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RESUMEN. Modern, large telescopes incorporate segmented primary mirrors, with off-axis sphe-
roidal shapes. Fach off-axis mirror and the secondary mirror represent an off-axis optical system
without an axis of symmetry and for which the paraxial optics does not apply. Simple, recursive
ray-trace equations are presented that describe exactly a ray propagating through a series of cou-
pled, confocal, prolate spheroids. Vector formulation using the ray direction cosines is employed
for characterizing the ray propagation in different planes through the spheroid axis of symmetry.

ABSTRACT. Los grandes telescopios modernos incorporan espejos primarios segmentados de for-
mas esferoides fuera de eje. Cada segmento y el espejo secundario representan un sistema optico
fuera de eje sin simetria rotacional para los cuales la Gptica paraxial no se aplica. Se presentan
ecuaciones recursivas sencillas que describen exactamente un rayo propagéndose a través de una
serie de esferoides prolatos de focos coincidentes. Debido a la presencia de varios segmentos en
diferentes planos, para caracterizar la propagacién del rayo se emplea una formulacién vectorial
haciendo uso de los cosenos directores.

PACS: 42.15.Dp; 42.15.Gs

1. INTRODUCTION

The benefits of incorporating the prolate spheroids have been realized in the operational
optical systems that were designed to meet high performance requirements. The seg-
mented and the dilute aperture telescopes are probably the most notable example of the
trend to design optical systems with coupled, confocal prolate spheroids. (1,2]

We present ray-trace equations for a ray propagating through two coupled, reflective
confocal spheroids in three-dimensions. The angles of reflection from the second surface
are related to the angles of incidence on the first surface using the direction cosines and
the optical path distance along the ray. [3] Both of these formulations are required for
the development of a wavefront aberration function for an optical system without an axis
of symmetry. [4] A dilute aperture array is one example of an optical system which does
not possess an axis of symmetry.

Due to its potential of increasing the effective aperture size using small aperture
optical sub-systems [5, 6] it remains of great current interest. Its performance cannot be
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described adequately with the currently-available theories. [7, 8] The inherent limitations
of the multiple aperture phased arrays may be better understood once their theoretical
performance has been predicted and the engineering control issues have been decoupled
from the optical system design and optimization. Each of the individual apertures may
be coupled with the beam-combining mirror using one pseudo axis. [9] However, the
complete optical system does not posses an axis of symmetry. The results presented here
are an extension to three-dimensions of the theoretical development for a ray propagating
in a single plane of symmetry through reflective confocal prolate spheroids. [10]

In the following Section we define the coordinate systems and summarize the cha-
racteristics of the confocal spheroids. In Sect. 3, the ray reflection from the point on
the spheroid is presented in terms of the ray direction cosines. The direction cosines are
evaluated using the optical path difference along the ray propagating between two sphe-
roid foci. In Sect. 4, the direction cosines of the ray reflected from the second spheroid
are related to the direction cosines of the ray incident on the first spheroid, in terms of
eccentricities only.

2. GEOMETRICAL DESCRIPTION OF A PROLATE SPHEROID

A prolate spheroid is a three-dimensional, geometrical surface, generated when a circle,
ellipse, parabola, or a hyperbola is rotated about its geometrical axis of symmetry, re-
sulting in a sphere, an ellipsoid, a paraboloid, or a hyperboloid, all of revolution. [11]
The same mathematical representation may be used for all these geometrical surfaces,
with different eccentricity value, . The value of ¢ = 0 results in a sphere; the value of
€ between 0 and 1 results in an ellipsoid; the choice of ¢ = +1 gives a paraboloid (+1
paraboloid opens to the right); and any value of € greater than 1, and smaller than —1
generates a hyperboloid.

2.1. COORDINATE SYSTEMS

We use an ellipsoid to illustrate the representative surface for the purpose of this dis-
cussion. We adopt a modified spherical coordinate system, shown in Fig. 1. The z-, Y-,
z-Cartesian coordinate system has the origin at O, with the positive z-axis along the axis
of symmetry of the geometrical object. (Suitably-chosen) center of the off-axis segment
has coordinates (z.,0,z.), i.e., it defines the direction of the z-axis. The ellipsoid is
drawn so that its proximal focus coincides with the coordinate origin at O. The R-axis
is defined so that a point P(z,y,z), on the off-axis spheroid segment, lie s in the R-z
plane. The z- and y-axes are normal to each other. The R-axis makes an angle Phi with
the z-axis. The projection of the ellipsoid on the R-z plane is an ellipse. The projection
of the ellipsoid on the z-y plane is a circle.

The azimuthal angle # is measured from the positive z-axis. Usually, its value is
restricted to the range between 0 and 7. In the modified spherical coordinate system
that we are using here, its range of values is extended to include values from 0 to 2.
This is done so that the results evaluated in the polar R-# coordinate system may be used
for comparison with previous work. Earlier results were presented in two dimensions, on
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P (xy2) / *

FIGURA 1. An ellipsoid with 2 axis along the axis of symmetry, in a polar and a cartesian
coordinate system.

the basis of symmetry considerations. The angle ®, measured in z, y plane is the second
coordinate, and the radius-vector r is the third coordinate. The coordinates of a general
point P(z,y,z) in this coordinate system are given by

z =rsinfcos @, (1)
y = rsinfsin®, (2)
z =rcosf. (3)
We also note that
R = rsiné. (4)
Then we get
z=Rcos®, (5)
y = Rsin®. (6)

When the point R in Egs. (4)-(6) is on the spheroid, R becomes p.

2.2. SPHEROID REPRESENTATION

The description of an ellipsoid is very simple in the modified spherical coordinate system.
Figure 2 shows the spheroid parameters, in any R-z plane, due to the ellipsoid cylindrical
symmetry. The radius-vector r, the distance of an arbitrary point P(z,y,z) from the
proximal focus may be given in terms of only one angle:

- P
"= l —ecos@’ (7)

Here, p denotes the semilatus rectum or the vertex radius of curvature and e is the
eccentricity. If the origin of the modified spherical coordinate system were chosen at the
second, the distal, focus, the negative sign in the denominator of Eq. (7) would change
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Ficura 2. Ellipsoid parameters.

and become positive. (This change may be accomplished formally by replacing # by
@ + 7). Same range of r-values is traced by the radius-vector. This radius-vector is also
the distance of an arbitrary point P(z,y, 2) from the distal focus:

P
= . 8
" 1+ &6 (8)

Considering the formal nature of the change of coordinates, it is clear that # is measured
counterclockwise from the positive z-axis.

We wish to develop recursive relationships for tracing a ray through two confocal
prolate spheroids. Next, we consider the ray propagation within a single ¢-th spheroid.

3. RAY REFLECTION AT AN OFF-AXIS POINT OF THE :-TH PROLATE SPHEROID

Here we present the ray reflection both in terms of the radius-vector and in terms of the
ray direction cosines. The direction cosines are evaluated upon the consideration of the
total optical path length for a ray propagating between two foci.

3.1. RAY REFLECTION IN TERMS OF THE RADIUS-VECTORS

A ray segment is represented as a distance along the radius-vector. The optical path
distance may therefore be obtained by adding two appropriate radius-vectors. Now we
express the radius-vector of the reflected ray in terms of the angles of incidence ®; and
#;, and the spheroid parameters p; and ¢;. With the interpretations presented in the
previous section, we may use a single equation, Eq. (7), to describe a point on a prolate
spheroid, or a ray segment from the proximal focus to the point P(x;,1;, z;) on a prolate
spheroid. As illustrates in Fig. 3, a general ray is assumed incident through a near focus
in the direction specified by angles 6; and ®;. (The subscript i and the spheroid itself
have been omitted in Fig. 3 for clarity)
Pi

L Rt g;cos 6’ (7a)
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FiGura 3. The (ray) optical path distance between two foci is equal to the addition of two
radii-vectors, each originating at a focus and both pointing to the same point.

The cartesian coordinates of a point P(z;,y;, z;) on the surface of the prolate spheroid,
z;, Yi, and z; may be given in the spherical coordinate system of r;, ®;, and 6,

r; sinf; cos @,

= 1—¢;cos8; ’ @
risinf; sin ®;
p etk 1
W 1-— £; COS 91' ( 0)
r; cos f;
TR R . 11
“ 1 —¢;cosb; (4

The ray is reflected from the point P(z;,v;,2;) on the spheroid in such a way that
it passes through the distal focus, by the descriptive, functional, operational definition
of the ellipsoid. The distance between the distal focus and the point P(z;,y;, z;), 7}, is
denoted by r’ in Fig. 3.

By replacing ; with 7 — 6} in Eq. (8) and denoting the resulting distance with r/, the
following relationship is obtained:

/ T

r=— (12)

= gzl
1 —¢€;cos8;

We note that p; and ¢; are the same as in Eq. (7a), since we are describing the same
ellipsoid. However, the angle # is measured from the negative z-axis in the clockwise
direction.

The cartesian coordinates of a point P(z;, yi, z;) on the surface of the prolate spheroid,
xi, ¥i, and z; may also be expressed in the primned coordinate system. This coordinate
system, also illustrated in Fig. 3, is defined as follows:

' =z, (13)
g =D —g (14)

y =y (15)
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The coordinates of the point P(z;,yi, z;) are given in the primed spherical coordinate
system, 7, @}, and 6;, as follows:

r! sin 6 cos ¥}

o e Lt 16
i 1 — g;cos {16}
] e il =2 I
r; sin #; sin @;
;e S it 17
¥ 1 —g;cos6. ’ {L7)
r!cos 0
e D et 18
. ' 1-—¢;cos6! s)

Two sets of equations, Eqs. (9)-(11) and Eqgs. (16)-(18) describe the same point on
the spheroid. Upon setting the corresponding coordinates equal, we get the following
equalities:

risin@; cos®;  risin®.cos ®;

i = = : 19
= 1 —¢;cosb; ]—E,‘COSH; : ( )
; sin ; sin ®; "sin @ sin @' .
v = risinb;sin®; 7 i sin 3 (20)
1—¢;co88; 1—¢g;cosf;
r; cosf; ricos 6,
IS, oSt B W [oinciics, R 21
“ = 1 e cos b; ' 1—¢;cosb (21)

Next we evaluate the coordinates z; and y; and Egs. (5) and (6) for the points on the
spheroid. We obtain the following relationship from Eq. (19) or (20):

r; sinf; 7;sin g,

(22)

A £; cos 0 T 1- £ €08 0]
We denote the quantities in Eq. (5) with a subscript <. We divide the left and right

side of Eq. (22) with the corresponding sides of Eq. (21). Then we obtain a relationship

between the angle of reflection 0, and the angle of incidence 8; and eccentricity &;:

(1 —€?)sinb;

tanf; = - .
"2 — (14 &%) cos;

(23)

The expressions for sin, and cos @, are derived by a applying the trigonometric
relationships defined in a right triangle:
. (1 —€?)sinb;
sinfl, = —————
gi — (L +€?)cos6;
K; '

cos =2
Here. K; denotes the common denominator:

K;,=(+ €,2J — 2g; cos B; (26)
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F1GURA 4. Two rays with different direction cosines and the same azimuthal angle 6.

The second part of the angle of incidence, ®;, may also be evaluated from Egs. (19)
and (20). Dividing the corresponding sides of these equations, we get

tan @, = tan ®,. (27)

This (predictable) result says that the reflected ray and the incident ray lie in the
same plane, defined as the R-z plane in Fig. 1. Thus we obtain from Eq. (27) that the
angles are also equal:

P! = @, (28)

While an individual ray indeed remains in one plane, there will be rays in infinitely
many different planes. In particular, for the case of the multiple-apertura primary in a
multiple mirror telescope, the center of each aperture and the secondary mirror lie on a
separate line.

We are interested in understanding the image-forming properties of a system consis-
ting of a series of confocal prolate spheroids. An off-axis spheroid segment is expected
to display different amounts of aberration in the z-y plane and z-z plane. In order to
obtain a ray trajectory in three-dimensions, we develop next a direction of a reflected ray
in terms of its direction cosines.

3.2. REFLECTION IN TERMS OF RAY DIRECTION COSINES

The rays incident on the spheroid will be in different R-z planes as illustrated in Fig. 4.
Two rays A and B, incident from the proximal focus, subtend the same angle 6 and
both satisfy Eq. (7). However, they are incident with a different angle ®. To uniquely
characterize rays in a non-rotationally symmetric system, I am additionally interested in
expressing the direction of propagating ray in terms of its direction cosines. The direction
cosines of the incident ray are denoted by [;, m;, n;:

li = Sill(}i COS (I)i, (29)
sin @; sin @;, (30)

my

n; = cos ;. (31)
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The direction cosines of the reflected ray I}, m}, n} are parallel to r}, but are directed

in the opposite direction to the direction of the radius-vector r.

l; = sin(—6.) cos(—®%), (32)
m; = sin(—0.) sin(—®}), (33)
n; = cos(—6:). (34)
With the trigonometric relationships for negative angles, we get
I = —sin#. cos ®!, (35)
m; = sin @, sin @, (36)
n; = cos . (37)

Using equations developed in the previous section for the azimuthal angle of the
reflected ray, Eqs. (24)-(26) and (28), we can evaluate the direction cosines of the
reflected ray:

(1 — €?) cos ®; sinb;
I =— 3 . 38
(1 —€?)sin @, sin6;
m} = K, : L (39)
o 2¢; — (14 €2) cos 91-‘ (40)
K;

Here the common denominator depends on the angle of incidence and the eccentricity:
K; = (14 €?) — 2¢; cos b;. (41)

The direction cosines of the ray reflected of the point on the spheroid depend on both
angles of incidence ®; and 6; of the incident ray.

The expressions developed in this section for the geometrical relationships between
the radius-vectors connecting foci and the points on the prolate spheroids may be used
to derive ray transfer equations within a single prolate spheroid characterized by only
three parameters, 6;, p;, and &;.

Next, we apply the ray transfer relationships among the spheroid quantities developed
here for a single spheroid to two consecutive spheroids. The two consecutive spheroids
are related in that the ray that leaves the first spheroid is the very same ray as the ray
that is incident on the second spheroid.

4. EXACT RECURSIVE RAY TRACE EQUATIONS FOR TWO (OFF-AXIS) CONFOCAL
PROLATE SPHEROIDS

we wish to evaluate the direction of propagation of the ray reflected from the second
spheroid in terms of the direction cosines. We first evaluate the ray transfer equations
for the ray in an arbitrary plane R 2.
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4.1. RAY TRANSFER IN TERMS OF RADIUS-VECTOR

A general ray is incident in any azimuthal plane, characterized by any angle 6; ;. This
ray reflects according to the laws of reflection developed earlier. Equations (23)-(26) are
evaluated for (i 4+ 1)-st prolate spheroid, characterized by £;+1 and p;41:

(1—¢?,)sinbp

tan@l_ , = " 42
L 2ei41 — (L + 53T2+1) cos 61 (42)

1 —€?,,)siné;

Kip
3eir1 — (1 +€2.,)cosé;

cosbi,, = it — (14 i) i (44)

Kin

Here, K;,; denotes the common denominator

Kiqn=01+ 5?_,_1) — 2€i4+1€080;41. (45)

®;,, is the angle of incidence for the ray incident on the (i + 1)-st spheroid. Also, from
Eq. (27), we know that

tan (I):'+1 =tan ®;4,. (46)

The radius-vector of the ray leaving the i-th spheroid is collinear with the radius-vector
of the ray incident on the (i + 1)-st spheroid. Thus, we note the following relationships
from Fig. 3:

0i+1 = 9:1 (47)
Using Eq. (35), we get

Using Eq. (47), we may eliminate 6,41 from Eq. (23) (with the subscript ¢ replaced by
i+ 1)

(1- €$+1) siné!

= . 50
2ei41(1 + €7, ;) cos b, ()

tan 8;+1 =
After the substitution of Eqs. (24) and (25) for sin#; and cos 8], respectively, we get
an expression for the angle 6;;:

(1 —€2.1)(1 =€) sinb;
2ei41[(1 + €2) — 265 cos 6] — (1 + €2, ,)[2e; — (1 + €7) cos 6;]

tanf;,; =
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We regroup to show explicit dependence on sinf; and cos#; terms. Also, we introduce
constants A; 1, Bis+1, and Cj;1, that depend only on eccentricities:

Ajqsinf)
t 9{ _ 1+1 1 . 59
- Bit1 + Cit1 cosb; o
The constants associated with each spheroid are defined as follows:
Aipn=(1- E?ﬂ)(l - 5;‘2): (53)
Bit1 =2(gi41 — &)(1 — i1 &), (54)
Cit1 = (1 — €41 &) + (8141 — €)% (55)

In Eqgs. (52) through (55), the angle of reflection from the second spheroid has been
obtained in terms of the angle of incidence on the first ellipsoid, and the spheroid eccen-
tricities. Due to the repeated application of the law of reflection, a ray remains in a single
plane of incidence after multiple reflections. However, when considering rays in different
planes of incidence, the direction cosines of the reflected ray needs to be evaluated in
terms of the spheroid parameters and in terms of the angles of incidence.

4.2. DIRECTION COSINES

The direction cosines of rays incident on the (i + 1)-st spheroid are the same as the
direction cosines of the ray leaving the i-th spheroid:

fev = (56)
mi4+1 = m,:, (57)
T P (58)

!

The direction cosines of the ray leaving the i-th spheroid, I, m!, n!, are parallel to

r;, but directed in the opposite direction:
biv1 = -6, (59)
Diyy = —B;. (60)

The direction cosines of the ray leaving the (i + 1)-st spheroid are expressed in terms
of the quantities defined for the i-th spheroid, using Eqs. (38)-(39):

(1 — &%) cos @, sin b;

liyy = - 7 (61)
1
1 — £2)sin @, sin 6,
Miy1 = ( EI)S;: i | (62)
2¢; — (1 + £2) cos b,
= €; (l+£1)L059i_ (63)

K;
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Equations (24)-(26) give sin#;, cos 0, and K;. We also know that the direction cosines
of the reflected ray (Ij,,,m; ,,n;, ) are parallel to 7, ;, but directed in the opposite
direction.

If we replace ¢ with (¢ + 1) Eqgs. (38)—(39), we get the following relationships:

(1 —€2,,)cos ®p sinb; 4]

;-I-l == K + 1 ) (64)
(1 —¢2,,)sin®; 415064,

iy = B B (65)

2ei11 — (1 + €2 ,)cosb
n§+1 == : K. e S (66)

1+1

In Eqgs. (69)—-(71), the denominator K;;, is given as

Kppq =14 sfH) — 26,41 €086, 41. (67)

The angles have been found in the section dealing with the ray transfer in terms of
the radius-vector. From Eq. (48), we can eliminate ®,;:

b (1-— E?+1)COS P, sin ;4 (68)
HE— K ’
(1 — €2 ,)sin ®;sin;,
mig = - = o : (69)
i
26'+]_—(1+£2 )COSB,"I
”;+1 = — K;‘+11H . (70)

Upon replacing 1 with (:+ 1) Eqgs. (24), (25) and (59), we obtain the following identities:
(1 —e?)siné,
K;
2¢; — (1 + €2) cos 6;

K '

And, K; is given in Eq. (26). Upon the substitution of Egs. (71) and (72) into Egs. (68)-
(70), we get the direction cosines of the ray leaving the (¢ + 1)-st spheroid:

Sil’lgi_H = - y (71)

(72)

costy =

’ Ai+1 Cos ‘I),' sin 9!'

A . 73

"1™ Bit1 + Ciy1 cos; (73)

T Ajy18in @, sinf, (74)
1 Byt + Cigrcos ;]
B; ; s 0;

n;+] _ i+1 + C:+1 COs t7; (75)

Cit1+ Biyi1cosf;

The constants A; 1, B;;1, Ci41 that depend only on the spheroid eccentricities have been
defined in Eqgs. (53)-(55).
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5. SUMMARY

We developed ray trace equation for the light propagating in three dimensions, through
a series of confocal prolate spheroids. This development is different from the traditional
ray trace approach as no real ray is assumed to satisfy the conditions of paraxial optics.

We employed the optical path distance traditionally employed in the rotationally-
symmetric optical systems for the image assessment. Additionally, we found it necessary
to express the propagation of the ray in terms of the ray vector in a three-dimensional
space, because the image forming rays for the distinct off-axis segment are not restricted
to a single plane. The set of spheroid mirror segments does not constitute a system with
rotationall symmetry.

In the standard ray trace analysis, two equations are used to trace a ray through an
optical system: the refraction at the surface and the ray transfer between surfaces. Eq.
(35) gives the reflection at the spheroid mirror with an eccentricity £ in terms of the
angle measured from the geometrical axis of the parent. Ray transfer distance along the
geometrical axis of the parent spheroid is presented in Eq. (15). Ray transfer distance
along the ray itself is given in Eq. (30).

The ray transfer equations obtained for individual spheroids have been evaluated to
develop recursive relations for ray propagation through a two confocal prolate spheroids.
Due to the non-rotationally symmetric nature of this problem, a vector formulation is
used to describe the ray reflections. The optical path difference equations are used to
evaluate the angles.
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