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ABSTRACT. The toroidal capacitors studied in this paper consist of eleetrodes with meridian cross
sections that are circular ares meeting at the axis, and separated fraID each other by tWQ small
insulating spheres at their meeting points. The description and analysis of such capacitors is
carried out by using bispherical coordinates. The R-separability of the Laplace equation in these
coordinates requires the use of the Green function technique, just like in the related problems of
toroidal, spherical-cap-electrode, 'and bispherical capacitors [1-3J, An overall comparison of the
solutions of the four problems is specially instructive.

RESUMEN. Los condensadores toroidales estudiados en este trabajo están formados por electrodos
con secciones meridianas que son arcos de circulas que convergen en el eje, y separados entre sí
por dos pequeñas esferas aislantes en los puntos de convergencia. La descripción y el análisis
de tales condensadores se lleva a cabo usando coordenadas biesféricas. La R-separabilidad de la
ecuación de Laplace en estas coordenadas requiere el uso de la técnica de la función de Green,
como en los problemas afines de condensadores toroidales, con electrodos en forma de casquetes
esféricos y biesféricos [1-3J. Una comparación global de las soluciones de los cuatro problemas es
especialmente instructiva.

rAes: 41.10.Dq

l. INTRODUCTION

The writing of this paper and of its cornplementary companion [3] was done as a conse-
quence of the Canadian-Arnerican-Mexican Physics Meeting in Cancún, 1994, in which
we presented a teaching poster contribution on spherical-cap-electrode capacitors [2]. The
figures in the poster attracted the attention of several colleagues. In particular, Dr. Luz
J. Martínez-Miranda of Kent State University remarked "Those are like the electric fields
that we observe in the liquid crystal samples in our laboratory"; the ensuing discussion
allowed us to learn that her samples are actually based On circular-arc-cylinder electrodes,
for which later 011 wc wcre able to fax her the analytical description based on bipolar
cylindrical coordinates. On the other hand, Dr. Jorge José of Northeastern University,
who works on chaos in mesoscopic systems, asked us "Can you do the two-dimensional
Pac-Man?", and also "Can you salve tite case of two spheres?,J For the lattcr we couId
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say yes and constructed the solution based on bispherical coordinates [3]; for the former
we have not found an answer and we are aware of its difliculties. Neverthcless, we can
point out that the helmet-like capacitors of our poster are a good approximation to the
three-dimensional Pac-Man, and that the cylindrical capacitors with a Pac-Man cross sec-
tion can be approximated within the same description in bipolar cylindrical coordinates
mentioned aboye. This introductory paragraph is intended to illustrate three points:

1. The current interest in different fields of physics in the electrical fields andJor
capacitances of unorthodox electro de shapes.

2. The misinterpretation of a figure according to our preconceived notions or particular
interests; of course, we have to be careful and find out, for example, if the figure is
flat or if it is a transverse or a meridian cross section, and for the latter which is
the axis of rotation.

3. The importance of distinguishing the dimensionalities of electro des and fields. For
instance, a flat 2-dimensional Pac-Man haBan associated 3-dimensional field, while
an infinite cylindrical capacitor with a Pac-Man cross section is 3-dimensional and
its associated field is 2-dimensional.

In a wider didadic context, readers of Revista Mexicana de Física may be aware
of our series of papers on electrostatics and magnetostatics in recent years, in which
the common theme is the identification of harmonic components of sources and fields
associated with specific geometries. The average physicist is familiar with the spherical
harmonics, but without too much additional effort and using familiar methods of analysis
he or she can become familiar with other ten types of harmonics in different geometries.
There is no reason for teachers of physics to restrain themselves and their students to the
solutions of Laplace's equation in cartesian, cylindrical and spherical coordinates only.
Our aim in writing these papers is to help the interested teachers and students to learn
about the diversity of harmonic functions, and also about the unity and systematics
behind them, illustrating at the same time the current interest and need of them in the
study of different physical phenomena.

This paper completes the sequel in the study of four types of capacitors having com-
mon geometrical roots, namely, toroidal [1]' spherical-cap electrode [2]' bispherical [3]
and toroidal with a moon-shaped meridian cross-section capacitors. The camlnon roots
are the two-dimensional bipolar coordinates [4]' formed by two sets of mutually orthogo-
nal cireles, with the circular arcs of one set meeting at two points ("the poles") and the
cireles in the other set nested around tbe poles. The toroidal coordinates [4] are gener-
ated by the rotation of the plane of bipolar coordinates around the straight line in the
plane with points equidistant from the poles; thus the nested cireles generate toroids [1]'
and the circular arcs meeting at the poles generate spherical caps [2]. The bispherical
coordinates [4) are generated by the rotation of the plane of bipolar coordinates arollnd
the axis joining the poles; in this case, the nested cireles generate nested spheres [3]'
and the circular arcs meeting at the poles generate toroids. Any pair of electrodes with
the shape of such toroids and separated by small inslllating spheres at the poles form a
capacitor with a moon-shape meridian cross-section. Figure 1 illllstrates some of these
capacitors.
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(a)

(b) (e)

FIGURE 1. Toroidal capacitors with moon shape meridian cross sections: a) partially eclipsed
moon O< 6 < rr/2, 6 < 6, b) half moon 6 = ~,6 = rr, c) American footballrr/2 < 6 < 6 <
rr.

The eommon geometrical roots translate into the R-separability [5) of the Laplace
eqllation in both toroidal and bispherical coordinates, which makes the description of
the eleetrostatie field of the four types of capacitors a nontrivialmatter [1-3]. Seetion 2
contains the explicit constrllction of the electrostatic potential function for the moon-
shape toroidal capacitors using the Green function technique [6]' and the subseqllent
evaluation of the electric intensity field, the charge distributions and total charges on the
electrodes, and the capacitance. Section 3 contains a discussion of the similarities and
differences of the results of this study and those of Refs. 1-3. Appendix A introduces
the bispherical coordinates, and Appendix B presents the construction of the Dirichlet
Green function and some relevant integrals.

2. ELECTROSTATIC FIELD, CHARGES AND CAPACITANCE

In the notation of Appendix A for the bispherical coordinates (O :o; ~ :o; 71",-00 < TI < 00,

O< 'P < 271"), the electrostatic potential for the moon-shape toroidal capacitor is to be
dctermined as a solution of the Laplace equation
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[
(COSh1]- cos03 ( ü sin~ ü ü sin~ Ü)

a2sin ~ ü~ cosh 1]- cos ~ ü~ + Ü1]cosh 1]- cos ~ ü1]

(cosll1) - COS02 ü2] "'( ) _+ 2 . 2 é Ü 2 'P ~, 1], ep - O,a sm , cp

satisfying the boundary conditions at the respective electro des

</J(~= 6,1],cp) = VI,

</J(~= 6,1],cp) = V2 = O.

The Laplace equation has R-separable solutions [5] of the general form

(1)

(2a)

(2b)

X [Ck sin k1] + Dk cos k1]] [Em sin mcp + Dm cos mcp], (3)

where the Legendre functions having a complex-number order are of the conical type [7].
The presence of the square root of the binomial factor, reflecting the R-separability,
makes the fulfillment of the boundary condition of Eq. (2a) a complicated problem. The
solution is obtained via the Green function technique [6]:

</J(r) = -~ 1da'</J(f,)üCv(f,f')
411' Js ün'

(4a)

where n' is the displacement perpendicular to the boundary S and the Dirichlet-Green
function is constructed in the Appendix B.

By using Eq. (BS) for the normal derivative of the Green function at the electrode
6 and the explicit forms of the scale factors, the harmonic expansion for the potential
function is obtained:

V lOO 12. üC (- -') I1 lID T, r
</J(~,1], cp) = - - "ry' "<p' dr¡ dcp Ü I

47T -00 o n ('=(1

00 lOO dk
= VI (cosh 1]- cos O 1/2 ¿ t=eikry

m=O -00 v21r
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The integration over the azimuthal angle <p' eliminates al! the terms with m # O from
the summation, reflecting the invariance under rotation around the axis of the toroidal
capacitor. The integral over 71'is represented by C(k, cos 6), Eq. (B9), and is identified as
the Fourier integral transform of the inverse of the square root of the binomial appearing
in the integral. The form of the potential in Eq. (4b) satisfies the boundary condition
at the electrode ~ = 6, Eq. (2b), in an obvious manner. The bOllndary condition at
the electro de ~ = 6, Eq. (2a), is also satisfied as shown next: the fraction involving
the Legendre functions becomes one, the integral over k is the inverse Fourier transform
of C(k,cos6), Eq. (BlO), which is the inverse of the square root of the binomial, and
therefore the potential is V¡.

The electric intensity field is evaluated as the negative gradient of the potential func-
tion, [Eq. (4b)J,

E(C 71, <p) = - [ I{ :~ + ~ :71 + ~ :<p] q,(C T], <p)

V¡ loo dk C(k,cos6)eih/(coshT¡- cos03/2

= -~ -00 J2; [Q_l+ik(cos6)P_l+ik(COS~2) - P_l+ik(cos6)Q_l+ik(COS6)]
2 2 2 2

X {¿ [P_~+ik(coS6) ~Q_~+ik(COSO - Q_~+ik(cos6) ~P_~+ik(COSO]

+ [¿ sin ~ + ti (ik + sinh 71 ) ]
2(cosh 71 - cosO 2(cosh 71 - cosO

x [P_l+ik(COS6)Q_l+ik(COSO - Q_l+ik(COS~2)P_l+ik(COSO]}. (5)
2 2 2 2

The electric field lines at the electrodes ~ = 6 are obviously in the direction ¿ perpen-
dicular to the toroidal surfacc, since the second ter m inside thc curly brackets of Eq. (5)
vanishes. The electric lines at the electro de ~ = 6 are also in the ¿ direction perpen-
dicular to the corresponding toroidal surface; in fact, the integrals in the f¡ direction in
Eq. (5) when evaluated using Eq. (810)
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(''''' ~ C(k cos 6) eik~ik = ~ 1 = _ ~ sinh '1
J-oo V2ir' dr¡ (coshr¡ - cos6)1/2 2 (cosh '1 - cos6)3/2

~ roo ~ e(k cos ~¡) eik~ sinh '1 sinh '1
2J-ooV2ir' (coshr¡-cos~¡) 2(coshr¡-cos6)3/2

are seen to cancel each other.
The charge distributions on the electrodes follow from Gauss' law:

where the explicit form of the Wronskian of the Legendre fllnctions has been llsed.

(6b)

The total charges on the electrodes are evalllated by integrating Eqs. (6) over the respec-
tive surfaces:

where the integral over '1 is again Eq. (B9a) with 6 replacing 6.
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Q V1a ¡C'" dkC(k,cos6)
1= ""2 Loo Q_l+ik(cos6)P_1+ik(cos6) - P_!+ik(COseIlQ_l+ik(Cos6)

2 2 2 2

X {(oo J21T( :r¡eik" e )1/2 [P_l+ik(COS6)d~ Q_l+ik(cos6))-00 1r COS TI - Cos 1 2 ~l 2

- Q_~+ik(cos6) d~1 P_~+ik(COS6)]

1 loo dr¡ eik" sin 6 [
+ -2 J21T( h e )3/2 Q_l+ik(cos6)P_l+ik(coseIl

-00 1r COS TJ - COS 1 2 2

-P_~+ik(cos6) Q_~+ik(cos6)]}. (7b)

The integrals over r¡ in the respective terms inside the curly brackets according to
Eq. (B9a) are respectively, C(k,cos6) and -dC(k,cos6)/d6. Furthermore, the expres-
sion inside the curly brackets can be reduced to C(k, cos 6), showing that the charges in
both electrodes have the same magnitude.

The capacitance is then obtained from either Eq. (7):

C- Q _ a (00 dkC(k,cos6)C(k,cos6)
- V - "2 J -00 -Q-_-l-+-ik-(-C-OS-e-¡-)-p-_-1-+,-k-(c-0-S-e-2)---P-_-l-+-ik-(-c-OS-e-I-)-Q-_-l-+-ik-(-CO-s-e-2-)"

2 2 2 2

3. DISCUSSION

(8)

The analysis of moon-shape toroidal capacitors has been carried out in bispherical coordi-
nates obtaining the barmonic expansions far the electrostatic potential function, Eq. (4b),
the electric intensity field, Eq. (5), the charge distributions on the electro des, Eqs. (6),
the total charges, Eq. (7), and the capacitance Eq. (8).

Since this artiele completes the sequel of the study of toroidal, spherical-cap-electrode,
bispherical and moon-shape toroidal capacitors, the relllaining discussion focuses on the
relationships alllong tbelll and peculiarities of each one. The capacitors studied in this
paper and those of Ref. 1 share the toroidal shape, differing in their partial moon and ful!
moon lucridian cross sections a..<;sociatedwith cOllvcrging circular ares versus nested c¡r-
eles, respectively; such a difference is reflected in the corresponding harlllonic expansions
involving Fourier integral transforms versus Fourier series. The cOlllparison of the 1Il00n
shape toroidal and spherical cap capacitors shows the need of the insulating elements
to separate their converging electro des; the result is that the electric properties of both
types of capacitars are described by integral transforms, of the Fourier type and conical
Legcndrc typc, respectively. Thc 1110011 shapc toroidal and bispherical capacitors are
cOlIlplementary to each other, jnst like the ones of Refs. I allll 2, being described by the
saIne coordillates; the corresponding harmonic cxpansions as Fourier integral transfonns
ami series in Legendre polynornials reflect that complementarity. Our elosing remark
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is that the study of these capacitors revolves arollnd four different representations of
the inverse of the square-root of the binomial, of which the one of Re£. 1 is available in
mathematical tables and the other three were explicitly constructed in Refs. 2, 3 and this
papero

4. ApPENDIX A. BISPHERICAL COORDINATES

In the notation of Ref. 3 the equations connecting the cartesian and bispherical coordi-
Ilates are

asin~cos'Px=-----
cosh '1 - cos ~

asin~ sin '1'
y=

cosh '1 - cos ~
a sinh '1z=

cosh '1 - cos ~
(Al)

Fixed values of ~ in the interval (O, ,,) define toroidal surfaces with meridian cross-sections
that are circular arcs meeting at the poles located at (x = O, Y = O, z = :J::a); the vallle
~ = O corresponds the external part of the z-axis (x = O, Y = O, Izl > a) and the value
~ = " corresponds to the central part of the z-axis (x = O, Y = O, Izl < a). Fixed values
of'l in the intervals (-00, O) and 0,00) define spheres nested arollnd the sOllth ('1= -00)
and north ('1 = 00) poles respectively, with '1 = O corresponding to the equatorial plame.
Fixed values of '1' in the interval (0,2,,) define the familiar meridian half-planes meeting
at the z-axis.

The expressions for the scale factors and unit vectors follow directly from Eqs. (Al):

di = idx + Jdy + k dz = ~h<d~ + i¡h'l dr¡ + eph",d'P, (A2)

a
h, = h = -----,

, " cosh'l - cos~
h = asin~

'" cosh'l - cos ~
(A3)

~= (cosh '1cos ~ - l)(i cos '1' + J sin '1') - k sinh '1sin ~
cosh '1 - cos ~ '

. -sinhr¡sin~(icos'P+Jsin'P) -k(coshr¡cos~-l)'1=-------------------
cosh '1 - cos ~ '

ep = -isen'P + Jcos'P.

5. ApPENDIX B. CONSTRUCTION OF THE GREEN FUNCTION

(A4)

The Dirichlet.Green function is to be constructed as a Sollltion of Poisson's equation with
a unit point source,

'i72GD (iJ' /) = -4,,<5(i - i /)

and satisfying the bOllndary conditions

(131)

GD(~ = 6, '1, '1';(, r¡', '1'/) = O, GD(~ = 6,r¡, '1';(, r¡', '1'/) = O. (B2)
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(B3)

The Dirac-delta function is expressed as

ó(1"_ 1"') = ó(~ - e)ó(r¡ - r¡')ó(<p- <p')
h~hryh<p

_ ó(~ - n 100 dk ik(ry-ry')~ ém (_')
- h h h 2 e LJ cosm <p <p

~ ry <p -00 " m=O 2"

using the Fourier-integral and Fourier-series representations of the respective factors in
the r¡ and <p coordinates [4J. This suggests the corresponding harmonic expansion for the
Green function,

(B4a)

GD((,r¡,<p;e,r¡',<p') = (coshr¡ - cos01/2(coshr¡' - cosn1/2

~ 100 dk , 'k( ')ém ,
X LJ -gkm(~,~ )e' ry-ry - cosm(<p - <p),
m=O -00 2" 2"

where the symmetry under the exchange of the field and source points ha., been taken
into account, and

(B5)

gkm(~,n = Akm [Q:'1+ik(cos6)P:'1+ik(cos~<l- P:'1+ik(cos6)Q:'1+ik(cos~<l]
2 2 2 2

X [P:'1+ik(COS6) Q:'l+ik(cos~» - Q:'1+ik(cos6) P:'l+ik(COSC)], (B4b)
2 2 2 2

guarantees that Eq. (B4a) has the form of Eq. (3), is continuous at ~ = e, and satisfies
the boundary conditions of Eqs. (B2).
The coefficients Akm in Eq. (4b) are determined by the integration of Eq. (B1) in the

following way. The expansions of Eqs. (B3) and (B4a) are substituted in Eq. (El), and
use is made of the linear independence of both Fourier bases as well as the R-separability
of the Laplace equation to obtain

[
Id. d m2

] , 4" ,
-;----¡ d' SIl1~ d' - ~ gkm(~,~) = --o -, ó(~ - () .
SIn"" "" \, SIIl "" a SIn...,

The integration around the source point ~ = e is immediate and shows the disconti-
nuity in the derivative,

(B6)
(l

4"
sin~ dd,gkm(~, ni - sin~ 'dd,gkm(~, ni, ~=~+ ' ~=~~

when the explicit form of Eq. (B4b) is used in Eq. (eB6) the needed coefficients are found
to be

Akm = 4~ [Q:'1+'k(COS6) P:'1+'k(cos6) _ P'!.'l+'k(cos~¡) Q:'1+'k(coS6)]-[a SIIl e 2 t 2 1 2 1 2 1

[
m' dQ:'~+ik(cosn , dP'!.'l+ik(cose)]-1

X P_~+ik(cos~) d(cose) Q:"~+ik(cos~) d(cose) . (B7)
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The quantity inside the last pair of brackets is recognized as the Wronskian of the Leg-
endre functions, which is proportional to csc2e [7].

The construction of the electrostatic potcntial function in Eq. (4) requires the deriva-
tive of the Green function at thc electro de ~ = ~1:

aGD I (coSh'7-COS01/2 .:(!-1°O dk k( ,)cm ( ')
-- = L..J -cos '7-'1 -cosm <p-<p
h{,a~' {'={ he m=O -00 2rr 2rr

x Akm [P:'l+;k(cos6) Q:\+;k(cOSO - Q:\+;k(cos6) P:'l+;k(COSO]
2 2 2 2

X {(COSh'7'- cose)1/2 [Q:'~+;k(COS~¡) d~,p~n~+;k(Cosel

-P:'~+;k(cOS 6) d~' Q:'~+ik(cOS e)]

+~(cosh '7' - cos el -1/2 sin e [Q:' ~+;k(cos ~¡) p~n~+ik(COSe)

-P:'1+ik(cos6) Q:'l+ik(cosel]} I
2 2 f={l

4rr (cosh '7 - COS~)1/2(cosh '7' - cos 6) 1/2
ah{l sm~1

.:(!-1°O dk ( ') Cm ( ')
X L..J -cosk '7-'7 -cosm <p-<p

m=O -00 2rr 2rr

P:'1+;k(cos6) Q:'l+;k(cosO - Q:'1+;k(cos6) P:'l+;k(cosO
x 2 2 2 2 (B8)
Q:'1+;k(cos6) P:'1+;k(cos6) - P:'l+;k(cos~¡) Q:'1+;k(cos6)'

2 2 2 '1

where use has been made of Eq. (B7) to obtain the final formo
The integral over '7' appcaring in the electrostatic potential function, Eq. (4b), is the

Fourier integral transform of the invcrse of the square root of the binomial

100 d'7' e-;k~' 00 ( 1/2)v'2K ' 1/2 - C(k,cos6) =L - t (-I)'(cos~¡)'S,(k),
-00 2rr(cosh'l - cos~¡) '=0

(B9a)

(89b)

where

S,(k) = 100 d'7' e;k~'(sech ')t+, = .:(!- (-1- t) 2~+' 1+ 2t + 4r
-00 v'2K '7 :So r v'2K (1+ t + 2r)2 + k2

is the Fourier integral transform of the corresponding powcr of thc hyperbolic sccant.
In tum, the invcrse of the square root of thc binomial can be writtcn in terms of its

Fourier integral transform

1 -100 ,17, ;k~C(k" )-------- --e ,cos6.
(cosh'7 - cos ~¡) 1/2 -00 v'2K (BID)
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