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ABSTRACT. The toroidal capacitors studied in this paper consist of electrodes with meridian cross
sections that are circular arcs meeting at the axis, and separated from each other by two small
insulating spheres at their meeting points. The description and analysis of such capacitors is
carried out by using bispherical coordinates. The R-separability of the Laplace equation in these
coordinates requires the use of the Green function technique, just like in the related problems of
toroidal, spherical-cap-electrode, ‘and bispherical capacitors [1-3]. An overall comparison of the
solutions of the four problems is specially instructive.

RESUMEN. Los condensadores toroidales estudiados en este trabajo estan formados por electrodos
con secciones meridianas que son arcos de circulos que convergen en el eje, y separados entre si
por dos pequeifias esferas aislantes en los puntos de convergencia. La descripcién y el andlisis
de tales condensadores se lleva a cabo usando coordenadas biesféricas. La R-separabilidad de la
ecuacién de Laplace en estas coordenadas requiere el uso de la técnica de la funcién de Green,
como en los problemas afines de condensadores toroidales, con electrodos en forma de casquetes
esféricos y biesféricos [1-3]. Una comparacién global de las soluciones de los cuatro problemas es
especialmente instructiva.

PACS: 41.10.Dq

1. INTRODUCTION

The writing of this paper and of its complementary companion [3] was done as a conse-
quence of the Canadian-American-Mexican Physics Meeting in Cancin, 1994, in which
we presented a teaching poster contribution on spherical-cap-electrode capacitors [2]. The
figures in the poster attracted the attention of several colleagues. In particular, Dr. Luz
J. Martinez-Miranda of Kent State University remarked “Those are like the electric fields
that we observe in the liquid crystal samples in our laboratory”; the ensuing discussion
allowed us to learn that her samples are actually based on circular-arc-cylinder electrodes,
for which later on we were able to fax her the analytical description based on bipolar
cylindrical coordinates. On the other hand, Dr. Jorge José of Northeastern University,
who works on chaos in mesoscopic systems, asked us “Can you do the two-dimensional
Pac-Man?”, and also “Can you solve the case of two spheres?” For the latter we could
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say yes and constructed the solution based on bispherical coordinates [3]; for the former
we have not found an answer and we are aware of its difficulties. Nevertheless, we can
point out that the helmet-like capacitors of our poster are a good approximation to the
three-dimensional Pac-Man, and that the cylindrical capacitors with a Pac-Man cross sec-
tion can be approximated within the same description in bipolar cylindrical coordinates
mentioned above. This introductory paragraph is intended to illustrate three points:

1. The current interest in different fields of physics in the electrical fields and/or
capacitances of unorthodox electrode shapes.

2. The misinterpretation of a figure according to our preconceived notions or particular
interests; of course, we have to be careful and find out, for example, if the figure is
flat or if it is a transverse or a meridian cross section, and for the latter which is
the axis of rotation.

3. The importance of distinguishing the dimensionalities of electrodes and fields. For
instance, a flat 2-dimensional Pac-Man has an associated 3-dimensional field, while
an infinite cylindrical capacitor with a Pac-Man cross section is 3-dimensional and
its associated field is 2-dimensional.

In a wider didactic context, readers of Revista Mezicana de Fisica may be aware
of our series of papers on electrostatics and magnetostatics in recent years, in which
the common theme is the identification of harmonic components of sources and fields
associated with specific geometries. The average physicist is familiar with the spherical
harmonics, but without too much additional effort and using familiar methods of analysis
he or she can become familiar with other ten types of harmonics in different geometries.
There is no reason for teachers of physics to restrain themselves and their students to the
solutions of Laplace’s equation in cartesian, cylindrical and spherical coordinates only.
Our aim in writing these papers is to help the interested teachers and students to learn
about the diversity of harmonic functions, and also about the unity and systematics
behind them, illustrating at the same time the current interest and need of them in the
study of different physical phenomena.

This paper completes the sequel in the study of four types of capacitors having com-
mon geometrical roots, namely, toroidal [1], spherical-cap electrode [2], bispherical [3]
and toroidal with a moon-shaped meridian cross-section capacitors. The common roots
are the two-dimensional bipolar coordinates [4], formed by two sets of mutually orthogo-
nal circles, with the circular arcs of one set meeting at two points (“the poles”) and the
circles in the other set nested around the poles. The toroidal coordinates [4] are gener-
ated by the rotation of the plane of bipolar coordinates around the straight line in the
plane with points equidistant from the poles; thus the nested circles generate toroids [1],
and the circular arcs meeting at the poles generate spherical caps [2]. The bispherical
coordinates [4] are generated by the rotation of the plane of bipolar coordinates around
the axis joining the poles; in this case, the nested circles generate nested spheres [3],
and the circular arcs meeting at the poles generate toroids. Any pair of electrodes with
the shape of such toroids and separated by small insulating spheres at the poles form a
capacitor with a moon-shape meridian cross-section. Figure 1 illustrates some of these
capacitors.
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(b) (c)

FIGURE 1. Toroidal capacitors with moon shape meridian cross sections: a) partially eclipsed
moon 0 < & < /2, & < &, b) half moon & = 7, §&» = 7, ¢) American football m/2 < §; < & <
.

The common geometrical roots translate into the R-separability [5] of the Laplace
equation in both toroidal and bispherical coordinates, which makes the description of
the electrostatic field of the four types of capacitors a nontrivial matter [1-3]. Section 2
contains the explicit construction of the electrostatic potential function for the moon-
shape toroidal capacitors using the Green function technique [6], and the subsequent
evaluation of the electric intensity field, the charge distributions and total charges on the
electrodes, and the capacitance. Section 3 contains a discussion of the similarities and
differences of the results of this study and those of Refs. 1-3. Appendix A introduces
the bispherical coordinates, and Appendix B presents the construction of the Dirichlet
Green function and some relevant integrals.

2. ELECTROSTATIC FIELD, CHARGES AND CAPACITANCE

In the notation of Appendix A for the bispherical coordinates (0 < & < 7, —o0 < 1 < 00,
0 < ¢ < 2m), the electrostatic potential for the moon-shape toroidal capacitor is to be
determined as a solution of the Laplace equation
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satisfying the boundary conditions at the respective electrodes

Qb(f == fh”?:‘ﬁ) = Vh (23.)
(€ =&, p) =Va=0. (2b)

The Laplace equation has R-separable solutions [5] of the general form

$6m9) = (coin = 052 S [k [Py (con ) + BnQT (cos)]

m=0

x [Ck sinkn + Dy cos kn] [Ey, sinme + Dy cosmep],  (3)

where the Legendre functions having a complex-number order are of the conical type [7].
The presence of the square root of the binomial factor, reflecting the R-separability,
makes the fulfillment of the boundary condition of Eq. (2a) a complicated problem. The
solution is obtained via the Green function technique [6]:

87) =~ § o'y 292D

&= (4a)
where n' is the displacement perpendicular to the boundary S and the Dirichlet-Green
function is constructed in the Appendix B.

By using Eq. (B8) for the normal derivative of the Green function at the electrode
&1 and the explicit forms of the scale factors, the harmonic expansion for the potential
function is obtained:

Vi [o [T 8Gp(7,7")
e hy hyr dn' dp' ————
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The integration over the azimuthal angle ¢’ eliminates all the terms with m # 0 from
the summation, reflecting the invariance under rotation around the axis of the toroidal
capacitor. The integral over 7' is represented by C(k,cos¢;), Eq. (B9), and is identified as
the Fourier integral transform of the inverse of the square root of the binomial appearing
in the integral. The form of the potential in Eq. (4b) satisfies the boundary condition
at the electrode £ = &, Eq. (2b), in an obvious manner. The boundary condition at
the electrode ¢ = &, Eq. (2a), is also satisfied as shown next: the fraction involving
the Legendre functions becomes one, the integral over k is the inverse Fourier transform
of C(k,cos&;), Eq. (B10), which is the inverse of the square root of the binomial, and
therefore the potential is V.

The electric intensity field is evaluated as the negative gradient of the potential func-
tion, [Eq. (4b)],

5 __|£9 20 &9
E(¢,n,p) = [e e ty a(p]¢(£,n,<p)
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o J_oo V2 [Q_%Hk(cos fl)P_%Hk(cos{g) - P_%_i_ik(COSél)Q_%.Hk(COS§2)]

5 d d
X {§ |:P__12_+1-k((308€2)a—E-Q_%Jrik(COS5) — Q_%H—k(cos fg)d—gP_%Hk(cos&)]

2 sin& N sinhn
+ [52(coshn —cosé) 1 (zk * 2(coshn — cosf))]
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The electric field lines at the electrodes & = &; are obviously in the direction € perpen-
dicular to the toroidal surface, since the second term inside the curly brackets of Eq. (5)
vanishes. The electric lines at the electrode ¢ = £; are also in the E direction perpen-
dicular to the corresponding toroidal surface; in fact, the integrals in the 7 direction in
Eq. (5) when evaluated using Eq. (B10)
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are seen to cancel each other.
The charge distributions on the electrodes follow from Gauss’ law:

o(E = o m ) = -2 200 L_{ e
5 & Ok, 08 1) cosh — cos )"
" 4rma
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where the explicit form of the Wronskian of the Legendre functions has been used.
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The total charges on the electrodes are evaluated by integrating Eqgs. (6) over the respec-
tive surfaces:
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where the integral over 7 is again Eq. (B9a) with &; replacing &;.
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The integrals over 7 in the respective terms inside the curly brackets according to
Eq. (B9a) are respectively, C(k,cos &) and —dC (k, cos £1)/dé;. Furthermore, the expres-
sion inside the curly brackets can be reduced to C(k, cos {2), showing that the charges in
both electrodes have the same magnitude.

The capacitance is then obtained from either Eq. (7):

a2 / * dk C(k, cos &1)C (k, cos &)
V 2)w Q'%“k(ms §1)P_1 i (cos £o) = P_%Hk(cos fl)Q_%Hk(COS &)

TR

(8)

3. DISCUSSION

The analysis of moon-shape toroidal capacitors has been carried out in bispherical coordi-
nates obtaining the harmonic expansions for the electrostatic potential function, Eq. (4b),
the electric intensity field, Eq. (5), the charge distributions on the electrodes, Egs. (6),
the total charges, Eq. (7), and the capacitance Eq. (8).

Since this article completes the sequel of the study of toroidal, spherical-cap-electrode,
bispherical and moon-shape toroidal capacitors, the remaining discussion focuses on the
relationships among them and peculiarities of each one. The capacitors studied in this
paper and those of Ref. 1 share the toroidal shape, differing in their partial moon and full
moon meridian cross sections associated with converging circular arcs versus nested cir-
cles, respectively; such a difference is reflected in the corresponding harmonic expansions
involving Fourier integral transforms versus Fourier series. The comparison of the moon
shape toroidal and spherical cap capacitors shows the need of the insulating elements
to separate their converging electrodes; the result is that the electric properties of both
types of capacitors are described by integral transforms, of the Fourier type and conical
Legendre type, respectively. The moon shape toroidal and bispherical capacitors are
complementary to each other, just like the ones of Refs. 1 and 2, being described by the
same coordinates; the corresponding harmonic expansions as Fourier integral transforms
and series in Legendre polynomials reflect that complementarity. Our closing remark
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is that the study of these capacitors revolves around four different representations of
the inverse of the square-root of the binomial, of which the one of Ref. 1 is available in
mathematical tables and the other three were explicitly constructed in Refs. 2, 3 and this

paper.

4. APPENDIX A. BISPHERICAL COORDINATES

In the notation of Ref. 3 the equations connecting the cartesian and bispherical coordi-
nates are

asiné cos @ asinésinp asinhn

- = = — Al
coshn — cos& coshn — cos & coshn —cosé 1)

Fixed values of £ in the interval (0, 7) define toroidal surfaces with meridian cross-sections
that are circular arcs meeting at the poles located at (z = 0,y = 0,z = +a); the value
£ = 0 corresponds the external part of the z-axis (z = 0,y = 0,|z| > a) and the value
¢ = 7 corresponds to the central part of the z-axis (z = 0,y = 0, |z| < a). Fixed values
of 1 in the intervals (—o0, 0) and 0, co) define spheres nested around the south (n = —o0)
and north (n = oo) poles respectively, with 7 = 0 corresponding to the equatorial plame.
Fixed values of ¢ in the interval (0,27) define the familiar meridian half-planes meeting
at the z-axis.

The expressions for the scale factors and unit vectors follow directly from Eqgs. (Al):

d7 = idz + jdy + kdz = Ehg dE + by dn + Phy, dp, (A2)
a asiné
— = - h o S . S—
g =t coshn — cos¢ ’ ¥ coshn — cosé s

(coshncos € — 1)(icos @ + jsin @) — ksinhnsiné
coshn — cos & ’

3

— sinh7n sin&(icos ¢ + jsing) — k(coshncos € — 1)
coshn — cosé

; (Ad)

-13)
Il

@ = —fisen + jcos .

5. ApPPENDIX B. CONSTRUCTION OF THE GREEN FUNCTION

The Dirichlet-Green function is to be constructed as a solution of Poisson’s equation with
a unit point source,

V2Gp(F,7') = —4né(F — 7') (B1)
and satisfying the boundary conditions

GpilE = B nymban' s =0, Byl =Bty wi=1l (B2)
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The Dirac-delta function is expressed as

§(F — ,FI) - 6(€ — 5')552}1— Z!)a(go - (p’)
o(g—¢€')

- etk(n=n') 3 Em —.
= Thehnh, /_ o mzzu27r e =g (Bd)

using the Fourier-integral and Fourier-series representations of the respective factors in
the 1 and ¢ coordinates [4]. This suggests the corresponding harmonic expansion for the
Green function,

Gp(&n,¢; €0 ¢') = (coshn - cos €)'/2(coshn’ — cos¢’)/?
<3 [ ol N coumi ), ()

where the symmetry under the exchange of the field and source points has been taken
into account, and

gkm(€1 6') = Akm [QT%+,‘]C(COS 61) PT%_H';C (COS £<) - PT%_’.ik (COS 51) QT%+H€ (COS 6()]

x [Py (005 €2) QM (cos &) = QT (cos €2) Py (cos€)|, (Bab)

guarantees that Eq. (B4a) has the form of Eq. (3), is continuous at £ = &', and satisfies
the boundary conditions of Eqs. (B2).

The coefficients Ak, in Eq. (4b) are determined by the integration of Eq. (B1) in the
following way. The expansions of Egs. (B3) and (B4a) are substituted in Eq. (B1), and
use is made of the linear independence of both Fourier bases as well as the R-separability
of the Laplace equation to obtain

- i siné i - _m2
sin& d§ d¢ sin%¢ a sin f

The integration around the source point £ = £’ is immediate and shows the disconti-
nuity in the derivative,

} GimlEd) = — e, (B5)

d 4
—sing o (6,8)| =- (B6)

s S un(6, ) L

dg £=¢,

when the explicit form of Eq. (B4b) is used in Eq. (eB6) the needed coefficients are found
to be

4 =1
km = si:; g [QT%H‘“(COS &1) Pi"%ﬂ.k(cos &2) — PT%Mk(COSgl) QT%H.&(COS 52)]
m 7 dQT%-Hk(COS 5’) - i dpin%+ik((‘,os gl)
P_%+ik(COS£ ) d(COS f’) - Q_%_Hk(COSé ) d(COS (;-.r) 2 (B7)
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The quantity inside the last pair of brackets is recognized as the Wronskian of the Leg-
endre functions, which is proportional to csc?¢’ [7].

The construction of the electrostatic potential function in Eq. (4) requires the deriva-
tive of the Green function at the electrode & = £;:

8Gp
heiOE'

_ (coshn —cosé)/? & /"0 dk nEm ,
= T Z 5 cos k(n —n)é—% cosm(p — @)

€=t g

=

X A [P (00862 Qs (c08€) = Q1 (cos 2) Py (cos )]

I d T !
X {(cosh'r] —cos¢N/? I:QT%+1'R:(COS€1) d_frpi§+ik(ms£)

.3

_“Pin%+ik(cos 1) 3@

Qy leos)|
1 .
+§(C05h n' —cos¢&) V% sin¢’ [QT_’L%+ik(cos &) PT%+ik(cos ¢

—PT%+ik(COS &1) QT%-}-ik (cos 6')] } }

- _E?:in—ﬁl(coshn — Cos 5)1/2(‘30511 n' — cos fl)l/f2

£=&

= [ dk .
X Z /_00 gcosk(n - n’)ﬁ cosm(yp — ¢')
m=0
PT%+ik(COS £2) QT%+ik(cos £) — QT%Hk(cos &) Pf’%ﬁk(cos £)

x bl
QT%“’C(COS &) Pi"%ﬁk(cos Lyl = PT%HJC(COS £1) QT%Hk(Cos £2)

(B8)

where use has been made of Eq. (B7) to obtain the final form.
The integral over 1’ appearing in the electrostatic potential function, Eq. (4b), is the
Fourier integral transform of the inverse of the square root of the binomial

o0 ! —ikn' 00 _
f fye 1/2:C(k,00551)32( 1/2) (~1)4(cos &1)!Si(k), (B9a)

—oo V2m(cosh? — cos&;)

t=0
where
© dy 1 X L4\ 23t 14 2t+4r
Si(k =f —— &7 (gechn’)2 Tt = ( 2 ) B9b
)= | e e =2 () g e P

is the Fourier integral transform of the corresponding power of the hyperbolic secant.
In turn, the inverse of the square root of the binomial can be written in terms of its
Fourier integral transform

1 © dy
= _’1 Ck K L BIO
ety = |, g O ko) (B10)
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