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In

ABSTRACT. The general expressions to compute effective elastic, piezoelectric and dielectric
characteristics of a laminated piezocomposite are derived by means of an asymptotic expan-
sion method. The local problems used to determine the so-called local auxiliary functions are
shown. \Ve compute explicitly the effective malerial characteristics for two examples of such
laycred medium. Finally, we apply these results t.o a piezocomposite material and obtain new
piczoelectrics with better global properties.

RESUr..1EN. !'vlediante el método de promediación asintótica se outienen las expresiones generales
para el cálculo de los coeficientes efectivos elásticos, piezoeléctricos y dieléctricos de un laminado
piezocompuesto. Se muestran los problemas locales utilizados para determinar la<.¡denominadas
funciones locales auxiliares. Se calculan explícitamente las características efectivas del material
para dos ejemplos de tales medios laminados. Finalmente se aplican estos resultados a un material
piezocompuesto, obteniéndose un nuevo material piezoeléctrico con mejores propiedades globales.

PACS: 03AO.De; 46.20.+e; 62.20.-x

l. INTRODUCTION

When sorne erystals (such as quartz, tourmaline, seignette salt) are under stresses, an
eleetrie momentum is produced. This is the so-ealled simple piezoeleetrie effeel. Besides
of the simple piezoeleetrie effed there also oceurs the inverse piezoeleetrie effeet, in whieh
the e1eetric potential produces a deformation. Materials with hoth properties are ealled
piezoeleetrie materials.

Linear piezoeleetrieity, which is the linear coupling between eleetrie vectorial quanti-
ties al1d strains ar strcsses, in case of hOlIlOgCllCOllsmatcrials is a so urce of research and
t.eehnological applieations [1,2]. The question naturally arises of the estimate of global
hOlllogcnized propcrtics [01'composite matcrials involving olle or several lincar piezoelec-
trie COllstitllcnts. By varyitlg thc proportion of varions cOllstituents (e.g., a piczoelcctric
inactivc polymcr matrix-piczodectric ccramic fihrcs1 a.s in Refs. 3-6) alle may obtain ef-
fpdive IIl<lcroscopic prolwrt.ies for t.11ChOlIlogcnizP(1 ma.croseopic material. For instance,
in Sed. 7 of this paper we <"Ousidera t.wo phase piezoeomposite laminated and show how
the cOlllpositc1s propcrties vary with the volulIlc [raetioll of piezoccramic amI what are
1.1IP(,(HIS('<llteIlCCS t()r IIwdieal llltr¡L';Ollic imaging trallS(lllcer.
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During the last two decades an increasing amount of research has been cond ucted
to develop method and procedures for improving the description of macroproperties for
given micro-inhomogeneous structure of media. The two scale expansion method [7] as-
sociated to the Energy Convergence was applied previously by many authors to compute
macrobehaviors such as, for instance, thermoelastic fields [8-10), thermopiezoelectricity in
solids [U], magnetoelasticity in salids [12), plastic fields [13), flow in porous media [14, 15],
etc. The variational method called f-convergence was used to obtain the effective moduli
of a piezoelectric composite with fine periodic structure in Ref. 16. In Ref. 17 these results
were extended for investigating the dynamical behavior and the Method of Bloch expan-
sions is used. The method we used in this paper is the asymptotic expansion method
and was developed, for instance, in Ref. 7, 18-20. Our goal is to show, by using a simple
model of a laminated piezocomposite, their importance for ultrasonic transducer designo

First, in Sect. 2 we recall the fundamental relations of linear piezoelectric theory and
the boundary value problem associated to the displacement field 11and to the electrical
potential <p. In Sect. 3 we seek the solution of a statical piezoelectric problem for an
heterogeneous periodic medium in the form of an asymptotic expansiono Afterwards we
obtain a sequence of recurrent boundary value problems with constant coefficients. In
Sect. 4 we obtain the so-called "local functions" for a general piezoelectric composite.
In Sect. 5 the local problems are used to determine the local functions of the first order
and the effective coefficients for a laminated piezoclectric medium. We determine, in
Sect. 6, the effective coefficients for two laminated piezoelectric composites with hexago-
nal symmetry. In Sect. 7, we consider a two phase laminated piezocomposite with several
examples for different choices of their phases (polymer matrix-ceramic fibres) and vol-
llIne fraction. We present both our model's predictions and their implications for medical
ultrasonic imaging transducers. Section 8 is devoted to some general concluding remarks.

2. FUNDAMENTAL RELATIONS OF LINEAR PIEZOELECTRICITY

All subscripts appearing in the text take values 1, 2 ami 3. The summation convention
is consequently used throughout this papero

We start our considerations by formulating the constitutive equations. We assume
that the solid under consideration undergoes a deformation due to an external loading
electromagnetic field, which may vary with the time. We assume also that there are no
heat sources in the body and no heat conduction (i.e., that the process is adiabatic).
Applying to an arbitrary region V of the solid bounded by a surface A the principie of
energy conservation [21] leads to

(1)

Here p is the mass density, Vi = Du;/ Dt the time derivative of displacement, U the internal
(mechanical and electromagnetic) energy, Xi the volulllic external forces, Pi = aijnj the
contact forces, aij the components of the stress tensor, nj the components of the outward
unit normal vector, Ei the 'components of the electric ficld vector and Di the components
of the electric displacement vector.
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Transforming Eq. (1) using the motion equations of continuous media

8Vi
aij,j + Xi = Pa¡ (2)

(3)

(the comma denote partial differentiation), we obtain the local form of energy balance

H - a,oeij _ 8Ei D
- 'Jat 8t"

where eij are the strain tensor components

H = U - EiDi,
1

eij = 2(Ui,j + Uj,i),

and H = H (eij, Ei) is the electric entalpy. Hence we obtain

(
.. _ 8H) Beij _ (D 8H) 8Ei = O

a'J Beij at ' + 8Ei 8t .

This equation should hold for any yalues of Beij /8t, 8E;! 8t, hence

(4)

(5)

8H
aij = -8 '

éij

aH
D---,- aEi' (6)

These relations will be employed for deriYing the constitutive equations.
Expanding the electric entalpy H = H(eij, Ei) into Mac!aurin's series in the Yicinity

of the natural state (eij = O, Ei = O), neglecting terms of higher order than two, we
obtain, for a homogeneous anisotropic body the following expressions:

(7)

Here Ci~k¡ is the elastic stiffness; ekij are the piezoelectric coefficients and <;j the dielectric
permittivity (dielectric constants). Furthermore, superscripts E and e designate values
of coefficients at constant electric lield and strain, respectively.

From thermodynamic considerations and the momentllm balance equation we have
symmetry of stress and strain tensors,

(8)

By introducing (7) into (6) we obtain the constitutive equations for piezoelectric
materials:

(9)

(10)

The aboye mentioned relations present the material law and the mathematical model of
qllasi-static piezoelectricity in the C!assical Voigt's theory [22J. Stresses aij and electric
displacemellts Di are linear functions of strains [ij and components of vector Ei.
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Substituting (9) into (2) and using the geometrical relations, i.e., the first eqllations
of (4), we get

(11)
[J2Ui

Cijkl Uk,lj + emij Em,j + Xi = P [Jt2 .

When the current f10wand free electric charges are not present, the electromagnetic field
in the piezoelectric medium is studied by the Maxwell's equations:

- [Jjj
'í1xH=[Jt'

- [JB'í1 x E =--
[Jt '

(12)

where B is the magnetic field vector, jj the electric displacement vector, E the electric
field vector and B the magnetic indllction vector.

The solutions of the motion Eq. (11) and Maxwell's equations. (12) are described by
coupled elastic-electromagnetic waves, i. e. the elastic wave and it is interaction with the
electric field and electromagnetic waves togcther with the deformations of the medium.
Lct the expansion velocity of the elastic wave be V, the corresponding velocity of elcc-
tromagnetic wave v will have an order of 105V amI therefore when we study the elastic
wave, the magnetic field can be neglected. Hence, in the majority of the problems related
to piezoelectric materials, the electroacoustic waves are considered to have not magnetic
effects (B = O, B = O) and using the quasistatic approach for the electric field, we have

(13)

Then, the electric field vector E is given by the electric potential 'P:

Ei = -'P,i' ( 14)

Introducing into the second equation of (13) the rclation (10) and taking into aCCOllnt
(14), we obtain

enij Ui,jn - E,in r.p,in = O. (15)

From (11), (14) and (15) we get

(16)eni) 7li,jn - fin c.p,in = O.
[J21l;

Cijkl "k,lj + emij 'P,mj + Xi = P [Jt2 '

Thus, we have finally four linear partial differential equations with four unknowns, the
three components of the displacemcnt vcctor ü and the clcctric potelltial 'P. Obviolls1y,
this system has to be completed with bOllndary alld initial conditions, see, for instance,
Refs. 2 or 22.

Finally we consider the linear static piezoelectric boundary valllc problem for hetero-
gcncous media inside the domain rl e R3 with boundary f= [JO:

(Cijkl llk,1 + emij 'P,m),j + Xi = O, (eimlllm,1 - £im 'P,m),i = O. ( 17)
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u;lro = O; <plr, = <Po ; a..".II' = So.1] J I 1 1 Di"ilr3 = O. (18)

Whcre <Po, S are the elcctric potential on f2, thc mcchanical load on f 1, respectively.
f = ['o U ['1, fo n fl = 0, f = ['2 U ['3, f2 n f3 = 0. Thc moduli: Cijkl (clastic), Cmij

(piczoclcctric) and Eim (dielcctric) satisfy the usual sYllllllctry conditions like in (8).
We make the fol!owing assumption:

311>0

3111 > O

Cijkl(X) Eij EH :::: 1111012,

Eij(X) "i "j ::::1/110:12

for ahnost every X E n. Hcre above Et is thc space of symmetric matriccs of third order.

3. HOMOGENIZATION

Let thc material functions Cijkl, Cmij, Eim be Y-pcriodic functions. As usual, Y is the
typical periodic cel!, say Y = (O,Y¡) x (O,Y2) x (O,Yl)' We set Cijkl = Cijk/({), Cijm =
Cijm ({) and Eim = Eim ({). Hcrc ( = (6,6, 6) is thc local coordinate (or fast coorrlinate)
and x = (x 1> X2, X3) is thc global (or slow) coordinatc; (= x/o., and o. = 1/ L is a smal!
paramcter, which reprcsents the ratio betwcen the charactcristic length, 1, of the pcriodic
cel! Y, and the characteristic length L of the whole domain.

The asymptotic expansion for the solution of thc problem (17), (18), (with periodic
functions) is sought in the form

Ui(X) = u?(x,() + o.u)(x,() + ,,2u;(x,() + ,
<p(x) = <p°(x,t) + o.<pI(X,() + ty2<p2(x,() + .

As usual in this kind of problem, the functions u? and <po do not depcnd on { Duc to
thc linearity of this problem amI assuming both regularity of the inc1usions shapes and
smoothness in variation of the coefficients, we have (like in Refs. 7, 18 and 19):

This leads to seek an asymptotic expansion of the solution in the fol!owing form:

00

Ui = ¡:a.q [Nijtkq (()Vj,k¡kq (x) + <I>~Z~kq({)S,k¡kq (x)] ,
q=O
00

,n = '" o.q [M(q) (e)v. (x) + pI'!) (e)s (x)] .y ~ nk, ..kq 1., n,kl ...kq k¡ ... kq l.,. ,k¡ ...kq
q=O

( 19)
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The functions N(q), M(q), 1t(q) and p(q) are local allxiliary Y -periodic fllnctions, inde-
pendent of x and satisfying the following conditions: Ni~) = (jij (the Kronecker syrnbol),
p(O) = 1, M(O) = 1t(0) = O. N(q), M(q), 1t(q), p(q) are equal to zero for q < O. Moreover,
for lInicity we require for the local allxiliary fllnctions:

q > O, (20)

where (J) stands for 1/1Y1 Iy f dY. The periodic conditions are

(21 )

and

Ic ¡N(q) + e "M(q) + C k N(q-l) + ek .M(q-l) )- O
IJm mnkl ... kq,l mi) nkl ... kq,m I)m q mnk¡ ... kq_l q1l nkt ... kq_l - ,

le ¡N(q) - f M(q) + e N(q-l) - f M(q-l) 1-0
1m mnk} ... kq,l 1m nkl ...kq,m tmkq rnnk} ... kq_l tkq nk} ... kq_1 - 1

le. ¡ep(q) + e ..p(q) + c.. k ,¡,(q-l) + ek .. p(q-l) 1-0
IJm mkI ... kq,1 mi} kl ... kq,m IJm q mk} ... kq_l ql) k} ... kq_l - 1

[<- p(q) _ e ep(q) + f p(q-l) - e. ep(q-l) 1- O
In kl ... kq,n Iml mk¡ ... kq,l tkq k¡ ... kq_1 tmkq mk1 ... kq_l - .

where [u) rneans the difference of vallles of the fllnction "u" on opposite sides of Y
Vn(x) = (un(x,{)) is called the averaged mechanical vector and S(X) = (<p(x,{)) the
averaged electrical potentia1.

We now substitute the expansions (19) into Eqs. (17), (18) and we collect the terms
of same order o:q and after sorne maniplllations, we obtain the following boundary value
problerns:

00L o:q [h~J~mk¡ ...kqVn,mk¡ .. kqj(X) + 1"~~Lk¡kq S,mk¡ .. kqj(X)] + Xi = O,
q=O

00Lo:q [t~J~kl.kq Vj,mk¡ ...kq¡(i) - "~~k¡.kqS,mk¡ .. kq¡(i)] = O.
q=O

00

'\' o:q [N(q) (')V (x) + ep(q) (')S (x)] I - OL..J . ijkl ... kq 1., J,k} ... kq ikt ... kq l.., ,k¡ ... kq ro - 1

q=O

00

'\' o:q [M(q) (')\!: (x) + p(q) (,)S (x)] I = oL-J nk¡ ... kq 1., n,kl ... kq k¡ ... kq l.., ,k¡ ... kq f2 'fJ 1

q=O

00Lo:q [h~J~mkl ...kqVn,mk¡.kq(X) + 1"~~¡jk¡.. kqS,mk¡kq(X)] njlr¡ = Si,
q=O

00

'\' o:q [éq) V (x) - ,,(q) S (x)] n.1 - OL- ijmk} ... kq ),mk¡ ... kq imkl ... kq ,mkt ... kq t f3 - ,

q=O

(22)

(23)
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where !l(q), t(q), dq) and ¡¿<q)are constalIt tensorial fllnctions (vanishing for q < O). The
expressions to determine these constants will be given in the next section.

To find the fllnctions Vn and S, we seek for the SOllltiOIIof (22), (23) in the asymptotic
expansions formo

00

v. = '"' aPw{p}n ~ n'
p=O

00

S = L<>Py{P}

p=O
(24)

Plltting (24) in (22) and (23) we obtain the following sequence of recurrent
bOllndary vallle problems with constant coefficients:

h(O) w{p} + r(O) y{p} + x{p} = O
lJmn n,m) mI] ,m] t ,

t(O) w{p} - stO) y{p} + y{p} = O O 1 2
lmi m,lt tm ,mI ' P = , , , ...

w{p} I = "O(p}
t 10 t ,

periodic

(25)

where

y{p} Ir, = <p{p} ,

(/ (O) {p} (O) {p})'1 _ S°{¡,}
!ijnm Wn,m + rmij Y,m nJ 11 - i ,

(t(O) w{p} - stO) y{p})n'l = qO{p}
Imi m,l un ,m t 13 ' p = O,1,2, ... (26)

P

X}p} = L [h¡j~nklkq W::',~k~kqj + r~~)jklkqy~k;}kqj] ,
q=l

P

y{p} = L [tlj~klkqW;;';:kqikqi - S¡~~klkqy,<'::k;}kqi] ,
q=l

P
"O{p} = _ '"' [N(q) w{p-q} + <I>(q) y{p-q} ] 1
t ~ l]k¡ ... kq J,k¡ ... kq tk¡ ... kq ,k¡ ... kq 10'

q=l

P
,nO{p} = - '"' [M(q) w{p-q} + p(q) y{p-q}] I..,., L.- Jk1 ••. kq ],kt ... kq k1 ... kq ,k¡ ... kq r2'

q=l

p

SO{p} = - '"' rlh(q) w{p-q} + r(q) ,,{P-q}] n.1 '
t L 1]nmk1 ..kq n,mk¡ .. kq mIJk1 ...kq" ,mk¡ ...kq J rl

q=l

p

qO{P}=-,",[t(q)k kW{P-kq} k -8,(}Qk)¡ k ,,{Pk-q} ]n'lL IJm 1.. q j,m l ... q .. qd,] 'J ••. kq J 13 '
q=l

with p > O, and

X,{O} = X
t - 11 y{O} == O,

SOlO} = SO
t - 11

O{O} = O
11.i - 1
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Finally, with the solution of the prohlems (25) and (26) the procednre of constructing
the formal asymptotic solution of prohlem (17) and (18) is complete and we only need
now, to find the auxiliary local functions and the constant tensors.

4. COMPUTATlON OF THE CONSTANT TENSORS AND OF THE LOCAL AUXILIARY

FUNCTlONS

To ohtain the constants h(q) t(q) r(q) and s(q) ami the functions N(q+l) M(q+l) 1>(q+1)_ 1_ l_ _ _ ,_ ,-

and p(q+l) we solve the following problems with periodic bOllndary vallles

Proble7Tts Pjq+l,q):

( CijmINr~T~k~) ...kq+2,1 + emijM~1~.~!kq+2.m),j + (Cijmkq+2N~;:kl/..kq+1 + ekq+ ..!"ijMf~k7.~!kq+l) ,j
+ e N(q+l) + M(q+l)

ikq+2ml mnkt ...kq+l ,l emikq+2 nk¡ ...kq+l ,m

+ e N(q) + e M(q) = h(q)
ikq+2rnkq+l mnk, ... kq kq+Ilkq+2 nk¡. kq tkq+2nk¡ ... kq+!'

(
N(q+2) _ <. M(q+2) ) + (e . N(q+l) _ <. Ao[(q+l) )

eülll mnk, ... k,+2,1 1m nk¡ ... kq+2,m _ l1rlkq+2 mnk¡ ... kq+l lkq+2 lIk, ... kq+l .
,1 ,1

'1=-1,0,1, ...

- (e N(q+l) +e N(q»)
- tkq+2ml mnk¡ ... kq+1,1 lkq+2mkq+l mnk¡ ... kq

+ ( Al(q+l) + Al(q))
emikq+2 nk¡ ... kq+l,m ekq+l,kq+2 nkl ..k'1 ,

= (ekq+2ml lV;:,"t"k\) ...kq+ 1 ,1 + ekq+2mkq+l Nr~~kl' .kq)

(27)

'1=0,1,2 ... (28)

Problems Pjr+1,q):
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q=-l,O,l, ... (29)

r(q) - (C <I>(q+l) + C <I>(q))
kq+likq+2kl ... kq - tkq+2m1 mk1 ... kq+1,l tkq+2mkq+l mk} ..kq

+ (emikq+2 P~~~k~+l,m + ekq+l ikq+2Pi~~..kq) 1

s(q) - (f p(q+l) + f p(q))
kq+2kl ... kq+l - kq+2l k1 ... kq+1,l kq+2kq+l k1 ... kq

- (ek,+2ml<I>~~II).k,+I,1 + ek,+2mk,+1 <I>~~I...k,)' q = 0,1,2. . . (30)

. (1) (1) (O)To obtaln Npmn, Mmn and hijmn,

from (27) and (28) we consider:

Problems pP'O):

d~nwe start to solve the first problem pP,O), I.e.,

(C.. + C.. N(I) + e ..M(I) ) - O
t]mn lJpq pmn,q pi] mn,p . - ,

,J

(e;mn + e;pqNJ;).n,q - f;pM!,;A,p) . = O.
,1

h(O) - (C.. + C.. N(I) + e ..M(I) )ijmn - tJmn l]pq pmn,q pI] mn,p 1

(O) _ ( . . N(I) _. M(I) )timn - etmn + etpq pmn,q €lp mn,p'

(31 )

(32)

Analogously <I>~Lp2) and r~~~,sl~)are computed by mcans of the periodic problem
p;;,o); i.e., from (29) and (30) we havc:

Problems p;;,o) :

(e .. + C.. ...(1) + e ..p(I)) - Ont] l)pq'f!'pn,q pI] n,p . - ,
,J

r(O) - (e .. + e ..p(l) + C ...•. (1) )
nij - m] pI) n,p l)pq'!:"pn,q 1

(f. - e ..•. (1) + f. p(l») - OIn zpq'f!'pn,q Ip n,p . - .
,1

(O) _ ( . . p(l) _ . ...(1) )
Sin - €m + €zp n,p e1pq'f!'pn,q'

(33)

(34)

Equations (31) and (33) givc respectively, thc systcm of equations for finding NJ;).n
and M!,;A, <I>~~and pJI) taking in account (20) amI (21). These problems are strong
formulations of the local problems, and are meaningful if the periodic solutions are smooth
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FIGURE1. Series connection.

enough. However, this regularity may be significantly weakened provided that one use a
weak or variational formulations, as in Refs. 70r 19.

Indeed, in the case of laminate composite with axis of symmetry in the direction
normal to the layers, the periodic local functions N(q), M(q), 1?(q), p(q) and the material
functions eijmn, eimn and 'in will only depend on one variable. For this kind of media
we prove troJ = ;:(0). Consequently, the first problem (p = O) of the recurrent sequence
of boundary value problems (25) and (26) is a typical boundary value problem for linear
piezoelectricity in a homogeneous medium and has the form

e
h (O) h (O) X h (O) h (O) - O
ijmn Wn,mj + emij Y,mj + i = O, eiml wm,li - €im Y,mi - ,

where

w(O) I = O
1 ro '

(36)

h _ eh (O) (-) h (0)(-)aij - ijnm wn,m X + emij Y,m X 1
h _ h (O) (-) h (O) ( -)Di - eijm Wj,m x - Eim Y,m X

eh _ (O)
ijmn - hijmn,

h (O) _ (O)
emij = tmij - rmij'

where the effective constants coefficients: ei~mn (elastic), C::'ij (piezoelectric) and '7m
(dielectric) are given by (32) and (34).

5. LOCAL PROBLEMS IN A LAMINATED MEDIUM

Let us now particularize our study to a laminated piezoelectric composite, ¡.c., made
of cells which are periodically along the axis X3 (Fig. 1), the axis Xl is in the direction
perpendicular to the plane of the drawing. Each cell may be made of piezoelectric
laminates. For our problem the elasticity modulus tensor e, the piezoelectric modulus
tensor ~, and the dielectric modulus tensor £ are periodic functions of the coordinate X3

and they don't depend on Xl and Xz.
We then introduce the fast variable in the following formo

X3~=6 =-,a
(37)
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where", is the small parameter, representing the ratio between the characteristic length
of the periodic cell l and the characteristic length of the body L. In the engineering
literature these kinds of layer's distribution (Fig. 1) are known as "connectivity in series"
and the case corresponding to ~ == ~¡3= x¡3/'" where (3 = 1 or 2 is called "connectivity in
parallel" , see for instance Ref. 24.

Using the results obtained in the aboye sections we seek the solution of this hetero-
geneous problem in the following form:

00 q

u; = '""' ",q '""' [N(P) (O w{q-p) (x) + <I>(p) (O y{q-p) (x)] ,6 L ¡]kl ... kp ],k} ... kp tk1 ... kp. ,kI ... kp
q=O p=O
00 q

'P =¿",q¿ [M,\;Lkp (O W:';:;;;}kq(x) + P~;)kp (O y'~I~p2p(x)] . (38)
q=O p=O

We require the periodic local auxiliary functions to verify

(N(q)) = O, (M(q)) = O, (~(q)) = O, (r(q)) = O, q > O, (39)

where (f) = JoIf(Od~. Moreover, N(q)(O, M(q)(O, ~(q)(O and p(q)(O are l-periodic in
~. And

[C;3m3 (N:,;lkl .. kJ + e3;3(M~~I .. kJ + C;3mkqN:';:k?kq_1 + ekq;3M~k~1)kq_J = O,

[ (N(q) )' € (M(q) )' + e N(q-l) € M(q-l) ] = O,
e3m3 mnk} ... kq - 3m nkI ... kq 3mkq mnkl ... kq_t - 3kq nk} ... kq_1

[C;3m3 (<I>~LkJ + e3;3(P~;)kJ + C;3mkq<I>~kll)kq_l+ ekq;3p~;:-:~;_J = O,

[C;3m3 (<I>~LkJ + e3;3(P~;)kJ + C;3mkq<I>~kll)kq_l+ekq;3P~;~~;_J = O.

Understanding (.)' as d(.)/d~ and [ul = Oas urO) = u(I).
In order to obtain the corresponding N~;'¡n,M:;~and hl~~n' t~~nwe have to solve

the system of problems Pj1'O)

Pmblems Pj1'O):

cIjmn = \ Cijmn + Cijp3 (N~~n) I + c:Jij (M~~)f ),

e7mn = \ eimn + eip:~(N~;Jn)' - £i3 ( Mm~) ').
Analogously <I>~t p~1) and s~~)are obtained from the probl~ms p;;,O).

(40)

(41)
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(eni3 + Ci3p3 (<I>1~)'+ e3i3 (p~I») ')' = O,

('3n - e3p3(<I>1~)'+ '33 (p~I») ')' = O.

h _ ( . . (p(I»)' _ . ("'(1»)')fin - fm + ft3 n etp3 '¥pn ,

(42)

(43)

we obtain,

(dielectric)h Ch - h(O) (1 .) h _ (O) _ (O) (. l .) h _ (O)w ere, ijmn - ijmn e astlc 1 emij - tmij - rmij pIezoe ectnc 1 fim - Sim

are the effective moduli.
By solving the system of ordinary differential equations (40) and (42)

respectively,

(N;':lk)' =Oi3;"3 ( -Ci3nk + Ai3nk + e3i3'331B3nk - e3i3'331e3nk)'

(M~i»)' = f 331(e3nk + e3m3C;;;j;3Ai3nk - e3m3C;;;ji3Ci3nk - B3nk)' (44)

(4);''k)' = Oi3;"3 [-eki3 + Gki3 + e3i3 €331(€3k + H3k)] ,

(pP»)' = f331 [e3m3C;;;ji3(-eki3 + Gki3) - €3k - H3k], (45)

where

- -1
Ci3mp = Ci3mp + e3i3 f33 e3mp 1

- + c-1
Epq = f.pq epm3 m3i3 eqi3 .

Taking the averages of the Eqs. (44) and (45) and considering that ((N;':lk)') = O,
((M~~)') = O, ((4>~i)') = O and ((PP»)') = O, we obtaill

A {(C--l) (C--1 -1)(--I)-I(C-1 __ 1)}-1i3nk = i3m3 + q3m3e3q3€33 € 33 p3i3e3p3€33

x {(Oi3;"3e3q3€331)(f3n-l(f331(e3P3C;3~3Cq3nk - e3nk)) + (0~:n30q3nk)}, (46)

B {(--1) (C-l --I)(C--1 )-I(C--1 _1)}-1
3nk = f 33 + p3i3e3p3€ 33 i3m3 q3m3e3q3t:33

X {(f3l(-e3P3Cp3q3Cq3nk + e3nk)) + (C;;\3e3P3f3n(Oi3;"3)-1(0,;]:n30q3nk)}, (47)

G {(C--l) + (C--1 -1)(--I)-I(C-1 __ 1)}-1
ki3 = i3m3 q3m3e3q3f33 f 33 p3i3e3p3f 33

x {(Oi3;"3(eki3 - e3i3€331€3k))+ (0,;]:n3e3q3€331)(f331)-1 (f331f3k) }, (48)
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H - {(--I) + (C-I --I)(C--1)-I(C--1 _I)}-I3k - E 33 p3i3e3p3E 33 i3m3 q3m3e3q3E33

X {(E 331E3k)+ (Ci3~3e3p3E331
)(Ci3:n3) -1 (C~:n3 (-eki3 + e3i3'331'3k)) }, (49)

and supposing now that (N~~k) = O, (M~i))= O, (4)~~)= O and (PP)) = O, the local
functions N(1), M(I), 4>(1)and p(1) are given by

(50)

(51)

where

DmndO = 1{dr¡Ci3:n3(r¡){ - Ci3nk(r¡) + Ai3nk + e3i3(r¡)'3} (r¡)B3nk

- e3i3(r¡)'331e3ndr¡)}, (52)

Tnk(O =t dr¡E331(r¡){ e3ndr¡) + e3m3(r¡)C;;;~i3(r¡)Ai3nk

- e3m3(r¡)C;;;b(r¡)Ci3ndr¡) - B3nk}' (53)

R.mk(O = 1{Ci3:n3(r¡){ e3i3(r¡)'331(r¡)hdr¡) + H3k] - eki3(r¡) + Gki3} dr¡, (54)

QdO = r{ E 331(r¡)e{ (r¡)C;;;~i3(r¡)- [eki3(r¡)+ Gki3-]'3dr¡) - H3k} dr¡. (55)Jo 3m3

Finally, we obtain the elastic, piezoelectric and dielectric effective coefficients by the
following expressions

Ci~nk = (Cijnk + Cijp3C~~3 [ - Cq3nk + Aq3nk + e3q3'331(B3nk - e3nk)]

+ e3ijE331[e3nk + e3p3C;3~3(Ai3nk - Cq3nk) - B3nk]), (56)

eÍ,k = (eink + eip3C~~3 [ - Cq3nk + Aq3nk + e3q3£331(B3nk - e3nk)]

- 'i3E3} [e3nk + e3P3C;;~3(Ai3nk - Cq3nk) - B3nk]), (57)

'?k = ('ik - eim3C;;:n3[ - ekp3 + Gkp3 + e3p3'3} ('3k - H3k)]

+ 'i3E331[e3m3C;;;~P3(-ekp3+ Gkp3) - '3k + H3k]). (58)
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6. PIEZOELECTRIC LAMINATES WITH HEXAGONAL SYMMETRY

Connectivity in series

Let 's consider a piezaelectric laminated in which the periodie eell is eomposed by pieza-
electric layers with hexagonal symmetry (6mm); sneh symmetry dass involves erystals
with one sixfold axis of symmetry, taken as X3 axis, and six symmetry plane parallel
to the axis, see for instance Ref. 25. These materials are eharaeterized by the following
independent constants: five elastic constants [ClIlI = C2222, C1122, CI133 = C2233, C3333,

C2323 = C1313, C1212= ~Cl1l1 - ClI22)], three piezoelectric constants (e311 = e322, e333,

e1l3 = e223), and two didectric constants «11 = <22, (33)'
Using the expressions (56)-(58) the effeetive coefficients far this material are:

E/astic effective constants

C?1l1 = C~222 = (ClIlI) + (C:i3\3(CI133 + C3ll <3.1Ie333)(AI133 - C1133))

+ ('331 (C1I33C:i3\3 C333- c3I1)(B3I1 - e3l1)),

C?122 = (CI122) + (C:i3\3(CI133 + C3l1<3.11c333)(A1133 - CI133))

+ ('3.11(C1133C33\3 C3:13- e3ll )(B3I1 - e3ll)),

C?133 = (CI133) + (C:i3\3(CII33 + C311<3.11c333)(A3333 - C3333))

+ ('3.11(CI I:l3C:i3\3e333 - e3l1)(Bm - e333)),

Ch Ch (C-I )-1 Ch 1(Ch Ch)1313 = 2323 = 232:1' 1212 = '2 1111 - 1122.

Piezoe/ectric effective eonstants

(59)

lo lo (C-I )-l( C-I)
el13 = e223 = 1313 Cl13 1313'

Die/eetric effective constants

lo lo B
(~311= C:J22 = 311,

lo - BC3.33 - 333. (60)

lo -Ht:33 - 33. (61 )

wbere A3311, A3333, B311, B333, GI13 amI H33 can be determined by nsing of Eqs. (46)-
(49) respectively. As we can scc, thcrc cxist fivc indepclldent e1a..o;;ticcffective constants
[Ch - ch ch ch - ch ch ch - ch ch - 1 (Ch Ch)]1111 - 2222' 1122' 1133 - 2233' 3333' 2323 - 1313' 1212 - 2" 1111 - 1122
given by (59), tbree piezoeleetric elfective eonstants (C~II = e~22' e~33' e~13= e~23) given
by (60), and two dieleetrie effeetive constants «~I = <~2' <~3) given by (61). Therefore,
we eondude that the symmetry of piezocomposite laminated materials with periodie ce lis
in series connection is conservcd in thc hOlllogcllizcd piezoclcctric medium.
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FIGURE2. Parallel connection.

Connectivity in parallel

We assume that the laminated medium possesses the same periodic properties with hexag-
onal symmetry (6 mm) as in the aboye example, but the cells distribution are periodically
along the axis X2. The axis symmetry of each layer are parallel to each other and the
X2-axis perpendicular to layering as in Fig. 2. Then by using the formulae (56)-(58)
(exchanging in these expressions the subscripts 3 by 2) we obtain the following effective
coefficients:

Elastic effective constants

C?lll = (Cllll) - (Cf122C22~2)+ (CI122C22~2)2(C22~2)-I,
C?122= (CI122C22~2)(Ci2~2)-I,

C?133= (C1133) - (CI122C22~2C2233)+ (Cll22C22~2)(C22~2)-I(C22~2C2233),
Ch (C-I )-12222 == 2222 ,

C~233 = (C22~2)-1(C2233C22~2)'

Cf333 = (C3333) - (Ci233C22~2) + (C2233C22~2)2(C22~2)-I,
Ch (C-I )-1 (-1 2) (-1 2 )2
2323 == 2323 + £22 e223 - 4:22 e223 ,

C?313= (CI313),

Ch (C-I )-11212= 1212 . (62)
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Piezoe/ectric effective constants

e~13 = (e113),

e~lI = (e311) + (e322C22~2)(C22~2)-I(C22~2C221l) - (C322C22~2C221¡),

C~33= (e333) - (e322C22~2)(C22~2)-I(C22~2C2211) - (e:122C22~2C221I),

h ( C-I )(0-1 )-1e322 = e322 2222 2222 ,

h ( -1)( -1)-1c223= e223"22 "22 .

Die/ectric effective constants

h () h (-1)-1£11 = t:ll , 1:22 = E22 '

h _ ( ) (2 C-I) ( 0-1 )2(C-1 )-1£33 - £33 + e322 2222 - e322 2222 2222 .

(63)

(64)

As we can see, there exist nine independent elastic effective constants given by (59),
five piezoelectric effective constants (60), and three dielectric effective eonstants (61).
Therefore we eonclude, taking into aeeount the general classifieation for homogeneous
piezoelectric materials; see for instanee in Refs. 1 or 24, that if we have periodic eells eom-
posed by piezoelectric materials' layers with hexagonal symmetry (6 mm), but eonneeted
in parallel, the eorresponding homogenized material willlike a piezoelectrie material with
orthorhombic syrnmetry (2 mm).

7. ApPLICATlONS TO TRANSDUCERS. IMPROVEMENT OF PHYSICAL
CHARACTERISTICS

Piezoelectrie eeramiejpolymer eomposites have become attraetive candidates for use in
transdueer for underwater and biomedical imaging applications. Their low stiffness and
low density lead to better matching of the aeoustie impedanee with the water, than in
PZT eeramies.

In order to show an applieation of these piezoeomposite material s we will eonsider
the case of both eonnectivity, i.e., parallel and series eonneetion where eaeh periodic eell
consists only of two different homogeneous phases. The eeramie phase is a piezoeleetrie
with hexagonal symmetry and the polymer phase is an isotropie homogencous medium
which is piezoelectrieally inaetive. The elastie ami dieleetric constants of the ceramie
phase will be distinguished from those of the poiymer phase by the superseripts E and
S, respeetively. Moreover, by utilizing the following mapping of adjaeent indiees:

(11) --+ 1,

(23) = (32) --+ 4,

(22) --+ 2,

(31) = (13) --+ 5,

(33) --+ 3,

(12) = (21) --+ 6,

we Express the elastie and piezoeleetrie eoeffieients briefly 'L" C,,~= CiJkh ei~ = eikl,

where (ij) --+ n and (kl) --+ {J. Taking into aecollnt the aboye notations we have the
following expressions for the effeetive eoefficients in the e'L'e of paralle! eonneetion.



ON HOMOGENIZATION AND EFFECTIVE COEFFICIENTS ... 727

Elastic effective constants

h [E (E)2( E)-I] [ -1]GIl = X GIl - GI2 GIl + (1 - X) GIl - GI2(Gll)

[ E( E)-I 1]2[ ( E)-I 1]-1+ XGI2 Gll + (1 - X)GI2(Gll)- X GIl + (1 - X)(Gll)- ,

h [ E( E)-I 1][ (E)-I 1]-1GI2 = XGI2 GIl + (1 - X)GI2(Gll)- X Gll + (1 - X)(Gll)- ,

G?3 = XGf); [1 - Gt; (GfO -1] + (1 - X)GI2 [1 - GI2(Glrl-l]

[ E( E)-I 1][ ( E)-I 1]-1+ XGI2 GIl + (1 - X)GI2(Gll)- X Gll + (1 - X)(GIl)-

[E ( E) -1 1]X XG13 Gll + (1 - X)GI2(Gll)- ,

h [( E)-I _1]-1G22 = X Gll + (1 - X)(GIl) ,

h [ E( E)-I 1][ ( E)-I 1]-1G23 = XGI3 Gll + (1- X)G¡z(Gll)- X GIl + (1 - X)(Gll)- ,

h [E (E)2( E)-I] [ 2 1]G33 = X G33 - G13 Gll + (1 - X) Gll - (Gd (Gll)-

[ E( E)-I 1]2[ ( E)-I 1]-1+ XGI3 Gll + (1 - X)GI2(Gll)- X Gll + (1 - X)(Gll)- ,

h [(E)-I 1]-1 (5)-1 2G44 = X G44 + (1 - X)(G44)- + X <22 (eI5)

(5)-1 2 (5)-1 ( 1)- X <22 (eI5) (X <22 + (1 - X) <22 -1,

G~'5= XG~ + (1 - X)C44,

G~6 = [X( G¿¡;rl + (1 - X)(G44)-fl (65)
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Piezoe/ectric effective constants

e~4 = [X('~2) -1 + (1 _ X)('22l-I] -1 [X(42)-le24],

e~2= [x(c~r' +(I-X)(C22)-f'[X(C~r'C32]'
,,[ ( E)-1 E] [( E)-1 _1]-1e31 = X e31 - e32 C22 C'2 + X C22 + (1 - X)(Cn)

X [X (C~) -1 cf¡ + (1- X) (Cn) -11C21] [X (C~) -1 e32] ,

e~3 = X [e33 - e32(C~r' CfJ]+ [X( C~r' + (1- X)(Cnr )-1

X [X( c~r' cfJ+ (1- X)(C22)-IC23 )[X( c~r' e32]' (66)

Die/ectric effective constants

,j" = x'r, + (1 - X),",

'~2= [x('~2r'+ (1-X)'n -Ir,
'~3= X ['f3+ (e32)2( C~) -1] + (1- xkn

- [x(c~r'e32nX(C~r' +(I-X)(Cn)-f
1

, (67)

where X is the ceramic's volume fraction.
Using effective coefficients as computed aboye we can determine characteristic physi-

cal parameters, such that: electromechanical piezoelectric couplillg coefficients K", spe-
cifie acoustie impedance Z", and the longitudinal velocity v¡". They are defined given
by the following formulae [25]:

Piezoe/ectric lateral and longitudinal coupling factors

d31

Vf.f3 Sfi'
d:u

vt{~S¡~'
(68)
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Piezoelectric thickness and planar coul'ling factors

where,

(69)

e-D e- + -2 --1
33 = 33 e33 (33 '

- _ f¡
e33 = e33'

Longitudinal velocity

Specific acoustic impedcmce

e- - eh33 = 33'

- _ lo
'33 = '33.

-7' -1 - -s
fmn = (mp cnp + €mfll

Zh=p\Jlh,

i,j = 1,2, ... ,6. (70)

(71)

(72)

where, P = XI)c + (1 - XP") is the average,l miL" clensity, pe (I}') is the eeramie's (polymer)
mass density, aE is the Poissoll ratio, 6 is the determinant of the Gij matrix and 6ij is
the minar ohtained by exclllding the i-th row ancl j-th colllmn.

Analogollsly, from Eqs. (56)-(58) we can writte clown, the effective moduli for a binary
layered in series conneetion. We show only the most important coefficients for eomputing
the above mentioned physical parameters, i.c.,

where
2

eD CE e33
33 = 33 + -S. ,e33

e2D 05+33
'33 = '33 CE.

33
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TABLEI. Electroelastic material properties.

Material parameters oC PZT-5A

cfi (l0IONfm2) 12.10 '[, f'o 916.0

Cf,(IOIONfm2) 7.54 'o (l0-12Ffm) 8.85

Cf, (1OIONfm2) 7.52 p(103 [( gfm3) 7.75

Cf,(IOIONfm2) 11.10 [(, 0.48

Cf.(IOIONfm2) 2.11 [(33 0.70

ef,(Cfm2) 15.8 [(p 0.60

ef; (Cfm2) -5.4 [(31 -0.34

ef~(Cfm2) 12.3 V¡(mfs) 4350.0

,f,f'o 830.0 Z(M Ray/s) 33.052

Material Parameters oC Polymers

Polymer Araldite Eccothane Araldite D

C,,(IO'ONfm2) 0.546 0.164 0.800

C,2(l0IONfm2) 0.294 0.157 0.440

p(103[(gfm3) 1.17 1.13 1.15

'"f'o 7.0 5.4 4.0

V¡(mfs) 2160.25 1204.7 2603.0

The basic requirements of a piezoelectric transducer for ultrasonic diagnostic imaging
are: 1) the piezoelectric material should have a high electromechanical coupling coeflicient
for high sensitivity; 2) the acoustic impedance of the transducer shonld match the load
to minimize ref!ection losses at the interface.

Later, we will illustrate several examples for different choices of polymer, ceramic and
volume fraction. We present the change of the composite's properties with respect to
the volume fraction in parallel and series connection amI their implications for ultrasonic
transdncers. To illustrate how the composite material parameters vary with volnme
fraction of piezoelectric ceramic, the material parameters of PZT-5A and different choices
of polymer (Araldite, Eccothane, Araldite O) are used in the calculus. They are listed
in Table I.

Figure 3 shows the variation in the basic material parameters, p", '~3'Cf3 and e~3
versus the ccramic's volurne fraction for piezocOlllposites in series alld parallel cOIlncction
made from PZT-5A ceramic aud Eccothane. These quantities vary essentially linearly
with the volllme fraction ayer lllost of thc rauge. But, a.<.;the volulIlc fraction becmne
larger, the lateral clamping of the layers by the polymcr ha.s greater effect on the elas-
tic ami piezoelectric behavior. The elastic stiffness, C~~l'increases and the piezoelectric
strain constants, e~3 decreases and this lateral cla.mping of the layers also reduce the
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FIGURE 3. (a) Variation of stiffness eS3 with volume fraetion for a laminated composite (par-
allel and series eonneetion) made fram PZT-5A and Eeeothane. (b) Variation of piezoeleetrie
constant e~3 with volume fractian for a laminated composite (parallel and series connection)
made fram PZT-5A and Eeeothane. (e) Variation of dielectric constant C~3 with volume fraction
for a laminated eomposite (parallel and series eonneetion) made fram PZT-5A and Eccothane.
(d) Variation of density p with volume fraetion for. a laminated composite (parallel and series
conneetion) made from PZT-5A and Eccothane.

dielectric constant in this range. It should be notice that the non linear effects are only
of order of few percents. The behavior of these parameters is analogolls to parameters
for another type of composite, (for instance as shown in Ref. 4, 5 and 26) where the
composite is marle froro PZT rods in a polyrner Inatrix and piczoelectric ceramic rods in
piezoelectric polyrner matrix. For the case corresponding to series connectioll, the pa-
rameters Cf3' e~3 and f~3are almost eqllal to zero for a large range of the volllme fraction,
only increase near the high vollime fractions. These reslllts are an immediate cOIlseqllence
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FIGURE 4. (a) Variation of thickness couplillg COllstant J(F with volumc fraction for a laminated
composite (parallel and series connection) malle from PZT-5A amI Eccothane. (b) Variation of
planar coupling constant K~ with valume fraction fOf a laminateu composite (parallel and series
connection) made from PZT-5A aJl(1Eccothanc. (e) Variation of longitudinal velocity \~h with
valume fraction Cora laminated composite (parallel and series counection) made from PZT -5A
and Eccothane. (d) Variation of acoustic impedance Zh with volume fraction for a laminated
composite (parallel and series conncction) made fmm rZT -5A and Eccothane.

of the piezoelectric ceramic <1iscontinuity in tlle dircction of wave propagation, l,e" the
vertical direction. As a possible applicatioll in medical pulse-echo u1tra.sonic transducers,
the eomposite in parallel eonnection h'L' better properties, which will be shown in the
following figures.

Figure 4 is devoted to the eomparison for I>oth conneetion types of basie physieal pa-
rameters such as, thickncss alld planar electromechallieal cOllpling factors. longitudinal
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velocity and acoustic impedance denoted by Kf, K;, V¡h,Zh respectively, versus the ce-
ramic's volume fraction for piezocomposites made from PZT-5A ceramic and Eeeothane.
Due to the aboye mentioned eharaeteristies of the magnitudes ph, E~3'Cf3 and e~3 shown
in Fig. 3, the behavior of the parameters Kf, K;, V¡h, zh, in the series eonneetion case,
gives inferior results than in parallel eonneetion, for instanee the Fig. 4a shows that Kf
(in series eonneetion) deereases rapidly for high eeramie's volume fraction being almost
zero for a large range of volume fraction, however, for the other curve, Kf is higher than
K, of the piezoeleetrie eeramie over almost all the range of ceramic's variation exeept for
small eeramie's volume fraetion. The aboye mentioned indieates that the parallel eon-
neetion is more eflieient in the design of pulse-echo ultrasonie transdueers for obtaining
medieal image with good qualities.

Figure 5 shows the behavior of the aeoustie impedanee, the longitudinal veloeity, the
thickness and planar eleetromeehanieal eoupling faetors in parallel eonneetion. These
variations with the volume fraction follow directly from those of the basie material pa-
rameters. Essentially, the aeoustie impedanee Zh inereases linearly with X exeept at
large X where the clamping of the eeramie's layers causes it to inerease more rapidly to
take the value of the eeramie's acoustie impedanee Z. The longitudinal veloeity V¡halso
inerease rapidly in this zone due to the stiffening of the layers by lateral forees from the
polymer. The presenee of eeramie's layers has a stiffening effeet and causes the veloeity
to inerease quite rapidly for small eeramie's volume fraction. For intermediate values of
X the veloeity inereases only slowly. The thiekness electromeehanical eoupling eoeflieient
Kf for low volume fraetion it inereases rapidly and at the end deereases rapidly down to
the value of the eeramie's coupling eonstant K,. It is possible to note that, for all cases,
the eomposite eoupling factor Kf is higher than the eeramie's K, for a large range of
volume fraetion. The planar coupling coeflieient K; stay almost eonstant around 0.40,
whieh is mueh lower than Kp of the eeramic (0.60). A low K; is an advantage in using
eomposite in medieal beam transdueer construetion. For the eeramie PZT-5A is known
that Kp and K, have the same order. It provokes that the radiation field is composed
by a central lobe and differents representative side lobes. For obtaining better quality
medieal image it is neeessary to reduce the side lobes for whieh the value of K, must be
inereased and the magnitude of Kp deereased [27]. We would conclude, that the eon-
stituent materials of the eomposite play an important role for the improvement of the
global properties, for instanee, the eombination of PZT-5A with the Eeeothane polymer
in this case is better, sinee we obtain greater Kf, lower Zh and K;. It satisfies the aboye
mentioned requirements.

To make a sensitive, broadband ultrasonie transdueer, one wants a piezoeleetrie
with low acoustie impedance (Zh < 7.5 Mrayl) and high electromeehanieal eoupling
(Kf = 0.60 to 0.70). These ealculations show that composite piezoeleetrics can be su-
perior to solid eeramie piezoeleetries in both respeets. The optimum material can be
aehieved by adjusting the volume fraction of piezoeerarnie. Lowering the volume frae-
tiOIl always lowers the acoustic impedancc but eventually causes a deterioration in the
eleetromeehanieal eoupling. A trade-off then rnust be made between minimizing the
impedance and maximizing the coupling, as illustrated in Fig. 6 for the parallel connee-
tiOll.



734 R.R. RAMOS ET AL.

35

30

25

3. 20~
".l:~15
N

10

5

.. - .... Araldile

Eccothane

-~ Araldite D

o
0.0 02 0.4 0.6 08 1.0

Volume fractian ceramic Volume fractian ceramic

(a) (b)
0.7 0.7

...... Araldite

Eccothane

-~ Araldite o
0.1

0.5

06

04

~ 03 (

0.2 r'

. Araldite

Eccothane
-~ Aratdile o

01

::,r>---
::::.:::0.3 ,

¡
0.2 '

0.000 02 0.4 06 08 10
0.000 02 04 06 08 10

Volume fraction ceramic Volume fraction ceramic

(e) (d)
FIGURE 5. (a) Variation oí acoustic impedance Zh with volume fractian for a laminated COffi-

posite, in parallel conneetion, made from PZT-5A and three different polymers. (b) Variation of
longitudinal velocity y;h with volume fraction for a laminated composite, in parallel connection,
made from PZT-5A and three different polymers. (e) Variation of thiekness coupling eonstant K~
with volume fractian for a laminated composite, in parallel connection, made from PZT-5A and
three different polymers. (d) Variation of planar eoupling eonstant K; with volume fraetion for
a laminated eomposite, in parallel eonneetion, made from PZT-5A and three different polymers.

8. CONCLUSIONS

In this paper the proeedure of eonstrueting the formal asymptotie solution of linear
statie piezoeleetrie equations for a periodieally heterogeneous medium is developed by
means of Asymptotie Two. Seale Expansion. The original boundary value problem with
variable eoefficients is transformed in a recurrent sequence of boundary value problems
with constant coefficients. Actually, this asymptotic analysis ¡eads to the solution of two
recurrent sequence of problems. The first of these problems (problem B(p), p = O,1, ... )
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eonsists in the solution to multiple boundary value problems (25) and (26). For solving
the problem B(p) it is neeessary to solve the problems B(r), r = 0,1, ... ,P - 1. The
solution to each one of these problems permits to find the functions wÁp} and y{p}. Then
by Eq. (24) it is possible to determine the averaged functions Vn and S. The solution
to the original problem (17) and (18(, is finally obtained from Vn ami S by (19). Local
auxiliary periodic functions N(q), M q), 1'.(q), p(q) are included in these formulae, whose
computation of solutions leads the second recurrent sequence of problems which is made
up of p;q+l,q) [Eqs. (27) and (28)], p}J+l,q) [Eqs. (29) and (30)]. For a fixed value of q,
Eqs. (27) and (29) represent respectively, a system for finding N(q+l) and M(q+l), q,(q+l)

and p(q+l) taking into account (20) and (21). After that, by using (28), (30) the constant
tensors h(q) t(q) r(q) and s(q) are obtained.- , - , - -

Based on the general problems (27), (28) and (29), (30) and the local problems (40),
(41) and (42), (43) the global behavior of a laminated composite with axis of symmetry in
the direction normal to the layers (Fig. 1) is eomputed by finding the general expressions
for the elfective coefficients (56), (57) and (58).

The aboye expressions (56), (57) and (58) were used to show analytically that not
only the ratio of each component phase of piezocomposite materials have influence over
the global or homogenized properties, but also the way of coupling the components. For
this first, we considered a laminated structure connected in series (Fig. 1) and secondly
in parallel (Fig. 2). Each periodic cell was composed by piezoelectric layers made of
the hexagonal symmetry (6 mm). In the ca.,e of series conIlcetion we obtained as a re-
suit of the homogenization a material with the same hexagonal symmetry (6 mm) and
in the case of parallel eonnection, the eorresponding homogeIlized material behaves as
a piezoelectrie material with orthorhombie symmetry (2 mm). Moreover, sueh general
expressions obtained for the effeetive eoe!lieieIlts were also applied to a binary layered
lllcdium and an application of these picz;ocomposite materials fol' the design of bettcr
ultrasonie traIlsducers was shown in Sect. 7 where we proved that the parallel eonIlee-
tiOIl is rllore efficient fol' the design of pulse-echo llltra.sonic trallsducers and tite series
connection cOlupositc is practically an inactive piezoelectric fol' this purposc.
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