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AUSTRACT. \Ve review thc Lic-Hamilton treatment of optical aberrations to highlight its algo-
rithmic composition property for concatenation of optical elements. mexLIE is a set of symbolic
computation functions developcd by the authors which pcnnits lhe fulI)' paramctric design of op-
tical systems including free spaces, aligned radial graded-index media, amI polynornial refracting
surfaces between tlIese, to seventh aberration order. \Ve givc simple examples to illustrate its use.

RESUMEN. Revisamos el tratamiento de aberraciones úptica."'ide Lie-HamiltoIl para destacar su
propiedad de concatenación algorítmica de elementos ópticos. mexLIE es un paquete de fun-
ciones para cómputo simbólico desarrollado por los autores, que permite el diseilo completamente
paramétrico de sistemas ápticos, incluyendo espacios librps, medios con gradiente de índice radial
alineados, y superficies refractantes de perfil polinomial cntre éstos, a séptimo orden de aberración.
Damos ejemplos sencillos para ilustrar su uso.

rAes: 42.15.Eq; 02.70.+d; 03.65.Fd

1. OUTLINE

Symmetry is an integral part of the mathematical tools t.o analyze classical and qnantum
mechauics, and simplify the study of composite systellls. Such techniques-and indeed,
such point ofview-also apply in geometric optics. Opticallllodels have addeo advantages
over Illechanical ones in the nse of symmetry, becau,e:

• The basic laws of optics are known exactly and are forlllulated axiolllatically as
conservation laws.

• Whereas rncchanics considers continuous cvol11tioll llllder a variety of potentials
(corresponding to a variety of refractive-index profiles in optical waveguides), optics
has at its dispositon the "potential jolts" due to refractillg surfaces.

The Lie-Hamiltoll forrnulation of geometric aberration optics applies the experiellce 011

tbe use of symmetry gained from qualltulll Illechauics. Both classical and wave theo-
rics are equally amenablc to group-theoretical trcatmcnt; the Lic brackets are Poisson
brackets in the fonncr and cOIllIllutators in tIte latter, hllt thc formalisms are csselltially
parallcl otherwise. Thus wc shall seu that abcrratiolls are set in onc-to-OlW corrcspon-
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denee with the eigenstates of the 'lllantlllll harlllonie o,eillator (sYlllllletrie three-quark
Illultiplets). They generate 1I0wsof ph'L,e spaee that can be used to approxilllate the
t.ransfonnatioIl due lo an optieal systcm in a largc neighborhood oi' t.he design rayo

This review is organized 'L' lilllows: the basies of the Lie-lIalllilton fonnulation of
geoJllctric optics OIl pha....;c spacc are prcscnted in Sed. 2. SectiOll :1details the structurc
alld cia..'"'sificatioll of purc abcrratioIls. Thc authors have built a sel ni"symbolic compu-
tation funetion, that are now forlllalized in a progralll called mexLIE [1J. From Seet. 3
ollwards we relate thc Lic-Poisson aherratioIl operators tu fUllctiolls in mexLIE. Section 4
Illentions some optieal elements present in the tabular fundions of mexLIE. and Seet. 5
offcn; cxamplcs of concatcnatioll uf SlICIt elcmcnts to more general optical subsystems.
Section 6 comments OIl tite extallt capahilities and structnrc nf mexLIE.

2. OPTICAL PHASE SPACE TnANSFOnMATIONS

Líe thcory works in thc arcna of Hamiltollian pha.se-space c()ordinat.es for thc Jllanifald
of rays. Refered to aplane screen, the rays of geometrie optics are charaderized by two
caordillatcs of position q = (qXI(jy) E 3~:.!alld t.wo caardillates uf 1Twmentum-ray dircction
p = (PI>l'y) = n sinO(eosq"sinq,).

\Ve use the Lie-Poisson bracket between fundions on the cl'L"ical ph'L,e spaee <:oor-
dillates,

{f }( ) = Df(p, q)
,g p,q Dq

üg(p, q)
üp

üf(p, q)
Dp

üg(p,q)
iJq

In particular the basie Heisenberg- \Veyl Lie braekets are

{'Ji, 'U} = ()= {p;,p¡}.

A transformation A is tenned carwnical whcn it preserves this algehrai<: structure, z.e.,
whcn

A (
p) (p/(P,q)) {' /} ,

: q = q'(p, q) -+ '1;,p} = U'.J'

Optical elcrnents are cananical transformations which are in !!.cncral IloIlliIlcar [2]. \Vhen
an optical system is symmctric lindel' rotatiolls around (and inversiolls through) a com-
mOJIaxis, the four coordinatcs ]Ji, (ji reduce to three esscntial OIlCt': p.l. = P . p. P . q. and

'/ = q. q.
An axis-symruetric canonieal Illap nf pitase space can be writttm in t.lw gcncric form

A = 9{A; M} = 9{A; 1}9{O;M}, whcrc M = (11. iJ).
(" d

det IVI = 1.

is the l'araxial (linear) l'art of the transfonllatioll.



LIE-HAMILTON GEOMETRlC AHEltRATION OPTICS: ... 889

9{O;M} (~) = M-1 (~)
= (dP - bq),

-cp + aq

and A labels the aberration (nonlinear) parto
The aberration part can be factorized into a prod uet of transformations generated by

operators eorresponding to aberrations of inereasing order. In Lie-Poisson exponential
fonu, these are

9{A; 1} = ... x exp{A4, o} exp{A3, o} exp{Az, o},

exp{ Ak, o} = 1+ {Ak, o} + tt {Ak, {Ak, o}}+ ... ,
{Ak,o} = DAdp,q) . ..!!...- _ DAdp,q) . ..!!...-,

Dq Dp Dp Dq

where Adp, q) are aberration ]JOlynomials of homogeneou5 dcgree 2k in the phase spaee
eoordinate5 (p, q), ánd of degree k in the "axis-symmetrie" pha.se spaee eoordinates
(1'2,P . q, q2); k i5 ealled the rank ami the aber'ration arder is 2k - 1.

3. ASERRATION POLYNOMIALS

The aberration polynomials of rank k have the following generic expansions in two bases:

Ak(1'2,p' q,q2) = L Aklk2k3(1'2)kl(p. q)k'(q2)k3

kl+k2+k3=k

lorO j""kk' 2 2= L.. L.. Aln xl,JI' ,p. q, q ),
j=k(-2) m=-j

where the ~(k+ 1)(k+2) eoeffieients Ak¡k2k3 and kA~, are, respectively, the monomial ami
symplectic aberration eoefficients, ami kXin(i') are the syrnpleclic (essentially the solid
spherieal) hannonics [3]. Axis-symmetric aberrations are thus in 1 : 1 correspondenee
with the eigenstates of the three-dimensional quantum harmonic oscillator, Ik¡, kz, k3)
and Ik, j, m) respeetively, cla.ssified in cartesian ami spherical coordinates. The sym-
plectie basis is preferred for symbolic computation beca use it is the most economic for
composition of transformations [4]. In Fig. I we arrange the monomial and symplec-
tic eoefficients in a pattern familiar from hadron multiplets (the paraxial part is k = 1
alld corresponds to the quark triplet). Angular momcntum is hefe thc symplectic spin
j = k, k - 2, ... 101' 0, and its "third projection" m = -j, -j + 1, ... ,j ha., been ealled
the Seidel indexo
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FIGUHE 1. Aberratian multiplets af arders 3 (k = 2, left), 5 (k = 3. mid) aud ; (k = 4, right).
The open circles represent distinct ahcrratiolls classified by the 'nllmber of qllanta' k1. ].."2,k3

(summing to k), as statcs of the 3-D quantlllIl oscillator in tIJe cartesian uasis. The black cireles
represent their c1assification ¡uto symplectíc spin lIlultiplets j. 111,as oscillator states in the angular
momentum basis.

An axis-sYlIllllctric ~colllctrical optical systclIl wiII transform a ray (p, q) to

9 {A; l} (~) = ... x (1 + {A" o} + ... )(1+ {Al, o} + ... )

x (1 + {A2, o} + ~ {A2, {A2, o}} + ~{A2, {A2, {A2, o}} } + ... ) (~)

= (1 + {A2, o} + A:¡, o + ~ {A2, {A2, o}}

+{Al, o} + {Al, {A2, o} } + ~ {A2, {A2, { A2, o} }} + ... ) (~)

= (P'¡(P,q))
q,¡(p, q) .

One can consistently truncat.e t.he order of t.he polynoIllials and drop the ellipses. Thus
in sevcnth abcrration arder, <lile Ileeds t.o work onl)' with up-to-cight degrec poIyuOlnials;
the canollicity al' the transfOfmatioll is thclI gllaralltccd nI> to cight-dcgrcc tenns1 i.e.,
{qAidJAj} = Ji,j plus tcrms of ordcl" t.en 01"hig}¡cr.

In mexLIE [1J, all funct.ions ¡(p, q), y(p, q) of the pi" ••", space coordinates are Taylor-
expanded and thcn truncatcd to r<Lllkk. This is thc abenntion expansiono strllctllred and
classificd with qllalltulll harlllollic oscillat.or labels [a]. Fillitt~ optical trallsforlllations are
thus charactcrizcd by the (matrix) paralllcters of tite paraxial part. and a llcsted tower
of abcrration coctticicllts which describe thc Ilonlincarity. The symplectic classification
reduces aucrrations to irreducible diagonal blocks 1111derthc paraxial part: it is used by
mexLIE to format its tahles optimally (of course. mexLIE can also use t.he monomial oasis)
rOl"abcrratioll orden; A = 2k - 1 = :j, ,) aud 7.
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4. OPTICAL ELEMENTS

We have taken the task to determine the aberration coefficients of the basic elements
ofaxis-symmetric optical systems to seventh aberration order. The basic elements in-
elude free f1ight in homogeneous and radial graded-index media and polynomial-shaped
refracting surfaces of revolution between them. They are incorporal.ed in mexLIE through
tables. l3elow we offer two examples.

Free flight by z (along the optical axis) in a homogeneous medium of refractive
index n is obl.ained, up to seventh aberration order (ranks k = 1,2, :l,4) by typing (with
a numerical value for K)

? THICK: FREEFLIGHT (Z, N, K)
The answer given by the machine is the transformation THICK= Ft!" eharaeterized by

the "paraxial part" matrix F = (-:/n ~) amI a list of its Lie aberration coefficients.

The six third-order coefficients are

F2,0,0 = -z/8n3
, FI,I,O = O, FI,o,1 = O, FO,2,0 = O, FO,I,1 = D, FO,0,2 = O.

Gnly spherical aberra/ions (k,O,O), k = 2,:l, ... are differenl. from zero.
A refraeting surfaee of eighth-degree polynomial shape z = «(q) = (21q12+ (41q14+

(GlqlG+ (slqlS between two aligned radial graded-index media of l.he form n(qj2 = v2 -

1,21q12amln'(q)2 = v'2 -1,'2IqI2 is obtained from mexLIE 2.0 by typing (for a definite
numerieal value of the rank K)

? INTER: EFIBSURFACE (NU, MU, NUP, MUP, [Z2, Z4, Z6, Z8], K);
The transformation (aberration group elemenl.) INTER= S[k) •.c l,,~, l.he paraxial matrix

tt,l1 ,

S = (~ 2(1/ ~ V)(2) and the following third-order aberral.ion eoefficients [5] (here in

monomial b¡~,is)

a) ,~,tigmatism, 81,0,1 = (2/2v' - (2/2v,
b) coma, 8,,1,0 = O,
e) spherical aberral.ion, 82,0,0 = D
d) distorsion, 80,1,1 = 2(i(v/v' - 1),
e) curvatnre of field, 8020 = O,
f) poeus, 80.0,2 = (2(1,'2;'2v' -1,2/2v) + (i(2v2/v' - 4v + 2v') + (I(V - v')

5. CONCATENATION OF OPTICAL ELEMENTS

We stress the fael. that group elements (transformatious) 1/luUil'ly ¡~, their optical eOllnter-
parts concatenate-from left to right, along the z-axis. WhereH-' the linear part composes
simply by matrix mllltiplication, the aberration part h¡~, a more complieated composition
formula.

The gato compositioll ~ of two pure aberratiolls (i. C'
l
with ll11it paraxial tuatrix) is

e = A ~B. lt stcms from the Baker-Campbell-Hausdorff formllla 01 l.he factored-product
fonns
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... X exp{C.,O} exp{C3,O} exp{C2,o} = ... X exp{A.,o} exp{A3,o} exp{A2,o}

X ... X exp{B.,o} exp{B3,o} exp{B2,o},

aJl(1is given explicitly, to seventh aberration order, by

C2 = A2 + B2,

C3 = A3 + B3 + HA2,B2},

C. = A. + B. + {A2, B3} + HA2, {A2, B2}} - !{{A2, B2}, B2}.

\Ve may consistently truncate to rank k with group elements (transformations) 9dA; M}.
The composition of two transformations of rank k involves the action of the paraxial part
of len factor on the aberration part of the right factor:

9dA; M}9dB;N} = 9dA; l} 9dO; M}9dB; l} 9k{O;N}.

= 9dA; l} 9dO; M}9dB; l} 9dO; M}-19dO; M}9k{O;N},

= 9dA; l} 9dD(M,B); 1}9dO; MN}.

= 9dA~D(M, B);MN},

whefe

is the adjoint action of the linear transformation M on lhe polynomial Bdr, q), reduced
by rank k. \Vhen we use the symplectic basis, then D(j)(IVI, Bd is earnpletely reduced
by symplectic spin j = k, k - 2, ... {? into irredncible diagonal blocks. Herein lies the
efliciency of this lmsis. mexLIE contains the function COMPOSE (A. B. K) which performs
the aboye composition for the two (symbolic) transfonnations A ami B to rank K.

For example, a singlet lens in air (TI = 1), of thickenss t al1<ihomogeneous refractive
illdex ll, w¡th faces ( and (' as in Fig. 2a. is the composilioll

SINGLET = S, .••;(F, .••S ••.L("

It is obtained in mexLIE through
? SINGLET: COMPOSE (COMPOSE (INTER. THICK. K). INTER'. K).

Tbis singlet, when placed between an object at a distance Zo to the idt and a screen at a
distance Z¡ to the right, will produce a (generally unfocusecl) image. as in Fig. 2b. This
image1' SystCIIl is obtained by composing

IMAGER= F,o.1 SINGLET F".l'

In mexLIE tbis product of transformations is fOlllld by lypillg
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FIGURE 2. (a) Composition of S :F S: free flight between two surfaces 1.0 produce SINGLET.(b)
Composition of:F SINGLET:F 1.0 IMAGER.

? IMAGER: COMPOSE( COMPOSE(
FREEFLIGHT (ZO,l,K), SINGLET, K), FREEFLIGHT (Zl,l,K), K);

Finally, the action of IMAGERon the position coordinate of optical phase space,
q -+ q' (p, q), is obtained through the mexLIE function

? QPR: ACTONQ(IMAGER, K) $ PPR: ACTONP(IMAGER, K);
where all parameters of the system may appear with symbolic values. A similar function
ACTONP (IMAGER, K) will yield the transformation of the momentum coordinates p.
Please note carefully that the classification and action of aberrations described with
Lie-Hamilton methods is different from the tradil.ional Seidel classification amI action,
which is based on the Lagrangian formulation of optics ami the cross-variable point-
angle Hamiltonian characterisl.ic function [6]. The two approaches can be compared
(and should agree) when I.he phase space I.ransformations due to the optical system,
p'(p, q), and q'(p, q), are written out explicitly.

As an example on the use of mexLIE, in reference [7] we proposed I.he following
problem: suppose a generic optical sysl.em A is built to paraxial focus, so that its matrix
part is upper-triangular and q' is function of q only (independent of I.he arriving ray
directions p). But of course the sysl.em also aberrates from third order on. The <¡uestions
we posed was: through warping the screen (into a revolution surface with polynomial
parameters), which aberrations are correcl.able, which cannot be corrected, ami which
are immateriat for point-image formation'! The last part of the <¡uestion can be answered
immediately: distorsion and pocus [m = -j and -j + 1 in the symplectic basis or
(O, 1, k - 1) and (O,O,k) in the monomial basis] are immaterial because I.hey only produce
q'(q), independent of p. The solution 1.0 I.he firsl. I.wo <¡uestions is also well known 1.0
third aberration order: only curvature of field is corrected on a paraboloidal screen.
(Notice again the difJe,'ence between Seidel ami Lie-Hamilton formulations: in the latter
we correct the system through free flight to a warped surface; in the former we mnst
recalculate the system to allow for the extra free flight that, by it.self, does not "aberrate".)
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It is perhaps surprising that, to aberration orders 5, 7, amI 9, only three aberrations of
each rank are carrectable: in the mono mial basis (0,2, k - 2), (1, 1, k - 2), and (1, O,k - 1).
Linear optimization strategies can be set up once a cost function on the aberration set is
agreed upon. (After all, there are more aberrations tlJan polynomial parameters.) This
is a stimulating anal ague in optics of the Raccah algebra used in nuelear physics for
mathematically similar problems.

6. STRUCTURE OF mexLIE [1]

mexLIE is a product of academic research that purports to be useful for parametric design
of metaxial optical systems. It should also apply to any higher-order perturbation scheme
which factors phase space transformations into a linear part and a nonlinear polynomial-
based expansiono mexLIE has been published by iimas-unam and can be obtained from
the authors; it ineludes a (103-pagc) manual and one high-density diskette.

mexLIE is written in muSIMP, a low-Ievcl list-handling derivate of LISP distributed by
the Soft Warehouse since the mid-80s. The graphical display of aberration phenomena
through their spot diagrams is accomplished through a .COMfile of the program SPOTJ) [8],
which exists as an interactive program in PASCALin the same diskette. The diskette will
mn ab initio on any good pe. A MACSYMAversion is being prepared with essentially I

the same commands, that will run on larger machines without t.he limit.at.ion of infinite-
precision representation of quoticnt.s and t.hc 640 kb RAMmemory rest.riction of muSIMP.
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