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ABSTRACT. The general expressions to compute effective elastic, piezoelectric and dielectric
characteristics of a laminated piezocomposite are derived by means of an asymptotic expan-
sion method. The local problems used to determine the so-called local auxiliary functions are
shown. We compute explicitly the effective material characteristics for two examples of such
layered medium. Finally, we apply these results to a piezocomposite material and obtain new
piezoelectrics with better global properties.

RESUMEN. Mediante el método de promediacion asintética se obtienen las expresiones generales
para el calculo de los coeficientes efectivos eldsticos, piezoeléctricos y dieléctricos de un laminado
piezocompuesto. Se muestran los problemas locales utilizados para determinar las denominadas
funciones locales auxiliares. Se calculan explicitamente las caracteristicas efectivas del material
para dos ejemplos de tales medios laminados. Finalmente se aplican estos resultados a un material
piezocompuesto, obteniéndose un nuevo material piezoeléctrico con mejores propiedades globales.

PACS: 03.40.De; 46.20.4¢; 62.20.-x

1. INTRODUCTION

When some crystals (such as quartz, tourmaline, seignette salt) are under stresses, an
electric momentum is produced. This is the so-called simple piezoelectric effect. Besides
of the simple piezoelectric effect there also occurs the inverse piezoelectric effect, in which
the electric potential produces a deformation. Materials with both properties are called
piezoelectric materials.

Linear piezoelectricity, which is the linear coupling between electric vectorial quanti-
ties and strains or stresses, in case of homogeneous materials is a source of research and
technological applications [1,2]. The question naturally arises of the estimate of global
homogenized properties for composite materials involving one or several linear piezoelec-
tric constituents. By varying the proportion of various constituents (e.g., a piezoelectric
inactive polymer matrix-piezoelectric ceramic fibres, as in Refs. 3-6) one may obtain ef-
fective macroscopic properties for the homogenized macroscopic material. For instance,
in Sect. 7 of this paper we consider a two phase piezocomposite laminated and show how
the composite’s properties vary with the volume fraction of piezoceramic and what are
the consequences for medical ultrasonic imaging transducer.
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During the last two decades an increasing amount of research has been conducted
to develop method and procedures for improving the description of macroproperties for
given micro-inhomogeneous structure of media. The two scale expansion method [7] as-
sociated to the Energy Convergence was applied previously by many authors to compute
macrobehaviors such as, for instance, thermoelastic fields [8-10], thermopiezoelectricity in
solids [11], magnetoelasticity in solids [12], plastic fields [13], flow in porous media [14, 15],
etc. The variational method called I'-convergence was used to obtain the effective moduli
of a piezoelectric composite with fine periodic structure in Ref. 16. In Ref. 17 these results
were extended for investigating the dynamical behavior and the Method of Bloch expan-
sions is used. The method we used in this paper is the asymptotic expansion method
and was developed, for instance, in Ref. 7, 18-20. Our goal is to show, by using a simple
model of a laminated piezocomposite, their importance for ultrasonic transducer design.

First, in Sect. 2 we recall the fundamental relations of linear piezoelectric theory and
the boundary value problem associated to the displacement field @ and to the electrical
potential ¢. In Sect. 3 we seek the solution of a statical piezoelectric problem for an
heterogeneous periodic medium in the form of an asymptotic expansion. Afterwards we
obtain a sequence of recurrent boundary value problems with constant coefficients. In
Sect. 4 we obtain the so-called “local functions” for a general piezoelectric composite.
In Sect. 5 the local problems are used to determine the local functions of the first order
and the effective coefficients for a laminated piezoelectric medium. We determine, in
Sect. 6, the effective coefficients for two laminated piezoelectric composites with hexago-
nal symmetry. In Sect. 7, we consider a two phase laminated piezocomposite with several
examples for different choices of their phases (polymer matrix-ceramic fibres) and vol-
ume fraction. We present both our model’s predictions and their implications for medical
ultrasonic imaging transducers. Section 8 is devoted to some general concluding remarks.

2. FUNDAMENTAL RELATIONS OF LINEAR PIEZOELECTRICITY

All subscripts appearing in the text take values 1, 2 and 3. The summation convention
is consequently used throughout this paper.

We start our considerations by formulating the constitutive equations. We assume
that the solid under consideration undergoes a deformation due to an external loading
electromagnetic field, which may vary with the time. We assume also that there are no
heat sources in the body and no heat conduction (i.e., that the process is adiabatic).
Applying to an arbitrary region V of the solid bounded by a surface A the principle of
energy conservation [21] leads to

a

£ v(%p'vz-'vi—l-U) dV = [, X;v;dV + [, pividA+ [, E;D;dA. (1)

Here p is the mass density, v; = du, /0t the time derivative of displacement, U the internal
(mechanical and electromagnetic) energy, X; the volumic external forces, p; = oy;n; the
contact forces, o;; the components of the stress tensor, n; the components of the outward
unit normal vector, E; the components of the electric field vector and D; the components
of the electric displacement vector.
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Transforming Eq. (1) using the motion equations of continuous media

ov;

giji + 8 E— a—; (2)

(the comma denote partial differentiation), we obtain the local form of energy balance

Oeij OE;

H=gii—2 ——D; 3

M T Tt ()
where ¢;; are the strain tensor components
1

gij = 5(uij + ), H=U-ED;, (4)

2
and H = H(g;j, E;) is the electric entalpy. Hence we obtain

oH aEij o0H 6Ei =
(0’-,3 = (_95) 8t (D1 + a—E,l) E =10 . (5)
This equation should hold for any values of Oe;;/0t, OE;/0t, hence
0H 0H
Gij:?,‘j, Din'é"E'—,;. (6)

These relations will be employed for deriving the constitutive equations.

Expanding the electric entalpy H = H(e;;, E;) into Maclaurin’s series in the vicinity
of the natural state (¢;; = 0, E; = 0), neglecting terms of higher order than two, we
obtain, for a homogeneous anisotropic body the following expressions:

1 1
H (eij, E;) = 56‘,5“ Eij Ekl — Ckij Eij Bk — 3 6% E: E;. (7)

Here Cgkl is the elastic stiffness; ej;; are the piezoelectric coefficients and €;; the dielectric
permittivity (dielectric constants). Furthermore, superscripts E and € designate values
of coefficients at constant electric field and strain, respectively.

From thermodynamic considerations and the momentum balance equation we have
symmetry of stress and strain tensors,

Ciikt = Chitij = Cjimt = Cijtks €kij = Ekjis €ij = €5i. (8)

By introducing (7) into (6) we obtain the constitutive equations for piezoelectric
materials:

oij = CijriExi — ekij Bk , (9)
Di =eipiert + €ix By . (10)

The above mentioned relations present the material law and the mathematical model of
quasi-static piezoelectricity in the classical Voigt’s theory [22]. Stresses o;; and electric
displacements D; are linear functions of strains ¢;; and components of vector E;.
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Substituting (9) into (2) and using the geometrical relations, i.e., the first equations
of (4), we get

BZu,'
CijkiUk,ij + €mij Emj + Xs = P (11)

When the current flow and free electric charges are not present, the electromagnetic field
in the piezoelectric medium is studied by the Maxwell’s equations:

-

= dD ~ 0B - -

Vxﬂzﬁ, VXEZ_E’ V«B=0, V-1 =1, (12)
where H is the magnetic field vector, D the electric displacement vector, E the electric
field vector and B the magnetic induction vector.

The solutions of the motion Eq. (11) and Maxwell’s equations. (12) are described by
coupled elastic-electromagnetic waves, i.e. the elastic wave and it is interaction with the
electric field and electromagnetic waves together with the deformations of the medium.
Let the expansion velocity of the elastic wave be V, the corresponding velocity of elec-
tromagnetic wave v will have an order of 10°V and therefore when we study the elastic
wave, the magnetic field can be neglected. Hence, in the majority of the problems related
to piezoelectric materials, the electroacoustic waves are considered to have not magnetic
effects (I-_f =0, B= 6) and using the quasistatic approach for the electric field, we have

VxE=0, V-D=0. (13)
Then, the electric field vector Eis given by the electric potential ¢:
Ei=—p;. (14)

Introducing into the second equation of (13) the relation (10) and taking into account
(14), we obtain

€nij Uijn — €inPin = 0. (15)
From (11), (14) and (15) we get

8%u,
Cijki ki + €mij Pmi + Xi = pB_t; . €nij Wi,jn — €in Pin = 0. (16)

Thus, we have finally four linear partial differential equations with four unknowns, the
three components of the displacement vector 4 and the electric potential . Obviously,
this system has to be completed with boundary and initial conditions, see, for instance,
Refs. 2 or 22.

Finally we consider the linear static piezoelectric boundary value problem for hetero-
geneous media inside the domain  C R? with boundary I'= 9:

(Cijrt kg + Emig Pyn) g +Xi =0, (il Ui i Pom) =0 (17)
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i, =0 wlr, = wo; oinglr, = 87 Dini[r, = 0. (18)

Where ¢,, S are the electric potential on I'y, the mechanical load on Ty, respectively.
I =TyuUl;, ToNT; =0, I =T,Uls IoNT3 = 0. The moduli: Cijn (elastic), emi;
(piezoelectric) and e;,, (dielectric) satisfy the usual symmetry conditions like in (8).

We make the following assumption:

Hemp 200 v EEESS Cz;kl( )Eaj'skl)fflgl
dm >0 V deR? € (%) a; aj > m|d)?

for almost every & € Q. Here above E2 is the space of symmetric matrices of third order.

3. HOMOGENIZATION

Let the material functions Cjjk, €mij, €im be Y-periodic functions. As usual, Y is the
typical periodic cell, say Y = (0,Y1) x (0,Y2) x (0,Y3). We set Cijpy = C,-ju(f), Eijm =
eum(f ) and €, = €im( f) Here f (&1,&2,&3) is the local coordinate (or fast coordinate)
and 7 = (z1,T2,73) is the global (or slow) coordinate; £ = #/a, and @ = [/L is a small
parameter, which represents the ratio between the characterlstlc length, I, of the periodic
cell Y, and the characteristic length L of the whole domain.

The asymptotic expansion for the solution of the problem (17), (18), (with periodic
functions) is sought in the form

ui(Z) = ud(Z,€) + aul (7, €) + ?ud(Z,€) +
p(@) = "(Z,€) + ap!(Z,€) + (7, E) + - -

As usual in this kind of problem, the functions u? and ¢° do not depend on E Due to
the linearity of this problem and assuming both regularity of the inclusions shapes and
smoothness in variation of the coefficients, we have (like in Refs. 7, 18 and 19):

: . 30
ul (£,£) = z;p(f) +‘I’zp(5) Bz,
1= & m U?; 7 ‘PU

0 (Z,€) :Mﬂp(£)6_%+Pp(£)a—%

This leads to seek an asymptotic expansion of the solution in the following form:

Uy _Zaq[ ijky.. k E) Viks.. ( £) + tkl kq (E)S’k""kq(f)]’

Za"[ ) ko (@) + P (€18 5,.1,(@)] . (19)
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The functions N (‘I) M@ 0@ and P9 are local auxiliary Y-periodic functions, inde-
pendent of 7 and satlsfymg the following conditions: N;; 0 8;j (the Kronecker symbol),
PO =1, MO =40 =0, N@, M@ 3@ pl) are equa.l to zero for ¢ < 0. Moreover,
for unicity we require for the local auxiliary functions:

<E(Q)> =0, <M(Q)> =0, <Q(q)> =0, <E(Q)> =0, q>0, (20)

where (f) stands for 1/|Y| [;, f dY. The periodic conditions are

v@1=0, M9)=0, [29]=0, [P9]=0 (21)
and
[Cijm ml.kl kgt T emuM( t m 1 Cijmk, Nrgmkl) kies T ekqijMfEZ:}.)kq_l]i = 0y
[eimi r(m?;icl Jegd ™ eiva(gc);...kq,m IF eimqur(rfnkll) kg1 — Cikg M(il l)kq 1]] =0,
[Ciim®h, 4+ Znr B ke T Gt By, .?.kq_j + ekqijpk('f._..}cz,_l]] =0,
[EiﬂPIE?.)..k n_ eimlq’gﬂcl...k 1 T €ikg Px&fiafl — Cimk ‘I’fﬁkf} ]] =0.

W, N

where [u] means the difference of values of the function “u” on opposite sides of V" .
ValZ) = (un(E, £)) is called the averaged mechanical vector and S(Z) = (p(, £)) the
averaged electrical potential.

We now substitute the expansions (19) into Eqgs. (17), (18) and we collect the terms
of same order o and after some manipulations, we obtain the following boundary value
problems:

=}

(9) = (@) = —
Zaq h’zjﬂmk1 kg Vﬂ‘mkl---kqj(x) * rmijkl...qu>mkl---kqj($)] i Xi =0,
q=0

o8 (104 4 Vimbs. kei() = 5500, i, Simkrt(@)] = 0. (22)

-

o [N 4y @Vikry @ + B0 (S 1y (@) |, =0,

2o M’{"i)l kg OV (8) + o (*)S,kl..-kq(f)] Ir, = ¢
2 [hgg’)"“’““"‘qv""m’”"-"v(f) T ’"s(vzz)'jklu-qu'mkl...kq(i")] nslp, =57,

o0

(q) . (q) — .
Zaq [tigmkl...kq%:mklmkq( E) = Bimos.. Smkl-..kq(x)] ”i\rs =0, (23)
q=0
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where A9, (), (9 and s are constant tensorial functions (vanishing for ¢ < 0). The
expressions to determine these constants will be given in the next section.

To find the functions V;, and S, we seek for the solution of (22), (23) in the asymptotic
expansions form:

Vo= cPull}, §=3 ay®t, (24)
p=0 p=0

Putting (24) in (22) and (23) we obtain the following sequence of recurrent periodic
boundary value problems with constant coefficients:

h(o) {P} 4 ,r(ﬁ) {r} X{P} = 0

ijmn Wn,mj mij me
0)
ttml w;[rf%z Sm {rﬂ * Y{P} =0, =i 152 0 v (25)

{p} |r 0{p}
0

b

o Te—

0 0
(hijr}?,m r) +T1('m)3 yinh) nslp, = S )
(tﬁ,& w,{ﬁ E?n y{:ﬂ}) | Iy — qu{p} ) p=10,12,. .. (26)

where

P
{r} _ () {r—q} (q) {r—q}
X = Z [h’ijmnkl...kqwm,nkl...kqj T Tmijky.. koY mky .. ki | 0

q=1
4(@) {p—q} (9) {p—q}
CC S (R v R L N
g=1
0 _ N[N -0 g -t
q p—q P—q
uip :_Z Nz}h WL T +¢'1k1 kg Y . k]'“’
g=1
N Tarle) L m-a) L pla) A=)
¥ W = _Z _Mjkl-».k wJI;CI kq + Pkl qukl ] lr?
q=1
ol} _ (4] WP (q) {r—q} .
Si{p} __Z _hignmkl kq ﬂpmgl kq T mUkl qu’mkl k“] 3|F1,
g=1
SN {p—a} (0) ,{p-a)
" q p—q
q {p} = — Z; tggmkl kq ]I:'n]gl kq = Sijkl.uquajkl“‘kq] njll"aa
q:
with p > 0, and
x = x, y{o} = w9 =0,
0
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Finally, with the solution of the problems (25) and (26) the procedure of constructing
the formal asymptotic solution of problem (17) and (18) is complete and we only need
now, to find the auxiliary local functions and the constant tensors.

4. COMPUTATION OF THE CONSTANT TENSORS AND OF THE LOCAL AUXILIARY
FUNCTIONS

To obtain the constants A9, £ r(@ and s(9 and the functions NGt pglet))) dlatl)
and Pt we solve the following problems with periodic boundary values

Problems P‘,(qH’Q):

M(‘H’l)

B (g+2) ag(gt2) " (g+1) -
(CtJm!Nmnk,...kq+2,t+eszMnk1...kq+2,m j"' CzamszNmnk{.,.qu+ekq+w nkikgt1)

(¢+1) _ (g+1)
+ Cik?+2mlenk1...kq+1,I + emikq*-?Mnkl...kq_'.l,m

(9) : (q) _ pla)
+ Oikq+2mkq+lenk1...kq t+ ekq+11kq+2Mﬂk1...kq - hikq+gnk1...kq+1 !

(g+1)

_ (g+2) : (g+2) _ (g+1) L
(elmINmnkl“.kq+g,£_elmMnkl...kq+2,m i+ 61771kq+2Nmnk1...kq+l Elkq+2Mnk]...kq+1 ;

N(a+1) (g+1) (q)

t €kyyaml mnki..kgi1,l Ckgr2mMnk,  kyi1,m + ekq+2mkq+1Nmnk1A..kq

M(Q) — t(‘f) g == ~1L 0L, ... (27)

- Ekq+2kq+l nki..kg = “kgtonki..kqy1?

(q)

Likgyonky...kq41

o (g+1) _ (9)
- <Cikq+2mlenk1 ...kq+1 o + Clkq-!-?mkq-l-l Nmnkl kq>

(g+1) , (q)
- (Emikq+2Mnk1...kq+1,m + ekq+likq+zﬁffnkl...kq)“

(9) - (g+1) (q)
tkq+2ﬂk1.“kq+1 - (ekq+2m1Nﬂ1nk1.“kq+],f *+ ekq+2mkq+1Nmnk1...kq)

(g+1) (9) =
- <€kq+2IMn‘;§1...k 1 + ekq+2kq+1MTj€1...kq>’ q= 0’ 1, 2... (28)

q+1,

Problems PI(‘}"- 1.9) 7

+1)

. plat2) _ ple+2) . (g+1) _pla
(Ci.?m'!q)mkl-..kq+2,l ¥ emtj Pk]...kq+g,m i E Cljmkq+2(bmk] kg1 + ekq+'21] Pkl‘..kq_;_l i

_ (g+1) _ (g+1)
+ Ctkqﬁ—?m[@m&;...kq.‘_],l + e"“-kq+2Pk1 kgyr1,m

; (q) _ () _ . (q)
+ kaq+2mkq+1(1)mk1.“kq + 8kq+ltkq+2pk1...kq = Tkyyrikgyaki..kg
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_ pla+2) . elet2) ) (g+1) ) (g+1)
(E"n Pk]_ = .kq+2 1 €imi (I)mkl ...kq+2 of i + Equ+2 Pkl .‘.kq+1 - elmkq-i-'l (Dmkj ...kq+1 i
(g+1) (g+1) (q)
e Ekq+2ﬂPk1...kq+1,n - ekq+2ml¢mk kg1, + €kq+2kq+1pk1...kq
s (a) _ Ja) =
ekq+2mk4+1¢mk1...kq - Skq+2k1...kq+1’ 9= _1! 09 11 s (29)
(9) — (. (g+1) ] (9)
Tkqrrikgraky. kg — (G:kq+zmi‘1’mk1...kq+1,z + kaq+zmkq+1q’mk1...kq)

_ (g+1) _ (9)
+ <emlk‘3'+2 Pk]...kq+1,m + ekq+”kq+2pk1...kq)’

() ~ (g+1) (q)
skq+2k1...kq+1 - (Ekq+21P’C1...kq+1,I it ekq+2kq+1Pk1...kq>
(g+1)
~ (hppamt Py k1t F Chorambgn Oy ) ¢=0,1,2... (30)

To obtain N;S,I,ln, M,(nl,)1 and A 19 we start to solve the first problem PI(I’O), fies,

ijmn? “imn
from (27) and (28) we consider:

Problems P}l’o} s

(C'e'jmn + CijpaNjrin,g + Bm‘jMf#%,p) =

(Eimn + e;qu;E,lT‘),‘n‘q = EipMT(T}T)L,P) ; = 0 (31)
0
h'EJ‘zfm = (Cijmn + CiquN;S'Erln,q + epiijg'LI:)L,p)1
b = (imn + €ipgNiiing — €MD, ). (32)
(1) (1) (0) _(0)

Analogously ®mn, Pn’ and r,;, s, are computed by means of the periodic problem

PI(}’O); i.e., from (29) and (36) we have:

Problems PI(}’O) 2
(em-j + Ciquq)](,}l)‘q -+ em-jP,gB) ; = 0, (em — eépqtl’é}l)‘q 4 eipP,(L,lg) s 0. (33)

0 0
T,(u-; = (enij + pi PLY + Cijpg®H ), Sz(-n} = (€in + €ipP) — €ipg®L) ). (34)
Equations (31) and (33) give respectively, the system of equations for finding Né},%n

and M,S,}T)L,@,(Jln and P,(ll) taking in account (20) and (21). These problems are strong
formulations of the local problems, and are meaningful if the periodic solutions are smooth
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FIGURE 1. Series connection.

enough. However, this regularity may be significantly weakened provided that one use a
weak or variational formulations, as in Refs. 7 or 19.

Indeed, in the case of laminate composite with axis of symmetry in the direction
normal to the layers, the periodic local functions N' @ M@ @ P and the material
functions Cjimn, €imn and €;, will only depend on one vanable. For this kind of media
we prove g("g = r(9), Consequently, the first problem (p = 0) of the recurrent sequence
of boundary value problems (25) and (26) is a typical boundary value problem for linear
piezoelectricity in a homogeneous medium and has the form

0 0 0
C:_l;umn % ) + erm_g y{m?_j + Xi =0, efml wfn)h - ilm y{m)i =0, (35)
_ 0] —_ 0 h, | — g0 ho | —
lr, =0 YOI, =@, olinsl, =87, nifp, = 0. (36)
where
= h, D — -
ol = Ol W (2) + el y D @), DI = el win(2) — €l y 7))
ho o p0 h (© _ (0 B
Cgmn hl(_-,vzn.n,’ Cmij = ng 'rmzji €im = Sin‘%’
where the effective constants coefficients: Cf‘jmn (elastic), e ,mJ (piezoelectric) and €

(dielectric) are given by (32) and (34).

5. LOCAL PROBLEMS IN A LAMINATED MEDIUM

Let us now particularize our study to a laminated piezoelectric composite, i.e., made
of cells which are periodically along the axis z3 (Fig. 1), the axis z; is in the direction
perpendicular to the plane of the drawing. Each cell may be made of piezoelectric
laminates. For our problem the elasticity modulus tensor C, the piezoelectric modulus
tensor e, and the dielectric modulus tensor € are periodic functions of the coordinate z3
and they don’t depend on z; and z3.

We then introduce the fast variable in the following form:

E=6=—, (37)
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where « is the small parameter, representing the ratio between the characteristic length
of the periodic cell 1 and the characteristic length of the body L. In the engineering
literature these kinds of layer’s distribution (Fig. 1) are known as “connectivity in series”
and the case corresponding to £ = {3 = zg/a where § = 1 or 2 is called “connectivity in
parallel”, see for instance Ref. 24.

Using the results obtained in the above sections we seek the solution of this hetero-
geneous problem in the following form:

o0 q

w=3 o'y [NE, L ©uli? @ +eD @l @),
q=0 p=0
00 q

w:ZoﬂZ[ @ OuP, @+ PP, @ @] )
q:

We require the perlodlc local auxiliary functions to verify

<E(q)> =0, <M(Q).> =0, <Q(Q)> =0, <E(q)> =0, q>0, (39)

where (f) = fol f(€)de. Moreover, N9 (¢), M (¢), 9 (¢) and P9 (¢) are 1-periodic in
£ And

f 1 L g T
[[CiSms (N,Sfr)ml...kq) + e3is (Méi)l...k ) + Cismt Nt g1 + €kis My i ] =5
! -
(9) (g-1) (g-1) =
|I83m3 (N:ng)zkl...kq) - 63m(Mnk1 k ) + €3mk Nenky. kg1 — €3k Mk, &, g =0

) ' -3 (g-1) ]
[CiamS(@gll...kq) + esi3 (P IE?.)..kq) + Cismiy Pyt gy + exisPr, k,_,| =0,

-1 -1} ]
I[Cmes(‘I’fﬂll k) + esis (P;Sf k) + Cismiy Pty +6kqi3P:§f...kf,_1‘ il
Understanding (.)" as d(.)/d¢ and [u] = 0 as u(0) = u(1).
In order to obtain the corresponding NIS'}RR, My(nl-r)], and h;

the system of problems Pf(l’o).

© 40

s Ly, WE have to solve

Problems PI(I’O):
(CiSmn + Cisps (Né},%n)' + €33 (M,(nln)l)’ =0,
(€smn + e (V50— s (m882)') =o0. (40)

Cif_;mn — <Cijmn + Cijps (Né},%n)’ + €3i; (M»f(,%%)' >,

Bibn = <€imn + €ip3 (N;.g}%n)f — €3 (Mm'r;)’ > (41)

Analogously @%L, P,(,,l) and 352) are obtained from the probléms P}}‘D).
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Problems P
Y’ Y'Y
(Bm's + Cisps (‘I’pn) + €33 (Pn ) ) =0,
' PR
(Egn — €3p3 ((I)g;)) + €33 (Pr(ll)) ) = (42)
! !
E'?n = <6;‘n + €3 (P,rgl}) — €ip3 (‘I)EL)) >, (43)
where, szn = hggzm (elastic), el Emii tsgzj = mzj (piezoelectric), el = sggz (dielectric)

are the effective moduli.
By solving the system of ordinary differential equations (40) and (42) we obtain,
respectively,
W\ —a=1 . (-c e 6=l Bat — eqinesl
N,k ) =Ciams iank + Aisnk + €3i3€33 Bank — €3i3€33 €3nk | »
Ny __ i o
(M,(;k)) =% cher (e3nk + e3m3C s Aisnk — €3m3Cin3isCiank — BBnk): (44)
ro
(¢}nk) =05 [_ekiB + Ghiz + esiz €33 (€3x + HSk)] .
) = l[esmsc 3i3(—€kis + Griz) — €3k — HBI:]: (45)
where
Ci3mp = Cizmp + €3i3 '553133mp ) €pg = €pg T+ epmSCmgzgeqﬁ .

Taking the averages of the Eqgs. (44) and (45) and considering that ((}\.Ty(m)”c JEST !
(MDyy =0, (¢1)) = 0 and {(PV)') = 0, we obtain

-1
s = 315, Fean B i i
Aiznk = {(CiSrlnii) (Cq31n3'33q35331)(6 331> I(Cp31;383p3633 )}

X {(05;383,136531)(5 3731)_1 (E 3‘31 (e3p3Cp3q3Cq3nk eSnk)) =5 (0;317136—‘4;3:13:)} y (46)

_ _ =
Bank = {( 3)+(C p3z3€3p3f33 )(Ci_3:n3)4<0¢;9.}713'3343’53731>}
* {( 331( —e3p3Cp3g3Cqank + €3nk)) + (C;3£BB3P3E§31)(éigrln3>_l(éq_3}1130§‘3ﬂk)} , (47)
~1
Griz = {(Clsms) +(C, q3m3€3q3€33 e H(C p3;3€3p3“~33 )}

X {(C,Emg(ekia — esizezz €3k)) + (Coamaesgseas )(€az ) (€ 53153k>} , (48)
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- s o s -1
Hs = {(f 33) +(C 3z3€3P36331)(Ci3'.r1n3) 1<Cq311rn:383¢13€331)}
x {(553 €3t) + (Cizg3eap3€ 33 ) {Ciama) ™ (Crama (—exiz + 831'353_31531«:))} , (49)

and supposing now that (N(l)k) ==, (M(l)) =i (g‘b(l)) = 0 and (P,gl)) = 0, the local
functions NI, M), ¢(1) and P() are given by

N(l}k = Dmnk(&) ( mnk)s M,SL} = Tnk(g) - (Tnk): (50)
) = Ro(€) — (Rek)y P = Qi(6) — (Qn), (51)

where
Dmnk(€) = /0 E dn Ciama (77){ — Cisnk(n) + Aiznk + €3i3(n)es (1) Bank
— egia(n)ezs esns(7) |, (52)
Tnk(§) = fo E dn &3 (’7){83:1&(?7) + €3m3 (1) Cragia (1) Aisnk

— €3m3 (1) Crnzia (1) Ciank (n) — B3nk}: (53)

13
Rmi(§) = fo CiEJnS(n){ESiB(W)e:J}I (n) €3k (m) + Hax) — exis(n) + Gkis} dn, (54)

£
(©) = [ ezt me], (0CHan) - lowa) + Graleas(n) — Hac}dn. (59

Finally, we obtain the elastic, piezoelectric and dielectric effective coefficients by the
following expressions

ka = <Cijnk + CijpsC 3,,3[ Cyank + Agank + €3g3€33 (Bank — eSnk:)]
+ e3ij€ 33 [Esmc + €3p3C;303 (Aiznk — Coank) — ank] >1 (56)
e?nk = <eink % eipSC_'q_f;L;; [ = Cq3nk hy Aq3nk + e3q353_31(B3nk = 33nk):|

— €;3€ :;31 [e3nk B e3pSC 3q3(Az'3nk = Can.k) = BBnk] >a (57)

h -1
€ik = <€ik = eim3cp3m3[ €kp3 + kas. + €e3p3€ay (ESk i Hss:)]

+ €i3€ 33 [€3m3Crnipa(—€kps + Gipa) — €3k + H3k]>- (58)

We see that Ciy; = Cii = Clin = Ciiier  ©kij = Ckjir G5 = S5
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6. PIEZOELECTRIC LAMINATES WITH HEXAGONAL SYMMETRY

Connectivity in series

Let’s consider a piezoelectric laminated in which the periodic cell is composed by piezo-
electric layers with hexagonal symmetry (6mm); such symmetry class involves crystals
with one sixfold axis of symmetry, taken as x3 axis, and six symmetry plane parallel
to the axis, see for instance Ref. 25. These materials are characterized by the following
independent constants: five elastic constants [Ci111 = Ca222, C1122, C1133 = Ca233, C3333,
Ch323 = Cia13, Ci212 = 5C1111 — Criz2)), three piezoelectric constants (es11 = esz2, €33,
€113 = 6223), and two dielectric constants (611 = €99, 633).
Using the expressions (56)-(58) the effective coefficients for this material are:

Elastic effective constants

Ch 11 = Chyss = (Crin) + (Cizha(Cuiss + €311 €33 €333)(Anias — Cu1s))
+ (€33 (C1133C3333 €333 — €311)(Ban — e311)),
Chioo = (Ciizz) + (Ci333(Criss + €311 €33 €333)(A1133 — Cusa))
+ (€33 (C1133C5333 €333 — ean)(Ban — eann)),
Cli33 = (Cuiza) + (Cazsa(Criss + eain €33 €333)(Asszz — Caass))

+ (€35 (C1133C3353 €333 — €311)(B33s — €333)),

M 1
Cligs = A3z, Cliys = Chigs = (Caaga) ™ Clyg = 5(0{1111 —Chy).  (59)

Piezoelectric effective constants

T R, G| i Ao h Ko
el13 = en = (Cr313)~ (e113C1313), e31; = €399 = Bai, €333 = D333. (60)

Dielectric effective constants

5?1 = 5’212 = (€11} + (‘311301_3113(G113 — e113)), 633 = Has. (61)

where Ass11, Assss, Bsi1, Bass, G113 and Hsz can be determined by using of Eqgs. (46)-
(49) respectlvely As we can see, there exist five mdependent elastic eﬂectlve constants
[Ch1 = Chypay Clize, Clisz = Chyazr Chazzs Chazz = Clis, Clayy = (01111 — Clin)]
given by (59), three piezoelectric effective conqtantb (eg‘“ =@l Bl Oy = eh,s) given
by (60), and two dielectric effective constants (e, = €f,, €43) given by (61). Therefore,
we conclude that the symmetry of piezocomposite laminated materials with periodic cells
in series connection is conserved in the homogenized piezoelectric medium.
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FIGURE 2. Parallel connection.

Connectivity in parallel

We assume that the laminated medium possesses the same periodic properties with hexag-
onal symmetry (6 mm) as in the above example, but the cells distribution are periodically
along the axis zo. The axis symmetry of each layer are parallel to each other and the
zo-axis perpendicular to layering as in Fig. 2. Then by using the formulae (56)—(58)
(exchanging in these expressions the subscripts 3 by 2) we obtain the following effective
coefficients:

Elastic effective constants

Ch11 = (C1111) — (C95Cmba) + (Cr122C35350)*(Cipa) ™
Cligs = {Ci123C s M {(Clana) s
Cha3 = (Cniss) — (011220{212202233) -+ (0112202_2122)(02"2122)_1(02_212202233>,

h -1 -1
02222 = (02222) 3

et (62)
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Piezoelectric effective constants

f’113 = (e113),
ea1n) + (e322C5359) (Cinha) ™ {CizpaCoo11) — (e322C5559Coa11),

(

3311 (
€33 = (e333) — (€322C55) (Cigy) ™" (CippaCaan1) — (€322C5590Co211),

(

(

sl Sl
6322"‘ 332202222)( 2222)

i s
€53 = 3223622)(522) ' (63)
Dielectric effective constants

Jlll = (ew1), 522 = ( 1) 1

€y = (e33) + (€222Cam0) — (€322C350) 2 (Cizho) ™+ (64)

As we can see, there exist nine independent elastic effective constants given by (59),
five piezoelectric effective constants (60), and three dielectric effective constants (61).
Therefore we conclude, taking into account the general classification for homogeneous
piezoelectric materials; see for instance in Refs. 1 or 24, that if we have periodic cells com-
posed by piezoelectric materials’ layers with hexagonal symmetry (6 mm), but connected
in parallel, the corresponding homogenized material will like a piezoelectric material with
orthorhombic symmetry (2 mm).

7. APPLICATIONS TO TRANSDUCERS. IMPROVEMENT OF PHYSICAL
CHARACTERISTICS

Piezoelectric ceramic/polymer composites have become attractive candidates for use in
transducer for underwater and biomedical imaging applications. Their low stiffness and
low density lead to better matching of the acoustic impedance with the water, than in
PZT ceramics.

In order to show an application of these piezocomposite materials we will consider
the case of both connectivity, i.e., parallel and series connection where each periodic cell
consists only of two different homogeneous phases. The ceramic phase is a piezoelectric
with hexagonal symmetry and the polymer phase is an isotropic homogeneous medium
which is piezoelectrically inactive. The elastic and dielectric constants of the ceramic
phase will be distinguished from those of the polymer phase by the superscripts E and
S, respectively. Moreover, by utilizing the following mapping of adjacent indices:

(11) » 1, (22) — 2, (33) — 3,
(23) = (32) — 4, (31) = (13) — 5, (12) = (21) — 6,

we express the elastic and piezoelectric coefficients briefly as: Cop = Cijki, €ip = €ikis
where (ij) — « and (kl) — . Taking into account the above notations we have the
following expressions for the effective coefficients in the case of parallel connection.
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Elastic effective constants

= X[C"El B (05)2(05)_1] + [ ~x) [Cll ors 012(011)*1]

+ [xCB(CE) ™ + 1 -euow ] [x(c8) " +a-wem]
Cly = [XC'1E2 (Cﬁ)_l Fid= X)Clz(ou)_lJ [X(Cﬁ)_l + (1~ X)(Cu)ﬁl} _1,

0% = %05 [1 - Ch (Cﬁ)_l] + (1= ¥)Cis [1 - 012(011)_1]
+ [xeh(cR) ™ + 1 -0CuEn) | [x(cf) " + 1 - e
x [xCB(CE) ™+~ 0Cuew ),

-1

Ciy =[X(Cﬁ)_1 +(1- X)(Cn)*l] )
Oty = [xCh(CF) ™ + =00 [x(cB) " +a -]

Oh =x[ck - (cB)"(cF) "]+~ - Con
4

+ [xCB(CB) ™ + - euew ] [x(c8) " + a-nem ]

Gl = [x(CB)” + -0 +x(5) " (ers)?

() " (sl (82) " + (-0 () -1,

Cts = xCfj + (1 — x)Cuq,

Ces = [X(Cs‘%) L x)(C44)“] _ (65)
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Piezoelectric effective constants

k.
€15 = X€15,

ehy = [X(f'f?)—l + {1 X)(Ezz)_l]

[X(fgz)mlem] ;

—1 =5 -1
of)"'of] + [x(c8) "+ a-v(ea) )
E -1 ANE
)G + (1~ 0(C) Car| [x(CB) "] (60)
Dielectric effective constants

€’111 = X€1S1 + {1 —x)en;
g 3~t !
ey = [X (522) + (1 — x)e22 — 1] 3

-1
6?3 — X[6§3 =+ (832)2 (02%) ] + (1 — X)€33

= [x(cg%)_leszﬂx(cz%)l i X)(C:z?)l]_l, (67)

where y is the ceramic’s volume fraction.

Using effective coefficients as computed above we can determine characteristic physi-
cal parameters, such that: electromechanical piezoelectric coupling coefficients K", spe-
cific acoustic impedance Z", and the longitudinal velocity Vlh. They are defined given
by the following formulae [25]:

Piezoelectric lateral and longitudinal coupling factors
d. ds:
h 31 } 33
g = T K3y = Tt (68)
€351 €33 933
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Piezoelectric thickness and planar coupling factors

C’_‘33
Kt=\/1-=5, K!= n
14 D’ p e i
Cs3 l—-0
where,
~D ~ -2 —1 ~ o1k
C33 = C33 + €33 €33, C33 = Cjs,
= e - __h
€33 = €33, €33 = €33.
oF = 512 GE = (—1)i*i Ajj
S J a7
dpmi S5F £ = nnBag +E . =1,2 6
_emJ e ernn_ mpenp+fmna 5,1 =1,4...,0.

Longitudinal velocity

V= (933)1/2.
p

Specific acoustic impedance

7" =5 W,

729

(69)

(71)

(72)

where, p = xp°+ (1 —xp") is the averaged mass density, p° (p*) is the ceramic’s (polymer)
mass density, o¥ is the Poisson ratio, 2 is the determinant of the Cjj matrix and A,; is

the minor obtained by excluding the i-th row and j-th column.

Analogously, from Egs. (56)—(58) we can writte down, the effective moduli for a binary
layered in series connection. We show only the most important coefficients for computing

the above mentioned physical parameters, i.e.,

=l

¥ . 1l—X% X e X . b
a-(g-m @D a2 )
& { 03D3 Cll C:,g €§3 E‘% €11

1 1—3 * N

h X =X ( X —X) ( X€33 ) X€33
ey =147+ - + :
33 {[(5303 511) Cy; Cn Ches Ciress

h
€ —_— + 4 —— g +

where
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TABLE 1. Electroelastic material properties.

Material parameters of PZT-5A

CE (10'°N/m?) 12.10 €5, /€0 916.0
CE(10'°N/m?) 7.54 €0 (10712 F/m) 8.85
CE (10'°N/m?) 752 p(103K g/m?) 745
CH(10YN/m?) 11.10 K, 0.48
CE(101°N/m?) 2.11 K33 0.70
e%(C/m?) 15.8 K, 0.60
e (C/m?) -5.4 K3 -0.34
ef(C/m?) 12.3 Vi(m/s) 4350.0
€& Jeo 830.0 Z(M Rayls) 33.052
Material Parameters of Polymers
Polymer Araldite Eccothane Araldite D
C11(10'"°N/m?) 0.546 0.164 0.800
C12(10'°N/m?) 0.294 0.157 0.440
p(10°K g/m?) 1.17 1.13 115
€11/ €0 7.0 5.4 4.0
Vi(m/s) 2160.25 1204.7 2603.0

The basic requirements of a piezoelectric transducer for ultrasonic diagnostic imaging
are: 1) the piezoelectric material should have a high electromechanical coupling coefficient
for high sensitivity; 2) the acoustic impedance of the transducer should match the load
to minimize reflection losses at the interface.

Later, we will illustrate several examples for different choices of polymer, ceramic and
volume fraction. We present the change of the composite’s properties with respect to
the volume fraction in parallel and series connection and their implications for ultrasonic
transducers. To illustrate how the composite material parameters vary with volume
fraction of piezoelectric ceramic, the material parameters of PZT-5A and different choices
of polymer (Araldite, Eccothane, Araldite D) are used in the calculus. They are listed
in Table I.

Figure 3 shows the variation in the basic material parameters, p", e, Cl and el
versus the ceramic’s volume fraction for piezocomposites in series and parallel connection
made from PZT-5A ceramic and Eccothane. These quantities vary essentially linearly
with the volume fraction over most of the range. But, as the volume fraction become
larger, the lateral clamping of the layers by the polymer has greater effect on the elas-
tic and piezoelectric behavior. The elastic stiffness, C:’;fg, increases and the piezoelectric
strain constants, el, decreases and this lateral clamping of the layers also reduce the
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FIGURE 3. (a) Variation of stiffness C{; with volume fraction for a laminated composite (par-
allel and series connection) made from PZT-5A and Eccothane. (b) Variation of piezoelectric
constant eff; with volume fraction for a laminated composite (parallel and series connection)
made from PZT-5A and Eccothane. (c) Variation of dielectric constant %, with volume fraction
for a laminated composite (parallel and series connection) made from PZT-5A and Eccothane.
(d) Variation of density p with volume fraction for'a laminated composite (parallel and series
connection) made from PZT-5A and Eccothane.

dielectric constant in this range. It should be notice that the non linear effects are only
of order of few percents. The behavior of these parameters is analogous to parameters
for another type of composite, (for instance as shown in Ref. 4, 5 and 26) where the
composite is made from PZT rods in a polymer matrix and piezoelectric ceramic rods in
piezoelectric polymer matrix. For the case corresponding to series connection, the pa-
rameters Cly, ell, and €fl; are almost equal to zero for a large range of the volume fraction,
only increase near the high volume fractions. These results are an immediate consequence
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FIGURE 4. (a) Variation of thickness coupling constant K[' with volume fraction for a laminated
composite (parallel and series connection) made from PZT-5A and Eccothane. (b) Variation of
planar coupling constant K ,’,‘ with volume fraction for a laminated composite (parallel and series
connection) made from PZT-5A and Eccothane. (c) Variation of longitudinal velocity V}"* with
volume fraction for a laminated composite (parallel and series connection) made from PZT-5A
and Eccothane. (d) Variation of acoustic impedance Z" with volume fraction for a laminated
composite (parallel and series connection) made from PZT-5A and Eccothane.

of the piezoelectric ceramic discontinuity in the direction of wave propagation, i.e., the
vertical direction. As a possible application in medical pulse-echo ultrasonic transducers,
the composite in parallel connection has better properties, which will be shown in the
following figures.

Figure 4 is devoted to the comparison for both connection types of basic physical pa-
rameters such as, thickness and planar electromechanical coupling factors, longitudinal
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velocity and acoustic impedance denoted by K}, K{;, V[", Z" respectively, versus the ce-
ramic’s volume fraction for piezocomposites made from PZT-5A ceramic and Eccothane.
Due to the above mentioned characteristics of the magnitudes p", €%, Cf; and ef; shown
in Fig. 3, the behavior of the parameters K}', K{}, Vlh, Z", in the series connection case,
gives inferior results than in parallel connection, for instance the Fig. 4a shows that K}
(in series connection) decreases rapidly for high ceramic’s volume fraction being almost
zero for a large range of volume fraction, however, for the other curve, K} is higher than
K of the piezoelectric ceramic over almost all the range of ceramic’s variation except for
small ceramic’s volume fraction. The above mentioned indicates that the parallel con-
nection is more efficient in the design of pulse-echo ultrasonic transducers for obtaining
medical image with good qualities.

Figure 5 shows the behavior of the acoustic impedance, the longitudinal velocity, the
thickness and planar electromechanical coupling factors in parallel connection. These
variations with the volume fraction follow directly from those of the basic material pa-
rameters. Essentially, the acoustic impedance Z" increases linearly with y except at
large ¥ where the clamping of the ceramic’s layers causes it to increase more rapidly to
take the value of the ceramic’s acoustic impedance Z. The longitudinal velocity I/Eh also
increase rapidly in this zone due to the stiffening of the layers by lateral forces from the
polymer. The presence of ceramic’s layers has a stiffening effect and causes the velocity
to increase quite rapidly for small ceramic’s volume fraction. For intermediate values of
x the velocity increases only slowly. The thickness electromechanical coupling coefficient
K} for low volume fraction it increases rapidly and at the end decreases rapidly down to
the value of the ceramic’s coupling constant K;. It is possible to note that, for all cases,
the composite coupling factor K[! is higher than the ceramic’s K; for a large range of
volume fraction. The planar coupling coefficient K;,‘ stay almost constant around 0.40,
which is much lower than K, of the ceramic (0.60). A low K]';‘ is an advantage in using
composite in medical beam transducer construction. For the ceramic PZT-5A is known
that K, and K; have the same order. It provokes that the radiation field is composed
by a central lobe and differents representative side lobes. For obtaining better quality
medical image it is necessary to reduce the side lobes for which the value of K; must be
increased and the magnitude of K, decreased [27]. We would conclude, that the con-
stituent materials of the composite play an important role for the improvement of the
global properties, for instance, the combination of PZT-5A with the Eccothane polymer
in this case is better, since we obtain greater K}, lower Z" and KI’}. It satisfies the above
mentioned requirements.

To make a sensitive, broadband ultrasonic transducer, one wants a piezoelectric
with low acoustic impedance (Z" < 7.5 Mrayl) and high electromechanical coupling
(K = 0.60 to 0.70). These calculations show that composite piezoelectrics can be su-
perior to solid ceramic piezoelectrics in both respects. The optimum material can be
achieved by adjusting the volume fraction of piezoceramic. Lowering the volume frac-
tion always lowers the acoustic impedance but eventually causes a deterioration in the
electromechanical coupling. A trade-off then must be made between minimizing the
impedance and maximizing the coupling, as illustrated in Fig. 6 for the parallel connec-
tion.
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FIGURE 5. (a) Variation of acoustic impedance Z" with volume fraction for a laminated com-
posite, in parailel connection, made from PZT-5A and three different polymers. (b) Variation of
longitudinal velocity V}" with volume fraction for a laminated composite, in parallel connection,
made from PZT-5A and three different polymers. (c) Variation of thickness coupling constant K}
with volume fraction for a laminated composite, in parallel connection, made from PZT-5A and
three different polymers. (d) Variation of planar coupling constant K{; with volume fraction for
a laminated composite, in parallel connection, made from PZT-5A and three different polymers.

8. CONCLUSIONS

In this paper the procedure of constructing the formal asymptotic solution of linear
static piezoelectric equations for a periodically heterogeneous medium is developed by
means of Asymptotic Two. Scale Expansion. The original boundary value problem with
variable coefficients is transformed in a recurrent sequence of boundary value problems
with constant coefficients. Actually, this asymptotic analysis leads to the solution of two
recurrent sequence of problems. The first of these problems (problem B(p), p = 0,1,...)
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FIGURE 6. Trade-off between high electromechanical coupling and low acoustic impe dance for a
laminated composite, in parallel connection, made from PZT-5A and three different polymers.

consists in the solution to multiple boundary value problems (25) and (26). For solving
the problem B(p) it is necessary to solve the problems B(r),r = 0,1,... ,p — 1. The
solution to each one of these problems permits to find the functions w,{f } and y{P}. Then
by Eq. (24) it is possible to determine the averaged functions V,, and S. The solution
to the original problem (17) and (182 is finally obtained from V;, and S by (19). Local
auxiliary periodic functions N (‘1), M@ 8@ P are included in these formulae, whose
computation of solutions leads the second recurrent sequence of problems which is made
up of PI(QH’Q) [Egs. (27) and (28)], PI(fH’Q) [Egs. (29) and (30)]. For a fixed value of ¢,
Egs. (27) and (29) represent respectively, a system for finding N(9t1) and M(+1) $la+1)
and PU9*Y) taking into account (20) and (21). After that, by using (28), (30) the constant
tensors A9, £, r(@ and 59 are obtained.

Based on the general problems (27), (28) and (29), (30) and the local problems (40),
(41) and (42), (43) the global behavior of a laminated composite with axis of symmetry in
the direction normal to the layers (Fig. 1) is computed by finding the general expressions
for the effective coefficients (56), (57) and (58).

The above expressions (56), (57) and (58) were used to show analytically that not
only the ratio of each component phase of piezocomposite materials have influence over
the global or homogenized properties, but also the way of coupling the components. For
this first, we considered a laminated structure connected in series (Fig. 1) and secondly
in parallel (Fig. 2). Each periodic cell was composed by piezoelectric layers made of
the hexagonal symmetry (6 mm). In the case of series connection we obtained as a re-
sult of the homogenization a material with the same hexagonal symmetry (6 mm) and
in the case of parallel connection, the corresponding homogenized material behaves as
a piezoelectric material with orthorhombic symmetry (2 mm). Moreover, such general
expressions obtained for the effective coefficients were also applied to a binary layered
medium and an application of these piezocomposite materials for the design of better
ultrasonic transducers was shown in Sect. 7 where we proved that the parallel connec-
tion is more efficient for the design of pulse-echo ultrasonic transducers and the series
connection composite is practically an inactive piezoelectric for this purpose.
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