ~1>K = L DJ{o. COYl

0,:::1

(.JO)
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where fJ is a degeneraney index to distinguish configuration state-funetions with the same
eigenvalues of the sYIllmetry operators.

Here we shall consider an N-partide Dirac-like Hami1tonian,

N

H =L "D(i) + Ve-e,
i=l

I --(32Vt D = cn . J1 + 'fue + N

(41 )

(42)

whcrc VN rcpresents a ccntral-nuclear potclltial alld Ve-e denotes the intcraction bctWCCIl
the electrolls. Thus, thc cOllfiguration-state-functiolls are eigenfunctiolls of the total
angular momentllm operators .12 and .1, as well as the parity operator P. The Slater
determinants DKo are formed from a one-partide basis set of bispinors Wn,ljm;' The
"large" ami "small" components Illust be continuously differentiable on r in (0,00). For
bOllnd states, they decay at least exponentially for r --+ oo. They must 'lIso satisfy the
corred bOllndary conditions imposed by the nudear potential VN.

A variational theorem for re!ativistic el can be formulated as follows [82]:
Let us consider a one-partide basis set B~) of dimension m of orthonorrnalized spherical
Dirac bispinors Wn¡ljmj" \Vith the ollc-particle ua..."iis n~,~)we can COllstruct a finitc-basis
representation ho of any one-partide lIamiltonian "o induding "D. \Ve shall assurne that
Ho is hermitean.

Let Br2 be the N-partide basis set of dimension Km constituted by all possible
configllration-statc-functions tV¡ that can be COllstructcd from B~~)and a.re eigcnfunc-
tions of all known sYIllmetry operators associated to l/. \Vith this basis a finitc-ba.,is
reprcsentation HB of the N-partide Harniltonian l/ is uniquely determined by the one-
partide ba.,is seto If HB is hermitean then the eigenvallle ec¡uation

(4:1)

can be sol ved. Thc cigcllvalucli Ep are arrallged in nOlldccreasillg arder:

(44)

A similar cquatioll can hc written for ho. TIte ~onespollding ollc-particlc eigenfunctiolls
cau be dassified according to the sign of the eigenvalne <"~ If there exist eigenvalues uf
ha grcater than zcro, a one-particle hasis set of dimensiou O < 1nto S; 111, can he forull'd
just by the oue-particle eigenfuIlctioIlS with positive eigcnvalllcs. \Ve can considcr t,ile

corresponding full N-partide basis set BW2+ and the correspundill~ finite-basis repre-
sentation of l/. Aecordillg to usual terminology the latter will he denoted by H¡,,~"P)H,
NI' . .. I "1 . el' I E(N l')LJlIwaIllIlg no-pan. Wlt l a SJlJllar JlotatlOlI lor t lE'clg('Il\'a ll('S I

'o
Let us recall thc bracketing theorcm [8:3], known sillce 1847. It. asserts that giv('u

éL hermitean matrix rcprcsentation uf au operator \1' in a gi\'cn ort.hoIlormal ha.sis (Jf

dimension 1n with eigenvalues lVm,1 S; l\'m,2'" ::; lVm,TII' upon incrpasing t.hc béL..•is by <tu
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extra orthonorlllal funetion the positions of the m + 1-th relative to the m-th eigenvalues
fulfill

Wm+1,1:::;Wm,1 :::;Wm+1,2'" :::;Wm+l,m :::;Wm,m :::;Wm+1,m+l' (45)

This theorelll is the theoretieal basis for obtaining nonrclativistie approxilllate eigenval-
ues for exeited states using the Rayleigh-Ritz variation lllethod, of whieh configuration
interactioIl is aB examplc.

As a eorollary of this thcorelll, if m~o is strietly less than m it follows that

i = 1, .... J«(m~o)' (46)

In short, independently of the seleetion of the one-partide Hallliltonian ho, striet
upper bouuds lo the no-paú" cigenvalucs can be obtaincd by considerillg the eorrect
eigenvalue of the lllatrix Hl3

9. ONE-PAltTICLE BASIS SETS.

As Illcntioned in the last scction, obtaillillg rcliable finitc-hasis reprcscntatioJls ha of
a onc-particlc Dirac Hamiltoniau ha is uot a trivial ta.."k. Tite spectra rclated to the
matrix ha IIlilY exhibit spuriolls l1uphysical solutiollS, an extreme sensitivity f.o the dctails
of the ba..,.;is ami may yic1d positive cncrgies tllllch lowcr titan thc exact cllcrgics. lu
general, accuratc represcIltatioIlS of positivc ellcrgy bOlllld states requirc tite ba.."is lo
satisfy corred boundary cOllditions and to yield the corred non-rclativistic limito

Let \lScO\lsider a ba.,is set of dimension 2m that pertnits to write the radial part of the
one-particlc llpper and lowcr componcnts a.'" lincar combillations of 7n givcn Ptll,J7') and
rnQ'I.(") f\lnetions. If these 2m f\lnetions are properly sclected the speetr\llll of ho will
contain jllst lH positivc cncrgies which, ll11dcrvariational optillliímtion of the paraJneters
ill the ba.sis, approxirnatcly rcprcsent thc lit lowcst positivc eigellvallles of thc onc-particlc
Hamiltolliall ha, The othcr lH llcgative cncrgics alld eigcnvalllcs are uSllally igllored, For
obtaining this eontrollecl partitioning, it has proven neeessary that the {P,I. (,.)} set be
f\lnetionally related to the {Qil.(r)} set by pairs. In our case, we find eonvenient 1.0 write
this 2rH dimensional basis as an 7n-dimensional olle-particlc hasis of nOrIllalizahlc Dirac
l)ispillors elnbracing nirr irreducible rcprescIltations:

llirr

m = L iT(lj).
(1])=1

i = 1,2, ... ,iAlj). (47)

(48)

supplcmcllted with anothcr complcmcntary set (JI' 11l Di1'ar. hispillors,

(49)
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differing from the fírst m in the minus sign preceding the lawer companents Q. \Ve shall
eall the fírst. ane-part.icie basis a single primitive (SP) set. and t.he full 2m-dimensional
hasis a double-primit.ive (DP) sel.. This kind of basis has been used for hydrogenic
Hami!t.onians hv for st.at.es wit.h K < O [84) ami, wit.h 0I1e exeept.ion [85,86], in all finit.e-
basis DHF ealculat.ions [87-89].

In fact, there are severa! useful select.ions of {['iI}) and {(Jil}) t.hat have been intro-
duccd in the literatllre. SOIIlCof thcso sets rcquire that ccrtaill parameters eharactcrizillg
t.hem are cqllal fOf several radial fuuctions but are othcrwise llnrestrictcd. Other ba....¡js
sets are lIscful just in a rcstrictcd range of vallles 01'its paramet.ers. A review of the actual
behavior of several basis sets fol' Z :::;118 alld a widc rauge of the Ilonlincar paramctcrs
involved is given in Ref. 90.

Notice that a DP scl is invariant undel' se¡Jarate Ilollsingular linear transforrnatioIlS
(jf its llpper and lower componcllts. Abo, iJl COllllcetioll with having au eqllal Ilumber of
I'ositive- and negat.ive-energy one-part.icie fnnct.ions, it. Illay be not.iced t.hat. t.he t.race of
t.he kinet.ic energy 0l'erat.or ci> . ¡¡ for any DP set is identically zero, irrespective of t.he
vallles of the Ilonlillcar parameters llseu to define P and Q, alld of lj qlléilltlllll IltllIlbcrs.

ID. RELATIVISTIC el AND PROJECTION OPERATORS.

\Ve willnow focus on configuration int.eraet.ion (CI) expansions in which all confígurat.ion
statc fUllctiolls that can he constructed froIll the gi\'clI onc-particle basis are inclllded,
known 'e, full CI. Full CI is always an absolnle invariant, viz., t.he spectnlln is independent.
of linear transformatioIls within the one-particle hasis seL

Let us now consider a full CI expansion using the ent.ire 2m-dimensional OP set.. It.s
fnll Cl mat.rix, H, gives rise to an eigenproblem of dimellsion 1((2m).

HCi = EiCi i = 1,2, ... ,1((2m). (5(J )

This eqllation refers t.o t.he complete spect.nnn of 11, incillding negat.ive-energy N-part.id"
states. Vía a Ilonsillgular lincar transfOfmatioJl of thc onc-partide ba..'iis sel, and él proper
arrallg:cmcnt of configllration-state-fuuctiolls, the left llppcr corllcr 01'H np lo rows alld
coiumns of order I((m) can a!ways be made to coincide with t.he Illat.rix of a no-pair
II;uniltoniall H:\P c:oIlstrllcted jllst from all rn diuIeIlSiollal prilllitive l);u;is of appn)ximaf.e
positive energy eigenst.ates of a I!amiit.onian ha. If 1(- (2m) = 1\ (2m) - 1( (m). accordin¡?;
lo Eq. (46),

i > (J. (51 )

illdicatillg that the eigcllvalues E¡" F' of relativistic el ca1culatiolls with projectcd bases
will always lie belolll t.]¡e eigellvaiues E" -(2",)+i of t.he CI lIlatrix H, what"ver choice "i"
hu i.s madc.

Th" fírst <¡uest.iou ab"ut. Eq. (51) is what happ""s if ti", "ig"uvahws "f ord"r 1\- (2m)+
i. i >(). are lIlinimized UPOIl general variations 01' the Ilolllin{'ar paralllet.prs dcfining t.J¡('

DP ¡,,",is. The !Jeneral bchavior wilI be ilIustrakd wit.h full Cl ¡"r U""+ 182 with a
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FIGURE 4. Behavior of selected eigenvalues of H for U.o+ 1.•' as a function of a sealing parameter
1], exhibiting bound states aboye EK- and continuum-dissolution at and below ¡t.

DP basis of twelve 1.'1/2 orbitals [811. Thus m = 6, the el size is K(2m)
K-(2m) = 57. We use Eqs. (48)-(50) with radial funetions

Pn¡lj(r) = Q,,¡lj(") = ,.1e-,I."

78, amI

(52)

A¡ = r¡ab" i = 1, ... ,6. (53)

We set b = 1.4, while a was optimized at the nonrelativistie level. The sealing parameter
r¡ will be varied between O and 1. In Fig. 4 we show eigenvalues of H of orders 51
through 60 as a funetion of ". For definit.eness, V,-e = e2 L:r;;;~,thus II is t.aken as the
Dime-Coulomb Hamiltonian He, Eq. (:34).

Aecording to the definition of K- (2m), we must look for a target eigenvalue of order
K-(2m) + 1 = 58. However, for " = 1, ES8 is seen to he loeated just below the line
signaling the zero of energy (fully ionized system), and high aboye its expeeted position
around -9G51 a.u. Fllrthcrmore, wc filld an eigcllvalllc Eb and a.n eigcnfunctioIl '{lb

closely resembling the sought after N -partide electron state, within lhe first K- (2m)
eigenvalues, initially al position Kb = 5:l :S K- (2m). The resemblanee of 'l' b with a
bound slate is linked lo a bound charader diseussed below, associated lo a dominant
eonfiguration expected lo represent it.
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FIGURE5. Amplifieation of the neighborhood of the last avoided erossing of Fig. 4.

Now we proeeed to vary the sealing parameter '1 eharaeterizing the radial funetions
P and Q, so as to Iower as mueh as possible the target eigenvalue. This eorresponds to
moving leftwards in Fig. 4. We £ind that eventually a minimnlll energy for the target
eigenvalue is reaehed at whieh point its eigenfunetion represents faithfully the lowest
state of the given symmetry. In the proeess in whieh the original DP basis is being
changed into a relativistieally energy-optilllized DP basis, the energy Eb of the state Wb
varies slightly, while some of the eigenvalues above begin to approaeh Eb. A bit later,
the lowest of them beeollles allllost degenerate with Eb. At this point, eoineiding with
an avoided erossing, there is a transfer of eharaeter from one state to another: the lower
state exehanges its bound eharaeter with the state immediately above. Thereafter, the
eigenvalue of order Nb, now deprived from its former bound-state eharaeter, starts to
sink down towards (N - 2)rne2, aronnd -37558 a.U. (after subtraeting Nrne2).

We shall now delve into the nature of the 'variational eigenfunetions. In Fig. 5 we
amplify the region of Fig. 4 showing the tast avoided erossing towards the build up of
the lowest bound state, eorresponding to E58, around -9651 a.u. and '1 = 0.5088. In the
vieinity of points A and A', the eigenvalue of urder 58 is appreeiably above the eigenvalue
of ordcr 57 which is at the approximately corrcet bound state encrgy . Points B alld ll'
are very close to the avoided erossing. Towards the left, points C and C' show that while
E58 stays close to the eorrect bound state energy, E57 starts going down very fasto An
examination of the compositioll of the respective wavefuuctions, 4/57 and \1158, shows how
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the bouud state character is trausferred fmm level 57 to level 58 'L' the ueighborhood of
13aud 13' is crossed from right to left.

Tite compositioIl of thc wavefuIlctioll is (,ollvenicnt.iy Clnalized llsillg tlle lluc-particlc
basis set.s which g:uarantce él compact representatioIl 01' the el wavefllllctioll. In this
coutcxt,the reduced first-ordcr dcusity malrix '"((1, 1'),

'"((1,1') = N J \jI'(1,2, ... ,N)'JI(I',2 ..... N)d(2.:l.. ... N). (54)

plaYH a central role in Ilonrc1ativistic el [!JI]. as ¡t.s eigcnfunctiolls Xi1 called natu1'al

orbital" (NO's),

'"((1, 1') = L nixi(1)Xi(I') (55)

provide a fast-coIlvergent ollc-partide ba....;js rOl' the N-electroll el (~xpallsioll [92]' thllS
aflording a compact representatiou of the wave funetiou. The eigeuvalues ni of '"((l. 1').
caBed occupatioll Ilumben" are a IIlca..'mn~ of thc importance of Xi in a el expansioll
expresscd in terms of NO's.

In Table I, lhe dominant cOllfigllratiolls nf thc respective cigcnfllllctioIlS are sho\vll
through the el coefficients a alld b:

,JI "" a[18(+)2] + b[2s(+):Js(-)], (56)

I .
28(+) = ,j2[28 + ~8J, 1

:ls(-) = ¡n [28 - :18].
v2

(57)

In Eqs. (57-58) 1s (+ ), 28 and ~s denote the first t hree N O' S while 28(+) and :ls( - )
were colIstructed from correspolHling NO's t.hmugh Eq. (57) so that t.hey are (+) alld (-)
orhitals, respectively. (A (+) NO has posit.ive expeetalion values of di. p and of the mass
operator (3mc2.) FOl' TI = 0.5090 lhe posit.ive hound state Ol'bit.alls(+) is ahnost doubly
oecupied in levcl 57 with a very smal1 eont.ribution from the 2.s(+ ):ls( -) cOllfiguration
directly related to continUlltll-dissolution; meallwhilc1 level 58 exhihit.s a complementary
ort.hogonal composition. Fol' TJ = 0.5088, hoth levels show practically cqual contrihlltiollS
frolll the bound-st.ate and contilIUUIIl-c1issol11t.ioIl configllratiolls. FinalIy. fOl" 11 = O,50SG
lhe hound charactcr has becn definitely t.ransferred to level 58. as expeeted. while len,l
57 dissolves into 28(+)3s(-).

Thc values uf 1} in thc previous parap;raph are st¡ll far frolll the optimized value
TI = ll.26~5 yielding the actual mininlUm for E',H = -%,,1.:18565188. The COlTespOlHling
eigcnfullction rOl' the optimal value 01' 11is:

\jI'8"" ll.999999[1.,( + )2] - 0.00l:188[28( + )2)

_ ll.llllll269[:H + )2] + lJ.llllll()(i5[4s(_ )2]

_ ll.llllllll28[f,s( + )'2] + ll.lllllllllll[6s( _ )2]. (58)

Its dOlninant cOllliguratiolls are fOl"ln"d hy (+) I\'()'s. Smal1 contrihutions fmm (-)
N()'s are presellt only in cOllfigllratiOlls wit.h both eledrolls in tlw saIlle orhitaL \'..'hereas
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TABLE I. Variational parameter 11,euergies and eigenfullctions of levels 57 and 58 in the neigh-
borhood of the last avoided crossing, Fig. 4; energies in a.U., c::::::137.0373.

T}

05000

0.5088

0.5086

-0651.38i4

-9638.3541

-9651.5430

-0651.210i

-OOiO.830i

-0651.3841

0.90992[ls( +)'] + 0.01240[2s( + )3s( -)J
-0.01240[ls( +)'] + 0.99992[2s( +)3s( -)]

0.iI593[ls( +)'J + 0.6981 i[2s( +)3s( -)]
0.6981 i[ls( +)'] - o. iI593[2s( + )3s( -)]

0.00831[1.,( +)') + 0.9999i[2s( + )3s( -)]
0.90006[ls( +)'J - 0.00831[2s( + )3s( - )]

continuum-dissolution (+) (-) configurations have cOlllpletely disappeared. This result is
consistent with the QED prediction that to fourth-order perturbation theory continuum
dissolution terms vanish irlentically [94]; it also incorporates the expecterl presence of
configurations with both electrons in negative-energy states. In addition, the energy
contribution of these (-) NO's, when using DP In,es, will always be of positive sign a.5
a consequence of the inter1eaving theorelll.

Many previous workers found these (-) N-partide states amI conduded that their
existcnce would prevcllt the occlIrrcncc of <lllthcntic hOllnd states. I3ccause H is 110t
hound from helow, the mmal variational thcorcm caullot he applied to thCIll. However,
accarding to Eq. (51), the eigenvalues EK-+; lIlust he upper bounds to the eigenvalues
of the no-pair Hamiltonian. In fact, we find that all these eigenvalues reach real minima
corresponding to the ground and successive excited states: they do not rlissolve into the
continuultl aB those of arder K-(2m) and helow. As m is increa.,erl, convergence to an
exaet bound state solutioll is always foulld; it lIlay be frolll aboye, [rmll below, af show
oscillatory behavior [90], in contrast with thc familiar nonrciativistic sitllation where
convergence is froIll abovc. This slIggests the existence of a variationai principie for aH
states aboye K-(2m), for any value of m.

A second question about Eq. (51) is how do the eigenvaltles of H and HNP compare
in actual calculations. In Table Il we show that constructing HNP from DHF positive-
energy eigenfunctions, the lowest eigenvalue of HN P for U90+ 1.,2 sinks 3340 ¡,hartree
below EK-+ 1, inrlicating that the effect of negative-energy one-partide states, induderl
in H but not in HN P is far from negligihle.

Notice that the [((2m) eigenvalues of H are entire1y detennined by the DP set, inde-
penrlently of any a priori identification of (+) and (-) one-partide bases. Thus, the third
qllcstioll about Eq. (51) is what happells if we maximize tlie ellergies Ei"P with rcspect
to a nonsinglllar linear transformatioIl witllin the cntire DP set'! It immcdiatcly foIlows
that Eq. (51) contaills a minimax theorelll1 whose IltllIlcrical conscqllcllCCSare being cx-
amined (82), including thc dctcrmillatioll of bct;t positive-cllcrgy orhitals in cakulations



694 R. J AUREGUIET AL.

TABLE11. F\lll el calculations for Fe24+ and U90+ 182 grollnd states llsing a DP basis. and an SP
basis of positive-energy DHF eigenfunctions. The two calculations use the same nine s Slater-type
orbital bases. Energies in a.u., c=13i.035981 for Fe24+, and e = 13i.03i3 for U90+.

Basis
DP

(+) DHF orbitals
-665.854646
-665.854698

- 9651.385503
-9651.388843

bcyond DHF.
Now onc can a..~ka fourth question: is it possible, within a givcn DP basis, to find an

SP basis such that

ESP E '/1 = K-(2m)+I' (59)

In ReL 93 it is shown this to be the case at thc independent-particlc-model lcvcl of
approximation, and this is the reason why our DHF rcsults are in excellent agrecmcnt [93]
with finite-differencc DHF calculations. However, in general, bcyond DHF, Eq. (59)
cannot bc satisfied.

It remains to answcr the riddle posed by the Brown-Ravenhall argument concem-
ing continuum dissolution. The time-independcnt e'luation for stationary states can be
solved with Ve-e replaced by XVe-eo where X is varied between O and lOO, X = I cor-
respollding lo the actual physical situatioIl. \Vhen considerillg a true atmnic resonance,
like nonrelativistic He 282, the various excited eigenvalues a.ssociated wit.h resonant. st.at.es
as a funct.ion of X show a behavior like the one exhibited on the right side of Fig. 4, with
lllauy saddle points and associated wavefunctiollS ulldcrgoillg challge of charactcr in the
vicinity of avoided crossings, similarly as continuum-dissolution st.ates diseussed before.
Instead, if one retums to the relativistic problem ami uses t.he "pt.imal sealing para meter
'1= 0.2635, one gets, for the relevant eigenvalues of arder K- (2m) + i, i > O, as a function
of X, a smooth behavior, withollt avoided crossings, even when X = lOO, one hundred
times larger than its actual physical value. This hehavior reinforees the argument about
the hound character of the pertinent variational eigenfunetions.

Sllmmarizing, after climbing ayer the first K- eigcllvalucs of H, the rcmaining eigen-
values are uppcr bounds to the eigenvalues of the no-pair I1amiltonian. Its corresponding
eigcnfunetions are bonafide bound states, that is, without the Brown-Ravenhall disease.
A wealth of nnmerical results have been obtained therehy [81,82,90,93,95], including
exeit.ed states [90]; finite-basis DHF results of numerieal 'luality for any open shells,
and translation of nonrelativist.ie into relat.ivist.ie result.s [93]; elastie eleetron scattering
factors [95L alld variolls applicatiolls in progress.

11. DlSCUSSION AND OUTLOOK.

On" of our aims has hccn to show that QED plays an important role in the undcrst.and-
ing of atomic strllcture. That is, quantulIl field t.heory cOllcepts in atomic physics are
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important not just for deseribing the so ealled exotie atoms (positronium, muonium, etc.)
or for manipulating atomie properties via eavity QED phenomena. Even the simplest
atomic systerns rcquirc for their complete descriptioll approximatioll schemes that a.re
expeeted to be derivable from quantum field theories let it he QED or its eleetroweak
extensioll.

Some atomie properties have not a perturbative eharaet.er while standard quantum
field t.heories are formulated pert.urbatively. The bound state formalism has been eon-
strueted for taking into aeeount some essential properties of the eleetrOlnagnetie nuelear-
eleetron interaetion in a nonperturbative way. It.s main defieieney is that. it does not
inelude other nuelear effeets sueh as reeoi!. Fortunately, however, reeoil elreets are pertur-
bative for standard atomie syst.ems (t.hey are not for other systems sueh as posit.ronium).
This has been exploited in the QED tests with high-Z few-eleet.ron atoms that we briefly
reviewed in the first seetions of this artiele.

During the development of the bound-state fOflnalism, it was learned that not just
nuelear effeets can be introdueed nonperturbatively. Some intereleetronie interaetion
effeet.s can be taken into aeeount by effeetive potentials from whieh a QED fOflnalism
can start. Nevertheless, this faet. has only been used to evaluate radiative correetions. For
more than two eleetrons, correlation effeets are evalnated using many-body Hamiltonians.
There are at least two reasons for doing this. Qne of them is that. sevent.y years of
nonrelativistie quantum meehanics have allowed the development of approximate schemes
sueh as the independent partiele model whieh have proven their nsefulness in innumerable
tests. The other is that the direet evalnation of mult.iphoton Feynman diagrams in the
Furry pieture is not a trivial t.a$k. In this respeet, it would be interesting to formulate
QED starting not from one-partiele sta tes but from N -partiele states. This possibility
has not been properly studied and it is an alternative which, from the beginning, would
recognize atoms as eorrelated bound st.ates. Qne of the diffieulties for developing this
formalism is that the properties of an N -partiele Dirae Hamiltonian are not well known.

After invoking the interleaving theorem to relate the eigenvalues of t.he no-pair Hamil-
tonian with those of the complete Hamiltonian, we have fonnd that, contrary to current
wisdom, the N-body Dirae-Coulomb Hamiltonian does have bound states. \Ve have ex-
emplified this finding with the calculations reported in the last seetion. This allows to
evaluate correlation effects in a nonperturbativc way and withollt rcferring to onc-partic1e
positive-energy projection operators selected a priori. \Ve are presently exploring the be-
havior of N-partiele Dirac operat.ors and their relationship with QED.
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