
Revista Mexicana de Física 43, No. 5 (1997) 737-749

Syrnrnetry breaking in [SU(6)]3X Z3

A. PÉREZ-LoRENZANA," D.E. JARAMILLO,",b WILLIAM A. PONCE,b
AND ARNULFO ZEPEDA"
"Departamento de Física,

Centro de Investigación y de Estudios Avanzados del ¡.P.N.
Apartado postal 14-740, 07000, México, D.F., México

b Departamento de Física
Universidad de Antioquia

A. A. 1226, Medellín, ColombilL

Recibido el 22 de enero de 1997;aceptado el 18 de abril de 1997

ABSTRACT.\Ve analize the difierent ways for the spontaneous breaking of the gauge symmetry,
fOl'the [SU(6)]' x Z3 family unification model. In particular we "tudy the consequences of a
previous selection for the vaCllllm expectation values of the Higgs fields, showing that such set
predicts unwanted £lavor changing neutral currents at the tnz = 91 CeV mass scale. A new set
of vacuum expectation values which solves this problem is proposed.

RESUMEN. Se analizan los diferentes caminos para el rompimiento espontaneo de la simetría
de norma en el modelo de unificación de familias [SU(6)3J x Z3. En particular se estudian las
consecuencias de una elección previa de los valores esperados en el vacío de los campos de Higgs,
mostrando que tal conjunto predice corrientes neutras que cambian de sabor a la escala de masa
mz = 91 CeY. Un nuevo conjunto de valores esperados en el vacío el cual resuelve este problema
es propuesto.

PAes: 11.15.Ex; 12.10.Dm

l. INTRODUCTION

Although the standard model (SM) is a successful theory which is in good agreement
with the experimental results [1]' it leaves several primordial aspects unanswered. Out-
standing among them is the so called flavor prablem which is the lack of predictions for
the fermion mass spectrum, the mlmber of families in nature and the small valnes for the
c¡nark mixing angles. In order to get an answer to this problem we believe that there is
a more fundamental theory, not far away from the prese¡ü experimental energies. This
is one of the motivation for grand unified theories (GUTs) [2J which are extensions of
the SM gauge structure SU(3)e 0 SU(2)L 0 U(ilv, into larger granps with a single gange
coupling constant.

In Ref. 3 it was presented a variant of the three family extension of the Pati-Salam [4)
nlOdel which <loes Bot have mirror fcrmiolls and is renormalizable. In this Inodel the
known families belong to a single irreducible representatioll of the local gauge granp
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[SU(6)]3 X Z3, each family being defined by the dynamics of the left-right symmetric
extension (LRSE) [5] SU(3)e 181 SU(2)R 181 SU(2)L 181 U(I)(O-L) of the SM.

In Ref. 6 the new model was systematical!y studied, paying special attention to its par-
tiele content, the symmetry breaking (SE) pattern, the mass scales, the free Lagrangean
for al! the gauge bosons (ineluding their mass terms), the bare masses for al! the exotic
fermion fields in the model, and the interacting Lagrangean with al! the known and pre-
dicted gauge interactions. Even though the results presented in Ref. 6 are important
for the analysis of the mass spectrum of the known quarks and leptons in the context
of the model, there are several problems in the SB scheme proposed, because the set of
Higgs fields and vacuum expectation values (vevs) used do not break the local symmetry
[SU(6)j3 x Z3 down to the SM symmetry. As a matter of fact, an extra U(I) symmetry
is predicted by this SB with a nonuniversal coupling to the standard matter at the rnz
scale. Moreover, the spontaneous breaking of this symmetry mixes the Z gauge field of
the SM with the field associated to the extra symmetry, giving Flavor Changing Neutral
Currents (FCNC) mediated by a gauge boson field with a mass of the order of rnz. Since
this neutral currents are not al!owed by the low energy experimental resuits, a careful
analysis of the SE pattern for the [SU(6)j3 x Z3 is needed. That is the aim of the work
presented in this paper.

The paper is organized in the fol!owing way: in the next section we briefly review the
model [SU(6)]3 x Z3. In the first part of Sect. 3 we analyze general ways for implementing
the spontaneous SI3 in the context of the model, in the second part of Sect. 3 we discuss
the problem with the SB scheme used in Ref. 6, and we propose a new pattern which
solves the puzzle. The renormalization group equation analysis for the new SB scheme
is presented in Sect. 4 and the mass scales for the new model are estimated. We write
our conelusions and sorne comments in the last section. An Appendix with technical
information is ineluded at the end.

2. THE MODEL

The model under consideration is based on the local gauge group

G == SU(6)L 181 SU(6)e 181 SU(6)R x Z3 (1)

and unifies non-gravitational forces with transitions among three families. In Eq. (2.1)
181 indicates a direct product, x a semidirect one, and Z3 is a three-eiement cyelic group
acting upon [SU(6))3 such that if (A,B,C) is a representation of [SU(6)]3 with A a rep-
resentation of the first factor, I3 of the second and C of the third, then Z3(A,B,C) ==
(A,B,C) al (I3,C,A) al (C,A,B) is an irreducible representation (irrep) of G. SU(6)e is a
vector-like group which ineludes three hadronic and three leptonic colors, and has as a
subgroup the SU(3)e 181 U(I)O-L group of the LRSE model. SU(6)L 181 SU(6)R ineludes
the SU(2)L 181 SU(2)R gauge group of the LRSE model. Among the special properties of
this model we may recal! that its gauge group, G, is the most economical unifying group
for tinee families, with left-right symmetry and with (extended) vector color; it leads
to (perturbative) stability of the proton [1]. Furthermore, al! the known elementary
fermions belong to an irrep of G. On the other hand the presence of the horizontal group
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in SU(6)L 0 SU(6)R al!ows for the possibility of obtaining predictions for the fermion
mass spectrum [3,6].

The 105 gauge fields (GFs) in G can be divided into two sets: 70 of them belonging
to SU(6)L 0SU(6)R and 35 being associated with SU(6)c. The first set indudes W¿" and
Wf (the GFs of SU(2)L in the SM), the GFs associated with SU(2)R; the GFs of the
horizontal interactions, and new GFs of nonuniversal charged and neutral interactions.
Al! of them have electric charges O or :f:1. The generators of SU(6)L(R) may be written
in a SU(2)L(R) 0 SU(3)HL(HR) basis as

"i 0 !J/2V3, (2)

where "i, i = 1,2,3 are the three 2 x 2 Pauli matrices, .110, <l = 1, ... ,8 are the eight 3 x 3
Gel!-Mann matrices, and 12and 13are 2 x 2 and 3 x 3 identity matrices respectively.

The second set of gauge fields indudes the eight gluon fields of SU(3)e, nine lepto-
quark GFs (Xi, Yi and Zi = 1,2,3 with electric charges -~, l, and -~ respectively), their
nine charge conjugated field, six dilepton GFs (P;;,pO, and pO,a = 1,2, with electric
charges as indicated), and GFs associated with diagonal generation in SU(6)e and not
take into account already in SU(3)e, induding among them the gauge field associated
with the (B - L) abelian generator of the LRSE model.

The fermion field of the models are in the irrep

..p(180)L = Z3..p(6, 1, 6JL = ..p(6, 1, 6)L 8) ..p(6, 6, 1JL 8) ..p(l, 6, 6)L, (3)

with quantum numbers with respect to the S¡V¡factors [SU(3)e, SU(2)L, U(1)y] given by

..p(6,6, l)L ==..p~:

..p(1, 6, 6)L == ..p~:

..p(6, 1,6)L ==..p'A :

3(3,2,1/3) 8)6(1,2, -1) 8)3(1,2,1),

3(3,1, -4/3) 8)3(3, 1,2/3) 8)6(1,1,2)) 8) 9(1, 1, O) 8)3(1,1, -2),

9(1,2,1) 8) 9(1,2, -1),

where a, b, ... ,A, B, ... , <l, (3, ... = 1, ... ,6 label L, R and c tensor indices, respectively.
The known fermions are contained in ..p(6, 6, l)L 8) ..p(1, 6, 6)L e ..p(180).

The electric charge operator in the model is given by

y
Q =TZL + 2' (4)

where the hypercharge Y/2 = TZL+(1/2)y(B_L) and TZL,R = diag{l, -1, 1, -1, 1, -1}/2
and Y(B-L) = diag{1/3, 1/3, 1/3, -1,1, -l} which act on the subspaces of the fundamen-
tal irreps of SU(6)L(R) and SU(6)e respectively.
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3. THE SPONTANEOUS SYMMETRY BREAKING PATTERN.

3.1. GENERAL ANALYSIS.

In order to aehieve the spontaneaus SB we introduce appropriate Higgs sealars. Using
the branehing rules

SU(6)L(R) ---l SU(2)L(R) <9 SU(3)/IL(R) SU(6)e ---l SU(3)e
6 ---l (2,3) 6 ---l (3) + 3(1)
15 ---l (1,6) + (3,3) 15 ---l (3) + 3(3) + 3(1)
21 ---l (1,3) + (3,6) 21 ---l ((i) + 6(1) + ;l(3)
35 ---l (3,8) + (3, 1) + (1,8) 35 ---l (8) + 3(3) + ;l(3) + U( 1),

(5)

we can see that the vaeU\llll expeetation values (vevs) of a 6 of SU(6)L neeessarily break
SU(2)L; besides a Higgs field 1'(18) = Z31'(6, 1, 1) is not suflieient to give tree-Ievelmasses
to ordinary fermion fields. We therefore assume, as it wa.s done in Ref. [61, that the last
step of the sn ehain is due to the vevs of a Higgs field 1'4 = 1'(1(8) = Z31'( 1,6,6), and that
these vevs lie only in the electrieally neutral direetions of the SU (6)L <9SU(6)¡t subspaee,
in sueh a way that the rnodified horizontal sll7'vival hypothesis [3,6] holds (whieh states
that at tree level the top quark is the only standard matter fennion fielu acquiring mass,
with the masses of the other known fermions being generated as radiative corrections).

In oruer to comply wlth the sllrvival hy¡)()thesis (which states that when a gauge
group G is broken down to GI e G at a mass scale MI, all the fermion lields bclonging
to real representations of GI must acquire ma.sses of order MI [8]) we uemand that the
first steps of the SB chain arise from vevs of Higgs lields of the type Z31'(ñ, 1,"), where
" may be 15 or 21. For this kind of fields their vevs have the general form

(6)

where the subindices indicatc the subspaccH involved in cach teflll a.lld 1n i.sthc lllé~S scale
of the breaking implement by (1'). The covariant uerivativc acting on a representation of
the form aL 0 ae 0 aR of [SU(6W, with aL (al" or aR) a funuamental irrep of the factor
SU(6)L (SU(6)e or SU(6)R) is

(7)

being Di (i = L,c,R) the corresponding covariant derivative 011 the irrep a, defined by
Df = all + igA~l, with A:l = ~)..fA~i eL = 1, ... ,35, wherc >"il are the gCllcrators of
SU(6)i normalized to T"A': A~= 2Jab 'Abo JI:: i are the gauge bosons a.ssociated to the
generators A': and 9 is the gauge eoupling eon;tant of G. For lields 1> in irreps 15 or 21
of an SU(6) factor, the action of the eovariant uerivative is

D~' ('I» = íY'1>+ iy (A:"I> + 1>A(I') , (8)

wherc the last cquatioIl is 'statcd in a fi x fi matrix fonn. The Illass Lagrallgcall for the
gauge bosons produced by (1') is of the form

Lm •••" = Tr[D( (1'))]1 [D( (1'))] = LLe + L:cH + LUt,
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where L\c,cR,LR are the eorresponding eontributions to the Lagrangean by (<PLc,cR,LR)
respectively. They may be written as

(9)

with ij = Le, eR, LR. While the first terms in (9) implement the spontaneons breaking
of the corresponding factor of 5U(6)i, giving masses to the assoeiated bosons, the last
tefln mixes the bosonie ficlds of both seetors involved, in sueh a way that the breaking
of 5U(6)i 05U(6)) via (<pij) is of the form 5U(6)i 0 SU(6)) -+ Gi 0 G) 0 Grnix where
the speeilie groups Gi(j) depend only on the particular direction of the vevs in the i (j)
subspaee, but the mixing symmetry is given by the combined aetion of directions in both
sllbspaccs.

Aceording to the branehing rules stated in (5), there are six SU(2)¡.,R singlets in 15
of SU(G)¡.(R) and three in irrep 21; they are along the directions

15

21

[1,4]- [2,3], [1,6] - [2,5], [3,6] - [4,5],
[1,2J, [3,4], [5,6],
{l,4} - {2,3}, {l,6} - {2,5}, {3,6} - {4,5}.

(10)

where the llotatioIl is slIch that [a, b] = ab - ba, <\11<1{a, b} = ab + [)(l. 'rile analysis
shows [9] that if the Higgs fields get vevs along these direction in the subspaces L or R,
the eorresponding SU(6) factor breaks down to the following subgroups:

{

il,61-[2,51+[3,.V 51'(6)

SU(6)
[1,2) I SU(4) 0 SU(2) {

1i,41-[2,~1 51'(4) 0 SU(2)
and SU(6)

{1,4}-i2,3/ [SU(2)]'I

( 11)

where we have written just the isomorphie residual symmetry group, with the specifie
strnetme of eaeh subgroup depcnding on the particular direetion for the vevs. Other
combinations of the vcvs aboye produce similar Sil pattcfns; for examplc, [1,6] - (2, 5]-
[3,4) 'lIso breaks SU(6) down to 51'(6), [3,4) or [5,6] (instead of [1, 2]) break SU(6) down
to SU(4) 0SU(2), [1,6] - [2,5] 01' [3,6] - [4, 5] (instead of [1, 41- [2,3]) break SU(6) down
to 51'(4) 0SU(2), {l,6} - {2,5} or {3,6} - {4,5} instead of {1,4} - {2,3} break SU(6)
down t.o [SU (2JP, etc ..

The reason for ehoosing t.hese ehannels fOl' t.he lirst. st.ep of the SE is due to t.he
following faets: they eontain the SU(2)L(R) st.ructmes of the LRSE group as subgroups;
t.he vevs in the directions of t.he singlets in irreps 15 and 21 'L,"me an unbroken SU(2)L(It)
factor; ami finally t.hey eomply properly with the survival hypothesis.

In order to break SU(2)/{, t.he only eonst.raint. on the vevs direetions come from t.he
demand that. the generator 'L,"oeiat.ed t.o t.he hypereharge Y must not be broken before
t.he la,t. st.ep of t.he S13chain. In other words, t.he vevs of t.he Higgs lields <P3 which breaks
5U(2)¡¡ must satisfy

( 12)
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where again we choose </>3of the form Z3</>3Cfi,1, n) with n = 15,21; so it is also of the
form given by (6). The simplest way to achieve the constraint (12) is imposing that

and

TiR ((</>3LR))= O, T;/I ((</>3Lc))= O (13)

Ti/l ((</>3cR)) '10. (14)

wbere TiR, í = 1,2,3 are tbe three generators for 5U(2)¡t. These constraints are achieved
in general for the comhinations (a,,8) odd-odd (even-even) on.1y if (A, B) are odd-odd
(even-even). In the subspace c there are just 3 directions iu 21 with even-even indices
which are {4,4}, {4,6} and {6,6}; while there isjust one in 15 which is [4,6]. For the
odd-odd combination there is only one possibility, the {5, 5} in inep 21.

For completeness let us mention finally that any of the diagonal directions {í,í},
í = 1 ... 6 in 21 break 5U(6) down 5U(5), while other directions implement the breakings

5U(6) [2,4J,[2,6J,[4,~J5U(4) 05U(2) and 5U(6) {1,3j,{l,S},{3,S¡ 5U(4) 0 U(I).
{2,4),{2,6),{4,6)

( 15)

3.2. PROtlLEMS WITII TlIE OLD SB SCIIEME.

In a previous paper [6] the 5B for this tl10del w,~" implcmentcd by introducing four
different sets of scalar fields:

</>,= </>(675) = Z3</>(15, 1, 15)

with vevs at the scale M in the directions [a, b], [A, B]
[n, (3] = [5,6];

</>2= </>(1323) = z3</>(2T, 1,21)

[1,6] = -[2,5] -[3,4] aIHI

with vevs at the scale M' in the directions {(l, b), {A, B} = {1, 4} = - {2, 3} and [n, (3]=
{4, 5};

</>3= </>(675) = Z3</>(15, 1, 15)

such that (</>~I;~~IJJ)= (</>~l:~J)= O, and (</>~1~~J)'1 O with vevs at the scale MR in the
directions [n, (3],[A, Bl = l4,6].

The last step of the 5B which break s the 5M symmctry w,~' implementcd by intro-
ducing thc scalar fields

with vevs (</>~A) = (</>.,,) = Oand (</>4~)= rnz fm A,a = 2,4,(;. As it w;~' shown in Refs.
{) aud 7, thc modc1 with only two different mass scales Ah.' alld 1HZ, s11ch that

Ale . 7T1Z.G ='> 5U(2)L 0 5U(3)c 0 U(lh' ----"¡ 5U(,l), 0 U(I)"",
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is excluded by the analysis of the renormalization group equations, and the experimental
values for Qi(mz), i = 1,2,3. The breaking pattern with three different mass scales,
where the first step is G --+ SU(3)e <21 SU(2)R <21 SU(2)L <21 U(1)(B-L) is also forbidden [6].
Then the hierarchy MR » Mil == M ~ M' » mz is suggested, and therefore the first
step of the SB should be implemented via (</>3).From the analysis presented in Eq.(15)
we note that (</>3)breaks SU(6)L <21 SU(6)e <21 SU(6)R down to GM == SU(6)L <21 SU(4)e <21
SU(2)e <21 SU(4)R <21 SU(2)R <21 U(lh;, where U(l)1; is an abelian sYlllllletry generated as
a mixing in the c-R subspaces, where

with

¿;e(R) = diag(l, 1, 1, -2, 1, -2) /-/6.

(16)

(17)

The algebra shows that ¿;(</>3)= O, even though ¿;e(R)(</>3)f O. In the unbroken group
the factor SU(4)e(R) ( SU(2)e(R) ) acts on the indices 1, 2, :J, 5 (4,6) of the fundamental
irrep of SU(6)e(R)'

The next step of the SB wa.' implemented in Ref. [6J by (</>¡+ </>ú. The analysis of
the bosonic mass Lagrangean [9] shows now that GM --+ SU(3)e <21 SU(2)R <21 SU(2)L <21
U(l)(B_L) <21 U(l)'; where we can notice that, unlike the statement in reference [6J,
(</>¡+ </>2+ </>3)does not break G down the SM gauge group. As a matter of fact, there is
an extra Abelian symmetry at the rnz scale. The gauge boson a.,sociated with this U(l)'
symmetry is

E' = (9V3E(B_L) - 15-/6Wft - 28v5Ey' + 140H¡, + 140HR) /1Ov'469, (18)

where the fields involved are the gauge bosons associated to the generators Y(B-L), TZR,
Y' = diag(l,1, 1,-3,-2,2)/v'lO, and TIlL,IIR = diag(1,1,0,0,-1,-1)/v'2. As it is
easy to check, the generator T' of U(l)' satisfies T'(</>¡) = T'(</>Ú = T'(</>3) = O, bnt
T' (</>4)f O. Then because Q(</>4) = 0, the sYlllllletry is properly broken at the rnz scale,
predicting thc correct low energy unbrokcn symmctry SU(3)e <21 U(1),m' Nevertheless,
sincc TZr,{</>4) f O, the last step of the SB lIlixes E' with the Z standard field prodncing
two new neutral fields Z¡ and Z2 of the form

(
Z¡ ) = ( COSE - sin E ) ( E' ) .
Z2 Slll E COSE Z (19)

Considering the lIlass Lagrangean produced by (</>4),decoupling aH the fields with
high ma.,ses, and introducing explicitly the Z standard and the photon fields, we obtain
the mixing tenns

3 2 2 {811 ,2 . ~9, 23 2}.c(1)) = -9 Mz -E + 3 - E Z+ -Z + ...
4 28 134 67 2 . (20)
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From here it is simple to compute the mixing angle sinE whieh is

3J67v'69
sin E = ¡,:¡:::: 0.2520.

2(223)1/4 v 14y'ññ
(21 )

where no = 365 + 28-1223. Then the mixing is large and its effeets fOl' the low energy
phCUOlIlCllology are inlportant.

From the interaetion Lagrangean of the fermion ficlds with the gauge hosons given in
appendix B of the Ref. 6, we have the following terms cOI'responding to the ficlds lh.R

where 6 is a color index, and the fields "o, ,{J, 1.0, and ,,0 (together with cO and "o)
constitute a hasis for the quark fields, whieh must be rotated in order to get the physical
quarks, but sinee the couplings of HL,R are not universal as can be seen from LlI, FCNC
mediated hy HL(R) (for hoth Z¡ amI Z2) will appear at the rnz seale, in eontradietion
with the experimental bounds related to the non-existenee of low energy FCNC.

Hence lhe SB scheme in Ref. 6 should be changed in OI'der lo make the model consis-
lenl wilh lhe low energy phenomenology. In order lo do il we ehoose a more economical
sel of Higgs ficlds lo implemenl the SB properly. We keep <P3 and <P4 as in Ref. 6, bul
inslead of <PIamI <P2 we use <P~ ami <P~ bolh in irreps Z3<P(15,1, 15), with vevs along the
following directions

a.mi

«P'\[~:I3])= J3MlI;
("'flo,~J ) - 103M .
'l'1[A,BI -V" H,

(",,JA,BJ) = MH'
'1' l[a,bJ '

(",,Ja,b] ) = J3MH''1' 2[0,13] ,

(",,Jo,~J ) - 103M .
'1' 2[A,BJ - v,) 11,

(",,JA,ul) _ M .
'1' 2[a,bJ - 11,

for [a,"] = -[1,4] = [2,:1] = [5,6]; [n,,6] = [5,6].

fOl'[a,") = -[1,4] = [2,3] = [5,6]; [n,,6J = [4,5],

for [a,"], [A,B] = -[1,4) = [2,3) = -[5,6];

for [a,"] = [1,2] = -[3,6] = [4,5]; [n,,6] = [5,6],

fOl' [a,/'] = [1,2] = -[3,6] = [4,5]; [n,,6] = [4,5],

for [a,b],[A,B] = -[12] = -[3,6] = [4,5].

where the J3 factor is included just for convcnience. The algehra shows that (<P'I) + (<p~)
break G down the LRSE model, aml t.ogethcr with (<P:I)break it down to the SM, solving
the problcIIl discussed above.

4. THE MASS SCALES.

The symmetry breaking chain is constrained by t.he rcquirement that the evolution of t.he
gaugc coupling constants a..,;sociatedwith t.he factor groups of the S:Nl1 ff01l1 the 1HZ scale
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to the unification scale, agree with the experimental values [1] 8in2Bw(mz) = 0.2315,
O'¡;;lr(mz) = 127.9, and 0'3(mz) = 0.113. Then for the use of the renormalization group
equations (rge) we assume the validity of the survival hypothesis [8]as well as the validity
of the extended survival hypothesis (which c1aims that when the vevs of a scalar field 1>
break a group G down to Gl cG at a mass scale MI, only those components of 1>which
acquire vevs get a mass of the order of MI, with the rest of the components getting
masses at the G scale [10]).

When the symmetry is broken in three steps at the scales MR, Mil and mz, the
coupling constants satisfy, up to one loop, the rge

O'¡-I(mz) = /;0'-1 - b? In (Mil) _ blln (MR), (22)
mz MIl

where O'i = 9l/47r, i = 1, 2, 3, and 9i are the gauge coupling constants of the U(l)y,
SU(2)L and SU(3)e subgroups of the SM respectively. The factors /; are constants
and define the relation at the unification scale M between 9, the coupling constant
of [SU(6)]3 x Z3 ami 9i. The numerical values of these factors h = 14/3, h = 3 and
h = 1 [3,6], arise from the normalization conditions irnposed on the generators of G.

In Eq. (22) the beta functions b~are given by

b~ = 4~ {13ICi
k(vectors) - ~Cf(Weyl fermions) - iCik(scalars)}, (23)

where k = O, I and Cf( ... ) are the index of the representation to which the (... ) partic1es
are assigned. For a complex field the value of Cik(scalars) should be doubled. AIso, the
following relationships

-1 _ -1 -1 2B 0'1
O'EM = 0'1 + 0'2 and tan w = -,

0'2

where Bw is the weak mixing angle, hold at all energy scales. Prom this expressions we
get

and

sin
2
Bw(mz) -I( ) _ (bO 1bO) I (Mil) (bl lb') 1 (MR)----- - 0'3 rnz - 3 - :- 2 11 -- + 3 - - 2 n --

O'EM(mz) 3 mz 3 Mil
(25)

O'¡;;lr(mz) - 230';1 (mz) = (23b~ _ b~ _ bg) In (Mil)
3 3 mz

+ (~3 bj _ b¡ - b~) In (~~) (26)

The analysis shows again that there is not a consistent set of solutions for the last
two equations (the same problem was found in Refs. 6 ami 7). In order to get consistent
solutions we have to slightly modify the Higgs sector, adding two more Higgs fields at the
scale Mil, 1>~and 1>gin irreps Z31>?(15,1, 15), i = 1,2, with vevs in the same directions
than 1>;and 1>~respectively. With this new set of Higgs fields anu vevs Eqs.(25) and (26)
can be solved easily, giving MR ~ 1011 GeV and Mil ~ 10"GeV, which are consistent
with the seesaw neutrino mass analysis presented in Ref. 12, ami with the bounds on low
energy FCNC.



746 A. PÉREz-LaRENzANA ET AL.

5. CONCLUDING REMARKS.

We shaw with aur analysis that there is not much freedom for the SB channels of the
unified model af flavors and forces based upon the local gauge group G. We saw that
a step of the SB implemented by vevs of Higgs fields in irreps Z3<P(n, 1,n), with n =
15,21, constraint, in the L sector, to break SU(6)L down only to sorne of the subgroups
SU(4)L <21SU(2)L, Sp(6)L, SU(4)L <21SU(2)L or [SU(2)LP.

We also calculated the general form of the vevs for Higgs fields, in such a way that
the hypercharge Y of the SM does not get broken by them, and we studied the possible
direction far the vevs, and their breakings induced on the dilferent SU(6) factors of G.

The analysis enabled us to give an economical set of Higgs fields and vevs which
implement a SB pattern without the problems contained in the SB proposed in Ref. 6,
and in agreement with the renormalization group equation analysis and the experimental
data.

An important result is the existence of at least three dilferent mass scales, that in
our case have the hierarchy

with the FCNC present only at the scale M, in perfect agreement with the low energy
constraints.

The set of Higgs fields used (as also the set in Ref. [6]) do not break spontaneously
the baryon number B, which in the fundamental irrep if SU(6)c is of the form B ~
diag(i, i, i,O,O,O). So, the proton remains stable with the Higgs fieIds we have intro-
duced in the present analysis, and therefare we do not expect experimental conflicts with
the upper mass scale MR calculated.

Even though the mass hierarchy calculated here is in agreement with the one used
in the analysis of the generational seesaw mechanism, which provide smal! masses to the
three light neutrinos [12]' we mention that the quantitative predictions of the seesaw
analysis may depend on the particular set of Higgs fields and vevs used to break the
symmetry, special!y those used far the second step of the SB because there are not right
handed neutrino mass terms from (<P3) (they come from the Yukawa couplings between
1jJ(108)and the scalars involved in the second step of the SE, <p; and <p'z). In this way the
changes in the scalar content of the model should alfect the neutrino mass analysis, and it
should be repeated in order to check the consistence of the previous results. Nevertheless,
since the modified horizontal survival hypothesis [3,6] is not violated by our new SE
pattern (it is realized by the vevs of <P4, unchanged here), and (<p; + <P'z) produce masses
of order MH far al! the exotic fermions in 1jJ(6,1,6) and for al! the vectar-like particles
with respect to the LRSE model as it should be according to the survival hypothesis [8]'
wc cxpect that a new seesaw analysis givcs essentially similar results.

ACKNOWLEDGMENTS.

This work was partial!y supported by CONACyT, México, ami COLCIENC1AS, Colom-
bia.



SYMMETRY BREAKING IN [SU(6)]'XZ3 747

ApPENDIX A.

In this appendix we present sorne aspects related to the branching rules ofthe SU(6) irreps
in terms of those of their maximal subgroups. We are interested here in the breaking of
SU(6) via the irreps 6, 15, 21, 35 and their conjugates. We consider also a general SU(6)
group which could be identified with whatever factor of G.

Considering aH the possible decomposition of irrep 6 of SU(6) into irreps of other
groups with less dimensions (6 = 5+1,4+2 and 3+3), it is a simple matter to obtain the
regular maximal subalgebras of SU(6), they are SU(5) 0U(I), SU(4) 0 SU(2) 0 U(I) and
SU(3) 0 SU(3) 0 U(l). Besides, SU(6) also has four special maximal subalgebras [11]
which are SU(3), SU(4), Sp(6) and SU(3) 0 SU(2). From them the only ones containing
the subgroup SU(2)L(R) are SU(3) 0 SU(2), SU(4) 0 SU(2) 0 U(I) and Sp(6). The
branching rules for SU(3) 0 SU(2) were given in Section 3.1; the branching rules for the
last two groups are

SU(6) -; SU(4) 0 SU(2) 0 U(l)

6 -; (4,1)( -1) + (1,2)(2)

15 -; (1,1)(4) + (6,1)( -2) + (4,2)(1) (27)

21 -; (10,1)(2) + (1,3)(4) + (4,2)(1)

35 -; (1,1)(0) + (15, 1)(0) + (1,3)(0) + (4,2)( -3) + (4,2)(3);

and

SU(6) -; Sp(6)

6-;6
15 -; 14 + 1

21 -; 21

35 -; 14 + 21.

(28)

Therefore only the vevs of the scalar field along the singlet of a 15 may break SU(6) down
to SU(4) 0 SU(2) 0U(l) or to Sp(6) (there is no way to implemeut the breaking to those
subgroups using irrep 21, because for the first subgroup there is not a (1,1) branching,
and for the second there is not a Sp(6) singlet). From the lIlain text we see that irrep 21
may be used only to break SU(6) down to SU(3) 0 SU(2).

Now, frolll the special embedding of Sp(4) and the regular one of SU(2) 0 SU(2) in
SU(4) which have the branching rules
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8U(4) -t 8U(2) 08U(2)

4 -t (2,1) + (1,2)

6 -t (3,1) + (1,3)

10 -t (3,3) + (1, 1)

15 -t (3,1) + (1,3) + (3,3)

8U(4) -t 81'(4)

4-t4

6-t5+l

1O-t1O

15 -t 5 + 10,

(29)

we see that there is a singlet in irrep 21 of 8U(6) for the group [8U(2JJ3which contains
the 8U(2)L(R) subgroup in an special embedding. AIso there is a singlet of 81'(4) in irrep
15 of 8U(6), and then the 8B of 8U(6) down to [8U(2JJ3or 8U(4) 08U(2) using a single
Higgs (in one ster) is always possible.

The breaking of 8U(6) to any of the other maximal subalgebras uecessarily break the
8U(2)L group structure, therefore there may be paths allowed only for vevs with indices
in the c and R spaces.

The branching rules for the other two regular maximal subalgebras are

and

8U(6) -t 8U(5) 0 U(l)

6 -t 5(1) + l( -5)
15 -t 10(2) + 5(-4)

21 -t 15(2) + 5(-4) + l( -10)

35 -t 24(0) + 1(0) + 5(6) + 5( -6);

(30)

8U(6) -t 8U(3) 0 8U(3) 0 U(l)

6 -t (3,1)(1) + (1,3)( -1)

15 -t (3,1)(2) + (1,3)( -2) + (3,3)(0) (:Jl)

21 -t (6,1)(2) + (1,6)( -2) + (3,3)(0)

35 -t (8,1)(0) + (1,8)(0) + (1, 1)(0) + (3,3)(2) + (3,3)( -2).

80, the breaking down to 8U(5) is possible only by the vevs in irrep 21, while there
is not a lower dimension scalar ¡¡eld able to break 8U(6) down to its regular subgroup
8U(3) 08U(3).
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For the other special subalgebras of SU(fi) we have the branching rules

SU(6) --+SU(4)

6--+6

15 ~ 15

21 --+20 + 1

35 --+15+ 20

SU(6) --+SU(3)

6--+6

15 --+15

21 --+15+ 6
35 --+ 8 + 27.

(32)

Again, the breaking down to the special subgroup SU(4) may be implemented only via
vevs in irrep 21, while neither 15 nor 21 could do the breaking down to the specia! SU(3)
subgroup.

To condude, notice that the breaking of SU(6) down to the non maximal subalgebra
SU(4) x U(I) i8 possible by vevs along the irreps (1,3) of SU(4) «) SU(2) in irrep 21, and
aIso that the breaking of SU(6) down to the special maximaI subgroup SU(3) «) SU(2) is
not possible via irreps 15, 21 or 35 as it can be seen from Eq. (5). [A further analysis
shows that it is possible only via irrep 105 in SU(6)J.
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