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RESUMEN. Madcrn, large telescopes incorporate segmented primary mirrors, with off-axis sphe-
roidal shapes. Each off-axis mirror and the secondary mirror represent an off-axis aptical system
without an axis oC symmetry an~ fOI which the paraxial optics does 110t apply. Simple, recursive
ray-trace eqllations are pres€nted that describe exactly a ray propagating through a series of cou-
pico, confocal, prolate spheroids. Vector formulation using the ray direct¡an cosines is employed
fOI characterizing the ray propagation in different planes through the spheroid axis of syrnmetry.

A BSTRACT. Los grandes telescopios modernos incorporan espejos primarios segmentados de for-
mas esferoides fuera de eje. Cada segmento y el espejo secundario representan un sistema óptico
fuera de eje sin simetría rotacional para los cuales la óptica par axial no se aplica. Se presentan
ecuaciones recursivas sencillas que describen exactamente un rayo propagándose a través de una
serie de esferoides prolatos de focos coincidentes. Debido a la presencia de varios segmentos en
diferentes planos, para caracterizar la propagación del rayo se emplea una formulación vectorial
haciendo uso de los cosenos directores.

rAes: 42.15.Dp; 42.15.Gs

1. INTRODUCTI'ON

The oenefits of incorporating the prolate spheroids have been realized in the operational
optical systems that were designed to meet high performance requirements. The seg-
mented and the dilute aperture telescopes are probably the most notable example of the
trend to design optical systems with coupled, con focal prolate spheroids. [1,21

We present ray-trace equations for a ray propagating through two cOllpled, ref!ective
confocal spheroids in three-dimensious. The angles of ref!ection fmm the second surface
are related to the angles of incidence on the first surface using the direction cosines and
the optical path distance along the rayo [3] I30th of these formlllations are required for
the development of a wavefront aberration function for an optical system without an axis
of symmetry. [4] A dilute aperture array is one example of an optical system which does
Ilot possess an axis of syrnmetry.

Due to its potential of increasing the effective aperture size nsing smal! aperture
optical suo-systems [5,6] it remains of great current interest. lts performance cannot be
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described adequately with the currently-available theories. [7,8] The inherent limitations
of the multiple aperture phased arrays may be better understood once their theoretical
performance has been predicted and the engineering control issues have heen decoupled
from the optical system design and optimization. Each of the individual apertures may
be coupled with the beam-combining mirror using one pseudo axis. [9] However, the
complete optical system does not posses an axis of symmetry. The results presented here
are an extension to three-dimensions of the theoretical development for a ray propagating
in a single plane of symmetry through reflective confocal prolate spheroids. [10]

In the fol!owing Section we define the coordinate systems ami summarize the cha-
racteristics of the confocal spheroids. In Sect. 3, the ray reflection from the point on
the spheroid is presented in terms of the ray direction cosines. The direction cosines are
evaluated using the optical path difference along the ray propagating between two sphe-
roid foci. In Sect. 4, the direction cosines of the ray reflected from the second spheroid
are related to the direction cosines of the ray incident on the first spheroid, in terms of
eccentricities only.

2. GEOMETRICAL DESCRIPTION OF A PROLATE SPHEROID

A prolate spheroid is a three-dimensional, geometrical surface, generated when a cirele,
ellipse, parabola, or a hyperbola is rotated about its geometrical axis of symmetry, re-
sulting in a sphere, an ellipsoid, a paraboloid, or a hyperboloid, al! of revolution. [Il]
The same mathematical representation may be used for al! these geometrical surfaces,
with different eccentricity value, E. The value of E = O results in a sphere; the value of
E between O and 1 results in an el!ipsoid; the choice of E = :1::1gives a paraboloid (+ 1
paraboloid opens to the right); and any value of E greater than 1, ami smaller than -1
generates a hyperboloid.

2.1. COORDINATE SYSTEMS

\Ve use an el!ipsoid to illustrate the representative surface for the purpose of this dis-
cussion. \Ve adopt a modified spherical coordinate system, shown in Fig. 1. The x-, y_,
z-Cartesian coordinate system has the origin at O, with the positive z-axis along the axis
of symmetry of the geometrical object. (Suitahly-chosen) center of the off-axis segment
has coordinates (xc, O,zC), i.e., it defines the direction of the J:-axis. The ellipsoid is
drawn so that its proximal focus coincides with the coordinate origin at O. The R-axis
is defined so that a point P(J:, y, z), on the off-axis spheroid segment, lie s in the R-z
plane. The x- and y-axes are normal to each other. The R-axis makes an angle Phi with
the x-axis. The projection of the el!ipsoid on the R-z plane is an ellipse. The projection
of the ellipsoid on the x-y plane is a circ1e.

The azimuthal angle O is measured from the positive z-axis. Usual!y, its value is
restricted to the range between O and 7T. In the modified spherical coordinate system
that we are using here, its range of values is extended to inelude values from O to 27T.

This is done so that the results evaluated in the polar R-O coordinate system may be used
for comparison with prcvious work. Earlier rcsults wcre presented in two dimcnsions, on
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FIGURA 1. An cllipsoid with z axis along the axis of symmetry, in a polar and a cartcsian
coordinate systcm.

the basis of symmetry considerations. The angle <1>,measured in x, y plane is the second
coordinate, and the radius-vector T is the third coordinate. The coordinates of a general
point P(x, y, z) in this coordinate system are given by

x = 1" sinO cos «P,

11 = 7" sin B sin <1),

z = ¡'cosO.

We also note that

R = T sinli.

Then we get

x = Reos <1>,

11= Rsin<1>.

When the point R in Eqs. (4)-(6) is on the spheroid, R hecomes p.

2.2. SI'IIEROID REI'RESENTATION

(1)

(2)

(3)

(4)

(5)

(6)

The description of an ellipsoid is very simple in the modified spherieal coordinate system.
Figure 2 shows the spheroid parameters, in any R-z plane, dne to the ellipsoid cylindrieal
symlIletry. The radins-veetor T, the distance of an arbitrary point P(x, y, z) from the
proximal foens may be given in terIns of only one angle:

T=
fJ

- £cos8
(7)

Herc, p denotes tite semilatus reettllll or thc vertex radius of Cl1rvature alld £ is the
cccentricity. If the origin of the modified spherical coordinate systcm were ChOSCll al thc
second, the distal, foe11s, the negativc Sigll in the deuomillator nf Eq. (7) \vould challgc
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FIGURA2. Ellipsoid parameters.

and become posltlve. (This change may be accomplished formally by replacing O by
0+ rr). Same range of r-values is traced by the radius-vector. This radius-vector is also
the distance of an arbitrary point P(x, y, z) from the distal focus;

r- -_P-
- 1+ ,O. (8)

Considering the formal nature of the change of coordinates, it is c1ear that O is measnred
countcrclockwise froIll the positivc z-axis.

\Ve wish to develop recursive relationships for traciug a ray through two confocal
prolate spheroids. Next, we consider the ray propagation within a single i-th spheroid.

3. RAY REFLECTION AT AN OFF-AXIS POINT OF THE i-TH PROLATE SPHEROID

llere we present the ray reflection both in terms of the radius-vector and in t.erms of the
ray direction cosincs. Thc dircction eosines are cva.lllatcd upan thc cOIlsidcration of the
t.ot.al optical pat.h lengt.h for a ray propagat.ing between t.wo foci.

3.1. RAY REFLECTION IN TERMS OF TIIE RAllIUS-VECTORS

A ray segment. is represent.ed as a dist.ance along t.he radius-vector. The opt.ical path
distance lllay thercforc be obtaincd by addillg two appropriatc l'adills-vcctors. Now we
exprcss the radius-vector of tite refiected ray in tCl'ms of the angles of incidence (Pi and
O;, and the spheroid parameters p; and f;. Wit.h t.he interpretat.ions present.ed in t.he
prcviolls section, we lllay use a single eqllatioll, Eq. (7), to describe a point 011a pro late
sphcroid, 01' a ray scgmcllt from the proximal fOCl1S f.o the point P(:J.:i. ?Ji, Zi) 011 a pro late
spheroid. As illustrates ill Fig. 3, a general ray is a sllllled incicicnt throllgh a llear fOCllS
in th" direction specilied by angles O; and '1>;. (The slIbscript i and t.he spheroid its"lf
have been omit.ted in Fig. 3 for clarity)

Pi
-éiCOSOj

(7a)
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FIGUHA 3. Thc (ray) aptical path distallce betwecn two [oei is eqllal to tile additioIl oC two
radii-vcct.ors, cach originating al a foeus and both pointing to t.lte salllc point.

The cartesian coordinates of a point P(X¡, y¡, Z¡) on thc surface of the prolate spheroid,
xi, Yi, ami Zi ma.y be givcn in the sphcrical coordinate systelll of 1'1' (1)1' alld Oi

1'1 sin ei cos (I)i (9)Xi=
!-cieosO¡

,

Ti sinOí sin <Pi
(ID)Yi =

1 - Ei COsO¡

Ti COSOi
(11 )Zi =

1 - E¡ cos 0i

Thc ray ¡s rcflcctcd f1'oll1 the point P(Xi, Vi, 2i) OH thc splteroid in sucll a way that
it passcs through tite distal focus, by the dcscriptivc, fUJlctiollai, operational dcfinition
of the cllipsoid. Thc distance betwccIl thc distal fOClU; and Ulü poillt. P(:I:i, !Ji, Zi), r'L ís
denoted by ,.1 in Fig. 3.

By replacing O¡ with 7[ - O; in Eq. (8) ami denoting the resulting distance with ";, the
following relationship is obtained:

r~=, T,
O'.l-citos i

( 12)

\Ve Hote that (Ji aud éi are the :;a.lllCas in Ec¡. (7a). since w(~are descrilJing the S<lmc
ellip:;oid. Howcvcr, the anglc e: is measured froIll tlle negative z-<lxis in tile clockwise
dircction.

Thc cartesian coordinates of a point P(:ri ~Yil Zi) on the stlrface ()f tite 1)l'olate spheroid.
XiI Yil alld Zi lila)' also he cxpressed ill thc primcd eoorditlatc S,VSt.Clll.This cool'dinat.c
SystCJIl, 'lIso il1ustratcd in Fig. 3, is defillcd a.•"; follows:

:1;' = ;]:,

Z' = D - z,
,

1} = 1}.

( 13)

(14 )

( 1G)
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The coordinates of the point P(x;,)J;, Zi) are given in the primed spherical coordinate
systeln, r~1 <P~1 alld 8i 1 as follows:

T'~sin (l tOS 1l'.x. - 1 l 1

,- 1 O' '- éi tOS i

, . O' . ...'1', SlIl i Slll '!' i
Yi = 1 O' '- Ei tOS i

r~cos 8~
Z¡ = Di _ I t

1 - é¡ cosO~

( 16)

(17)

( 18)

Two sets of e'luations, E'ls. (9)-(11) aIld E'ls. (16)-(18) describe the same point on
the spheroid. Upon setting the corresponding cooniiuates e'lual, we get the following
e'lualities:

Ti sin Oi sin <Pi
Yi = l-£¡cosO¡

Ti sin Oi tOS 4>i
Xi = l-f;cosO;

z¡ =
1'l tOS e¡

l-[¡cosO¡

, . O' ",1';8111 ¡cos'J!¡

1- éiCOSO~ •

1'~sin (J~sin (1);
l-[¡cosO;'

7'~tOS O~D. _ 1. ' 1.

t l-[¡cosA:

( 19)

(20)

(21 )

(23)

(25)

Next we cvaluate the coordinates Xi and )Ji ami Eqs. (5) ami (6) for the poiuts on the
spheroid. \Ve obtain the following relationship from Eq. (19) or (20):

. O ' . O'"; sm ; "; sm¡ (2?)
Ti = - -

1 - éi cosO¡ 1 - E¡ cosO;

\Ve denote the 'luantities in Eq. (5) with a subscript. -j. \Ve divide the left. and right.
side of Eq. (22) wit.h the corresponding ,id es of Eq. (21). Theu we obt.ain a relationship
between the angle of reflection 1/; and the angle of incidence O; and eccentricit.y f;:

o, _ (1 - fn sinO;
tan i - ,).

2f; - (1 + f¡) cosO;

The expressioIls for sin o¡ aIHI cos 0i are dcrive<i l>y a ClI>piyillg lIle trigollOllletric
relationships defined in a right triangle:

. 1/' _ (1 - fn sin 1/; (sm i - , , 24)
l\;

.. 1)'- f;-(I+ff)cosll;
LOS f, j - 2 --------.

I<;
HeTe, 1(¡ denotes tite COmll1011 dClIOlllillator:

2I<; = (1 +f¡) - 2f;cosll; (26 )
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FIGURA 4. Two rays with different directioll casines and the same azimuthal angle O.

The second part of the 'Ingle of incidence, <1>;,may 'lIso be evalnated from Eqs. (19)
and (20). Dividing the corresponding sides of these equations, we get

tan ,,>; = tan 'P;. (27)

This (predictable) result says that the reflecter! ray and the incident ray lie in the
same plane, defined as the R-z plane in Fig. J. Thus we obtain from Eq. (27) that the
angles are also equal:

(28)

While 'In individual ray indeed remains in one plane, there will be rays in infinitely
many ditferent planes. In particular, Cor the case oC the multiple-apertura primary in a
multiplc mirrar telescope, the eCllter ()f cach apertllrc and the secondary minar lie on a
separate lineo

We are interested in undcrstanding the image-forming propcrtie.s of a systcm consis-
ting of a series of con focal prolate spheroids. An off-axis spheroid segment is expected
to display diffcrcnt mllolluts of abcrratioIl in the x-y plane ami :I:-Z planco In order to
obtain a ray trajeetory in three-dÍlncIlsiolls, we develop llext a dircction of a reHected ray
in terms of its direction eosines.

3.2. REFLECTIO:"' 1:"' TERMS OF RAY DII\ECTI07' COSI7'ES

The rays incident on the spheroid will be in ditrerent R-z planes '1$ illustrater! in Fig. 4.
Two rays A and 13, incident from the proximal focus, sublend the same 'Ingle O ami
both satisfy Eq. (7). However, they are incident witb a ditrerent 'Ingle '1'. To uniquely
characterizc rays in a llon-rotationally sYlllmctric systcm, 1 am additionally illtcrested in
cxpre1'isillgthe dircction of propagatillg ray ill t.enns of it.s dircctioll cosilws. The dircction
cosiBcs of t.he incident fay are dCllotcd by ti, 1fti, ni:

H¡=COSO¡.

(29)

(30)

(31 )
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The direction cosines oí the reftcctcd ray l~,ln~,n~are parallel to 1'~,bllt are directed
in the opposite direction to the direction of the radills-vector l';.

1;= sin( -O;) cos( -<1"';).

m: = siu( -O;) sin( -<P:),

n: = cos( -O;).

\Vith the trigonollletric relationships for negative augles, we get

I' . O' oT,'i = -SIl1 ¡COS'i'¡,

, . O' . ",'rni = SIIl i SUl 'J.'j,

, '0'ni = ca:; i-

(32)

(33)

(34)

(35)

(36)

(37)

Using equations
reflected ray, Eqs.
reflected rayo

developed in the previous sectiou for the azilllllthal augle
(24)-(26) aud (28), we cau evalllate the directiou cosiues

of the
of the

(J - £l) COS<Pisin Oi1;= ------- (38)
Ki

, (1 - £l) siu <Pisiu Oi
mi = --~---- (39)

Ki

, 2£i - (1 +d)COSOi
ni = -------. (40)

Ki
Here the cOllllllon denolllinator depends on the angle of iucideuce and the eccentricity:

Ki = (1 +d) -2£iCOSOi. (41 )

The direction cosiues of the ray reflected of the poiut ou the spheroid depeud ou both
angles of incidence Pi and Oi of the iucident rayo

The expressions developed in this section for the geOlnetrical relationships between
the radills-vectors connecting foci and the points on the prolate spheroids nmy be used
to derive ray transfer equations within a single prolate spheroid characterized by only
three parameters, Oi, Pi, alld Ej_

Next, we apply the ray transfer relationships amoug the spheroid qllantities developed
here for a single spheroid to two conseclltive spheroids. The two consecutive spheroids
are related iu that the ray that leaves the first spheroid is the very same ray as the ray
that is incident on the second spheroid.

4. EXACT RECUIlSIVE IlAY TRACE EQUATIONS FOil T\VO (OFF-AXIS) CONFOCAL
PROLATE SPHEROIDS

wc wish to cvaluatc thc dircctioll ()f propagatioll of tite ray refieded frolll the secolld
sphcroid in tenllS of tlle directioll cosilws. Wc f¡rst evaluatc the ray traw.¡fer equatiollS
for the ray in au arbitrary plane R-z.
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(43)

(44)
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4.1. RAY TRANSFER IN TERMS OF RADIUS.YECTOR

A general ray is incident in any azimuthal plane, characterized by any angle (Ji+1' This
ray reflects according to the laws of reflection developed earlier. Eqllations (23)-(26) are
evalllated for (¡ + 1)-st prolate spheroid, characterized by €i+! and Pi+1:

(J
' _ (1-€7+1)sin(Ji+1

tan i+l - (2 '
2€i+1 - 1 + €i+I) cos Oi+1

• I (1 - €7+1) sinOi+!
SlnOi+l = -------

Ki+!

I 3€i+! - (1:+- €7+1) COSOi+l
COSOi+l = -----~~---.

Ki+l

Here, Ki+1 denotes the common denominator

(45)

<Pi+1 is the angle of incidence fm the ray incident on the (¡ + 1)-st spheroid. Also, from
Eq. (27), we know that

(46)

The radills-vector of the ray leaving the ¡-th spheroid is rollinear with the radills-vector
of the ray incident on the (¡ + 1)-st spheroid. Thlls, we note the following relationships
from Fig. 3:

Using Eq. (35), we get

0i+l = e:,
<Pi+l = <1):.

(47)

(48)

(49)

Using Eq. (47), we may eliminate 0i+1 from Eq. (23) (w¡th the sllbscript ¡ replaced by
¡+ 1)

(50)

After the sllbstitution of Eqs. (24) and (25) f01' sinO: amI cosO;, respectively, we get
an express ion for the angle 0:+1:
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We regroup to show explicit dependence on sin 8, and cos O, terms. AIso, we introduce
constants Ai+ 1, Bi+l, alld Ci+11 that depend only OIlecccntricities:

Ai+1 sinO¡
B,+! + O,+! cosO,'

The constants associated with each spheroid are de!ined as follows:

2 2A,+I = (1 - Ei+I)(1 - t,),

B,+I = 2(Ei+1 - E,)(I - Ei+! E,),

(52)

(53)

(54)

(55)

In Eqs. (52) through (55), the angle 01'reHection fmm t.he second sphemid ha" been
obtained in terms 01'the angle 01'incidence on the !irst. ellipsoid, and the spheroid eccen-
t.ricities. Due to the repeated applicat.ion 01'the law ol' refledion, a ray remains in a single
plane ol' incidence a!'ter multiple reflect.ions. However, when considering rays in different
planes ol' incidence, t.he direct.ion ensines 01' the reHeeted ray needs to be evalnated in
tenns ol' the spheroid parameters ami in terms ol' the angles 01'incidence.

4.2. DIRECTION COSINES

The direction cosines ol' rays incident on the (i + I )-st spheroid are the same a_, the
direction cosines ol' t.he ray leaving t.he i-th spheroid:

,
1T!i+l = ¡ni'

(56)

(57)

(58)

The dircctioIl cosillcs of thc ray leaving the i-th spheroid, l~, rni, ni, are parallel tor;, but directed in the opposite direction:

0i+l = -8~,

4li+l = -(I)~.

(59)

(60)

(63)

(62)

(61 )

The direction ensines 01'the ray ieaving the (i + I )-st spheroid are expressed in t.erms
ol' t.he quant.ities defined l'or the i-t.h spheroid, using Eqs. (38)-(39):

(1 - En cos <P,sin 11,
li+l = ----------

J(,

(1 - En sin '1', sin O,
rn.¡+! =

J(i

__ 2E, - (1 + Ei) cos O,
1tHI -------

J(,



(66)

(64)

(65)
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Equations (24)-(26) give sin O;, cos O; and Ki. \Ve also know that the direction cosines
of the reflected ray (1:+l' mi+ l' ni+ 1) are parallcl to ,.;+ l' but directcd in the opposite
direction.

lf we replace i with (i + 1) Eqs. (38)-(39), we get the following relationships:

, (1 - er+l) cos 1>i+1SilIOi+rl
li+I=- Ki+1 '

, (1 - el+l) sin 1'i+1 sinOi+1
mi+1 = Ki + 1
, 2ei+1 - (1 + el+¡} cos 0,+1

7l.i+1 = -----------
Ki+1

In Eqs. (69)-(71), the denolllinator Ki+1 is givcn as

Ki+1 = (1 + el+!) - 2ei+1 COSO,+I' (67)

(68)

(69)

(70)

(71 )

The angles have beell foulId in the section dealing with the ray transfer in terlllS of
the radius-vector. Frolll Eq. (48), we can elilllillate 'l'i+1:

, (1 - el+!) cos 1>isiII 0,+ 1
li+1 = - K '

i+1

I (1 - [~+l)sin(I)iSillOi+l
1ni+l = - -----------

Ki+1

, 2ei+1 - (1 + er+l) COSOi+1
Hi+l = -----------

Ki+1

Upon replacilIg ~with (i + 1) Eqs. (24), (25) and (59), we obtaill tbc following identities:

. (l-ensinOi
S1l18i+1 = -------, K,

O
2ei - (1 + en COSOi

COS i+! = K ., (72)

(75)

(73)

(74)

Ami, Ki is givcn iII Eq. (26). Upon the substitutioII of Eqs. (71) alld (72) into Eqs. (68)-
(70), we get the direction cosines of the ray leavillg the (i + l)-st spheroid:

I Ai+1 COS <Pi sinO¡
li+1 = B C O'1+1 + i+1 cos i

, Ai+l siu (Pi sin Di
rni+l = -------,

Bi+1 + Ci+1 cosO¡

, B,+I + Ci+1 cosO,
7l.i+l = .

C1+1 + Bi+l cosO¡

The COllstants Ai+ 1, Bi+ 1, G1+ 1 that depend only OH the spheroic! eccentricities have been
defincd in Eqs. (53)-(55).
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5. SUMMARY

\Ve developed ray trace equation for the light pl'Opagating in three dimensions, through
a series of confocal pro late spheroids. This development is ditferent from the traditional
ray trace approach as no real ray is assumed to satisfy the conditions of paraxial optics.

\Ve employed the optical path distance traditionally employed in the rotationally-
symmetric optical systems for the image assessment. Additionally, we found it necessary
to express the propagation of the ray in terms of the ray vector in a three-dimensional
space, because the image forming rays for the distinct oll~axis segment are not restricted
to a single planeo The set of spheroid mirror segments does lIot constitute a system with
rotationall symmetry.

In the standard ray trace analysis, two equations are used to trace a ray through an
optical system: the refraction at the surface aIHI the ray t.ransfer bet.ween surfaces. Eq.
(35) gives t.he ref!ection at the spheroid mirror wilh an eccentricity é in terms of the
angle measured from the geometrical axis of the pare lit. !lay transfer distan ce along the
geometrical axis of the parent spheroid is presented in E'I. (15). !lay transfer distance
along the ray itself is given in Eq. (30).

The ray transfer e'luations obtained for individual spheroids have been evaluated to
develop recursive relations for ray propagation through a two confocal prolate spheroids.
Oue to the non.rotationally symmetric natme of this Jll'Oblem, a vector formulation is
used to describe the ray ref!ections. The optical path ditrerellce equations are used to
evaluate the angles.
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