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ABSTRACT. We review the Lie-Hamilton treatment of optical aberrations to highlight its algo-
rithmic composition property for concatenation of optical elements. mexLIE is a set of symbolic
computation functions developed by the authors which permits the fully parametric design of op-
tical systems including free spaces, aligned radial graded-index media, and polynomial refracting
surfaces between these, to seventh aberration order. We give simple examples to illustrate its use.

RESUMEN. Revisamos el tratamiento de aberraciones dpticas de Lie-Hamilton para destacar su
propiedad de concatenacién algoritmica de elementos dpticos. mexLIE es un paquete de fun-
ciones para computo simbélico desarrollado por los autores, que permite el diseno completamente
paramétrico de sistemas Opticos, incluyendo espacios libres, medios con gradiente de indice radial
alineados, y superficies refractantes de perfil polinomial entre éstos, a séptimo orden de aberracién.
Damos ejemplos sencillos para ilustrar su uso.

PACS: 42.15.Eq; 02.70.+d; 03.65.Fd

1. OUTLINE

Symimetry is an integral part of the mathematical tools to analyze classical and quantum
mechanics, and simplify the study of composite systems. Such techniques—and indeed,
such point of view—also apply in geometric optics. Optical models have added advantages
over mechanical ones in the use of symmetry, because:

e The basic laws of optics are known exactly and are formulated axiomatically as
conservation laws.

e Whereas mechanics considers continuous evolution under a variety of potentials
(corresponding to a variety of refractive-index profiles in optical waveguides), optics
has at its dispositon the “potential jolts” due to refracting surfaces.

The Lie-Hamilton formulation of geometric aberration optics applies the experience on
the use of symmetry gained from quantum mechanics. Both classical and wave theo-
ries are equally amenable to group-theoretical treatment; the Lie brackets are Poisson
brackets in the former and commutators in the latter, but the formalisms are essentially
parallel otherwise. Thus we shall see that aberrations are set in one-to-one correspon-
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dence with the eigenstates of the quantum harmonic oscillator (symmetric three-quark
multiplets). They generate flows of phase space that can be used to approximate the
transformation due to an optical system in a large neighborhood of the design ray.

This review is organized as follows: the basics of the Lie-Hamilton formulation of
geometric optics on phase space are presented in Sect. 2. Section 3 details the structure
and classification of pure aberrations. The authors have built a set of symbolic compu-
tation functions that are now formalized in a program called mexLIE [1]. From Sect. 3
onwards we relate the Lie-Poisson aberration operators to functions in mexLIE. Section 4
mentions some optical elements present in the tabular functions of mexLIE, and Sect. 5
offers examples of concatenation of such elements to more general optical subsystems.
Section 6 comments on the extant capabilities and structure of mexLIE.

2. OPTICAL PHASE SPACE TRANSFORMATIONS

Lie theory works in the arena of Hamiltonian phase-space coordinates for the manifold
of rays. Refered to a plane screen, the rays of geometric optics are characterized by two
coordinates of position q = (¢z,qy) € 2 and two coordinates of momentum-ray direction
p = (pz.py) = n sinf (cos ¢,sin @).

We use the Lie-Poisson bracket between functions on the classical phase space coor-
dinates,

df(p,a) dg(p.a) If(p,a) Jg(p.q)
dq ap ap dq

In particular the basic Heisenberg-Weyl Lie brackets are

{f,9}(p,q) =

{Qi,pj} =5z',;, {qi,q;‘} =0= {Pi:?’j}-

A transformation A is termed canonical when it preserves this algebraic structure, t.e.,
when

!
Az (2) = (g{g:g;) = {api} =65, {a.q} =0={p.pj}.
Optical elements are canonical transformations which are in general nonlinear [2]. When
an optical system is symmetric under rotations around (and inversions through) a com-
mon axis, the four coordinates p;, g; reduce to three essential ones: p° = p - p, p - q, and
¢=q-q

An axis-symmetric canonical map of phase space can be written in the generic form

A=G{A;M} =G{A;1}G{0; M}, where M = (({I f;) . detM = 1.

is the parazial (linear) part of the transformation,
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gtona) () = (%) = (2712,

and A labels the aberration (nonlinear) part.

The aberration part can be factorized into a product of transformations generated by
operators corresponding to aberrations of increasing order. In Lie-Poisson exponential
form, these are

G{A;1} =--- x exp{ A4, o} exp{As,o}exp{As, o},
exp{Ag,o} =1+ {Ag, 0} + %{Ak, {Ag,0}} + -,
_ 0Ax(p,q) 0 0Ak(p,q) 9

where Ay (p,q) are aberration polynomials of homogeneous degree 2k in the phase space
coordinates (p,q), and of degree k in the “axis-symmetric” phase space coordinates
(p%,p - q,¢%); k is called the rank and the aberration order is 2k — 1.

3. ABERRATION POLYNOMIALS

The aberration polynomials of rank & have the following generic expansions in two bases:

AP0 = D, Akkks () (P @™ (D)™
kit+ka+kz=k
lor0 i
= E Z kAJ k =p Q:q )3
j=k(-2)m=-—j3

where the 3(k+1)(k+2) coefficients Akikzkg and ¥AZ, are, respectively, the monomial and
symplectic aberratlon coefficients, and *x7, (&) are the symplectic (essentially the solid
spherical) harmonics [3]. Axis-symmetric aberrations are thus in 1 : 1 correspondence
with the eigenstates of the three-dimensional quantum harmonic oscillator, |k, ks, k3)
and |k,j,m) respectively, classified in cartesian and spherical coordinates. The sym-
plectic basis is preferred for symbolic computation because it is the most economic for
composition of transformations [4]. In Fig. 1 we arrange the monomial and symplec-
tic coefficients in a pattern familiar from hadron multiplets (the paraxial part is k = 1
and corresponds to the quark triplet). Angular momentum is here the symplectic spin
j =k k—2,...10r0, and its “third projection”™ n = —j, —j + 1, ... , 7 has been called
the Seidel indez.
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(b)
Ficure 1. Aberration multiplets of orders 3 (k = 2, left), 5 (kK = 3, mid) and 7 (k = 4, right).
The open circles represent distinct aberrations classified by the ‘number of quanta’ ki, ks, k3
(summing to k), as states of the 3-D quantum oscillator in the cartesian basis. The black circles
represent their classification into symplectic spin multiplets j, m, as oscillator states in the angular
momentum basis.

An axis-symmetric geometrical optical system will transform a ray (p,q) to

G{As1} (B) = oo (14 {dgo} 0] (1 + (Ao} +-+2)

(14 {dno) + Al (Ao} + e (o Ldasol)) +-o0) (B)

= (14 {As,0} + 43,0+ H{ A2, {4z, 0}}

+{Aq,0} + {A3,{Az,0}} + 3:{A2, { A2, {A2,0}}} +--) (p)

q
N (PA(RQ))
qa(p,q)/
One can consistently truncate the order of the polynomials and drop the ellipses. Thus
in seventh aberration order, one needs to work only with up-to-eight degree polynomials;
the canonicity of the transformation is then guaranteed up to eight-degree terms, i.e.,
{gai,pa;} = di; plus terms of order ten or higher.

In mexLIE [1], all functions f(p,q), g(p,q) of the phase space coordinates are Taylor-
expanded and then truncated to rank k. This is the aberration ezpansion, structured and
classified with quantum harmonic oscillator labels [3]. Finite optical transformations are
thus characterized by the (matrix) parameters of the paraxial part, and a nested tower
of aberration coeflicients which describe the nonlinearity. The symplectic classification
reduces aberrations to irreducible diagonal blocks under the paraxial part; it is used by
mexLIE to format its tables optimally (of course, mexLIE can also use the monomial basis)
for aberration orders A =2k —1 =3, 5 and 7.
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4. OPTICAL ELEMENTS

We have taken the task to determine the aberration coefficients of the basic elements
of axis-symmetric optical systems to seventh aberration order. The basic elements in-
clude free flight in homogeneous and radial graded-index media and polynomial-shaped
refracting surfaces of revolution between them. They are incorporated in mexLIE through
tables. Below we offer two examples.

Free flight by z (along the optical axis) in a homogeneous medium of refractive
index n is obtained, up to seventh aberration order (ranks k& = 1,2,3,4) by typing (with
a numerical value for K)

? THICK: FREEFLIGHT (Z, N, K)

The answer given by the machine is the transformation THICK = f-l,’f,l, characterized by

_zl/n ?) and a list of its Lie aberration coefficients.

The six third-order coeflicients are

the “paraxial part” matrix F = (

Fopp=—2z/8n, Fi10=0, Fip1=0, Fya0=0, Fy11=0, Fop2=0.

Only spherical aberrations (k,0,0), k = 2,3,... are different from zero.

A refracting surface of eighth-degree polynomial shape z = ((q) = (2|q|? +C4lq|* +
Cslq|® + Cs|q|® between two aligned radial graded-index media of the form n(q)? = v? —
1?|ql? and n'(q)* = v'? — 4'?|q|? is obtained from mexLIE 2.0 by typing (for a definite
numerical value of the rank K)

7 INTER: EFIBSURFACE (NU, MU, NUP, MUP, [Z2, Z4, Z6, Z8], K);

The transformation (aberration group element) INTER = ST:T whid
1 20 —v)(s
0 1
monomial basis)

has the paraxial matrix

S = and the following third-order aberration coefficients [5] (here in

a) astigmatism, Sy o = (2/2V — (2/2v,

b) coma, 31’1'() = 0,

c) spherical aberration, S; 90 = 0

d) distorsion, Sp 11 = 2¢3(v/v' — 1),

e) curvature of field, Sy 20 =0,

f) pocus, Sop2 = C2(u'2/20" — p?/2v) + C3 (202 V' — dv + 2') + C4(v — V')

5. CONCATENATION OF OPTICAL ELEMENTS

We stress the fact that group elements (transformations) multiply as their optical counter-
parts concatenate—from left to right, along the z-axis. Whereas the linear part composes
simply by matrix multiplication, the aberration part has a more complicated composition
formula.

The gato composition § of two pure aberrations (i.e., with unit paraxial matrix) is
C = A B. It stems from the Baker-Campbell-Hausdorff formula of the factored-product
forms
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-+ x exp{Cy, o} exp{Cs,0} exp{Ca,0} =--- x exp{A4,0} exp{As,0} exp{A2,0}
x -+ x exp{ By, o} exp{Bs,0} exp{Ba,o},

and is given explicitly, to seventh aberration order, by

Cy = Az + Ba,
C3 = A3 + By + 3{A,, By},
Cy = As + By + {Ag, Bs} + 3{A2, {42, B2}} — §{{ A2, B2}, Ba}.
We may consistently truncate to rank k& with group elements (transformations) Gy { A; M}.

The composition of two transformations of rank k involves the action of the paraxial part
of left factor on the aberration part of the right factor:

Gr{A; M} G {B; N} = Gi{A;1} G {0; M} G {B; 1} G {O; N},
= Gr{A;1} Gk {0; M} Gi{B; 1} Gic{0; M} 1 Gy {0; M} Gy {O; N},
= Gi{A;1} G {D(M,B);1}Gy{0; MN},
= Gr{AID(M, B); MN},

where

D(MaB) = {D(k)(Mka)r I D(g)(Ma BS)aD(‘Z)(MrB2)}

is the adjoint action of the linear transformation M on the polynomial By (p, q), reduced
by rank k. When we use the symplectic basis, then DU)(M, By,) is completely reduced
by symplectic spin j = k, k —2, ... {J into irreducible diagonal blocks. Herein lies the
efficiency of this basis. mexLIE contains the function COMPOSE (A, B, K) which performs
the above composition for the two (symbolic) transformations A and B to rank K.

For example, a singlet lens in air (n = 1), of thickenss ¢ and homogeneous refractive
index n, with faces ( and ¢’ as in Fig. 2a, is the composition

SINGLET = Sy ny¢ Fton Snir-

It is obtained in mexLIE through

? SINGLET: COMPOSE (COMPOSE (INTER, THICK, K), INTER’, K).
This singlet, when placed between an object at a distance z to the left and a screen at a
distance z; to the right, will produce a (generally unfocused) image, as in Fig. 2b. This
tmager system is obtained by composing

IMAGER = F.,; SINGLET F., ;.

In mexLIE this product of transformations is found by typing
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SINGLET ———
~ Lo
| / ’ Zo Z 1
n) -
&\ |z | ‘
| / i
' . IMAGER = ey

s, tg,
(a) (b)

FIGURE 2. (a) Composition of § F &: free flight between two surfaces to produce SINGLET. (b)
Composition of F SINGLET F to IMAGER.

? IMAGER: COMPOSE ( COMPOSE (

FREEFLIGHT (Z0,1,K), SINGLET, K), FREEFLIGHT (Z1,1,K), K);

Finally, the action of IMAGER on the position coordinate of optical phase space,
q — q4'(p,q), is obtained through the mexLIE function

7 QPR: ACTONQ (IMAGER, K) $ PPR: ACTONP (IMAGER, K);
where all parameters of the system may appear with symbolic values. A similar function
ACTONP (IMAGER, K) will yield the transformation of the momentum coordinates p.
Please note carefully that the classification and action of aberrations described with
Lie-Hamilton methods is different from the traditional Seidel classification and action,
which is based on the Lagrangian formulation of optics and the cross-variable point-
angle Hamiltonian characteristic function [6]. The two approaches can be compared
(and should agree) when the phase space transformations due to the optical system,
p'(p,q), and q'(p, q), are written out explicitly.

As an example on the use of mexLIE, in reference [7] we proposed the following
problem: suppose a generic optical system A is built to paraxial focus, so that its matrix
part is upper-triangular and q' is function of q only (independent of the arriving ray
directions p). But of course the system also aberrates from third order on. The questions
we posed was: through warping the screen (into a revolution surface with polynomial
parameters), which aberrations are correctable, which cannot be corrected, and which
are immaterial for point-image formation? The last part of the question can be answered
immediately: distorsion and pocus [m = —j and —j + 1 in the symplectic basis or
(0,1,k—1) and (0,0, k) in the monomial basis] are immaterial because they only produce
q'(q), independent of p. The solution to the first two questions is also well known to
third aberration order: only curvature of field is corrected on a paraboloidal screen.
(Notice again the difference between Seidel and Lie-Hamilton formulations: in the latter
we correct the system through free flight to a warped surface; in the former we must
recalculate the system to allow for the extra free flight that, by itself, does not “aberrate”.)
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It is perhaps surprising that, to aberration orders 5, 7, and 9, only three aberrations of
each rank are correctable: in the monomial basis (0,2,k—2), (1,1,k—2), and (1,0,k—1).
Linear optimization strategies can be set up once a cost function on the aberration set is
agreed upon. (After all, there are more aberrations than polynomial parameters.) This
is a stimulating analogue in optics of the Raccah algebra used in nuclear physics for
mathematically similar problems.

6. STRUCTURE OF mexLIE [1]

mexLIE is a product of academic research that purports to be useful for parametric design
of metaxial optical systems. It should also apply to any higher-order perturbation scheme
which factors phase space transformations into a linear part and a nonlinear polynomial-
based expansion. mexLIE has been published by iimas-unam and can be obtained from
the authors; it includes a (103-page) manual and one high-density diskette.

mexLIE is written in muSIMP, a low-level list-handling derivate of LISP distributed by
the Soft Warehouse since the mid-80s. The graphical display of aberration phenomena
through their spot diagrams is accomplished through a . COM file of the program SPOT_D (8],
which exists as an interactive program in PASCAL in the same diskette. The diskette will
run ab initio on any good pc. A MACSYMA version is being prepared with essentially -
the same commands, that will run on larger machines without the limitation of infinite-
precision representation of quotients and the 640 kb RAM memory restriction of muSIMP.
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