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ABSTRACT. The local spectral expansion method for electromagnetic scattering from perfectly
conducting surfaces rough in one dimension was recently formulated and it was shown in Ref. 13
that it is a more efficient formulation than other available analytical approaches. In this paper the
formulation of the local spectral expansion method is extended for the scattering from perfectly
conducting surfaces rough in two dimensions. The full vector nature of the problem is accounted
for. The original formulation for one dimensional rough surfaces is recovered from the present
formulation in the appropriate limits.

RESUMEN. Recientemente se formuld el método de“expansién espectral local” para la difraccién
de ondas electromagnéticas por superficies conductoras ideales v rugosas en una dimension y se
mostrd, en la Ref. 13, que dicho método es mas eficiente que otros métodos actualmente en uso
En este articulo se extiende la formulacién original para la difraccién de ondas electromegnéticas
por superficies conductoras ideales pero rugosas en dos direcciones. Se toma encuenta en forma
rigurosa la naturaleza vectorial de los campos. La formulacién original para superficies rugosas
en una dimensién se recupera en los limites correspondientes.

PACS: 42.25.B; 42.25.F; 78.66

1. INTRODUCCION

There are two classic approaches to the study of wave scattering from rough surfaces.
These are the Rayleigh method or the small height perturbation method (SPM) to first
order [1,2] and the physical optics or Kirchhoff approximation (KA) [3]. For a long
time it has been recognized that these two approaches are not entirely compatible with
each other and there has been a continued interest to develop and study new analytical
approximations to the solution of the problem. Unfortunately, there is still not a simple
rule to determine the regions of applicability of an a pproximation to the scattering
of waves from an arbitrary surface. Nevertheless, the regions of validity for random
Gaussian rough surfaces in one dimension have been studied recently in a quantitative
manner [4-9], permitting us to get an approximate idea of the regions of applicability of
the different theories.
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The main interest so far has been to formulate a theory capable of bridging the
gap between perturbation theory and the Kirchhoff approximation. Several analytical
theories have been put forward by different authors in recent years [10-12], all of them
with some degree of success. In a recent paper we formulated the local spectral expansion
method (LSEM) for electromagnetic scattering from perfectly conducting surfaces rough
in one dimension [13]. A comparison with other available analytical approaches showed
that the results based on the LSEM provide more efficient approximations than the other
theories. A systematic series solution was formulated using the LSEM and the first and
second order approximations were analyzed to some extent.

The solution of the scattering problem for one-dimensional (1-D) rough surfaces is
important in that it gives the understanding of the scattering processes, of the physical
important aspects of the problem, and of the approximations that are important. How-
ever, most practical problems deal with two-dimensional (2-D) rough surfaces. In this
paper we extend the formulation of the LSEM to deal with 2-D perfectly conducting
surfaces. In this case we have to take into account the full vector nature of the problem.
The case of 1-D rough surfaces is recovered from the present formulation when the surface
is made constant along one direction and when the angle of incidence is contained within
the plane perpendicular to the surface undulations.

The extension to 2-D rough surfaces is not obvious and needs some consideration.
Here we only derive the first order results using the tangent plane approximation in the
present formulation. Higher order results analogous to those for the 1-D case may be
derived using the present formulation. The present results bridge the gap between first
order perturbation theory and the Kirchhoff approximation. The extension of the LSEM
for the scattering from dielectric-dielectric rough interfaces is also of importance and has
been published elsewhere [14].

2. THE SCATTERING EQUATIONS

The rationale of the method for 2-D surfaces is analogous to that for 1-D surfaces, the
main difference being that we now deal with vector equations and their transforms, and
these must be used carefully.

The surface profile function is now described by the equation y = h(z,z) and the
normal to the surface is given by

fi=N/\/1+h2+h? where N=—-a,h,+4ah, —4ah,. (1)
We use the same set of local basis functions 1, and 1. [13] to expand the fields. We
follow closely the formulation of the regular full wave theory by Collin [15] to set up the
scattering equations and find their solution. The approximation is, however, different
and follow closely the concepts introduced in Ref. 13.

For a flat surface we have E;, = E, = H, = 0 and we will expand these field
components in terms of the odd basis functions 1),. The other components E,, H;, and
H, are expanded using the even set of basis functions 1p,. Hence we define the vector
transforms

€ = 8y€y0 + By€ye + 8,65 and h =azhze +ayhyo + 8.z, (2)
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where the second subscript refers to the 1e- or Yp-transform. Maxwell’s equation for a
sourceless e/“!-field are

V xE=—jwugH andV x H = jweyE. (3)

If we operate on both sides of each cartesian-components of these vector equations with
either

oo o0
[ o [y, )
3
accordingly with the vector transforms defined in (2), we obtain six coupled linear in-
homogeneous differential equations. For example, when considering the z-component of
the first of Maxwell’s equation in (3) we note that 9y /0y = jk,1; and apply the first
operator in (4) to both sides of the equation. Applying the appropriate operator to each
component of Maxwell’s equation (3) and integrating by parts as indicated in Ref. 15

yields
oo
a
+ /h E, £ : dy.

Y 4 jkyEro = —jwiohze — [(By + ho EBy) 7] ,

We may define

0 )
V= Ay jk:ay+a,28 (5)
and write the transformed Maxwell’s equations as
V x & = —jwuoh +(2,0,2) - (N x E)|j, + I, (6a)
V x h = —jwpoé + (0,2,0) - (N x E)|n + L, (6b)
where
f % E@+ (f %b / Ef% ) / @ em
h h
and

Mg . [T s
= d’y) —az/,; Hya—Id‘y

Hya¢°dy+ Ha‘bed [T m
& E:

and we used 3| = 0, ¥ = 2/V2n. We can decouple these equations by operating
on both sides of the equations with V x and combining the results. For the electric field

transform we get
V X V x & — k2& = —jwpo(0,2,0) - (N x H)lj
+V x(2,0,2) - (N x E)|, — jwpole + VI, (7)
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(N x E)|s is known from the boundary conditions but the term (0,2,0) - (N x H)|, =
2a,(hyH,—h.H;) is not. On the other hand, I,;, and I. contain the derivative of 1. or 1,
with respect to z or z, and thus, the integrands involved have the factor h; or h,. Hence,
if the guess to H|; on the right hand side of (7) is correct to order n in the perturbative
parameter, the resulting approximation te é from (7) will be correct to order n+ 1 in the
perturbative parameter. This is similar to the case of 1-D rough surfaces in Ref. 13.

We will proceed along the same guide lines we used in the case of 1-D rough surfaces.
Let us define the A (k) of the electric field as

Aww=%/-&ﬁﬂ®+%f @www+mf E,e'kvY dy. (8)
h h h

Then the vector-transform € is given as

1 i i o o
E [e Jkyh(z, )A(ky) — e iky(z,2) . A(—ky)] . (9)

>
Il

where X = a 8; — aya, +'ézéz. We may find the vector equation satisfied by A(k,) by
a similar procedure used to derive (7). We find

i _ . 1 . .
V xV x A — kZA = B0 jkyh(z2)(N x H)|j, + ——e 0V x (N x B)|,. (10
X 0 J—e ( M T ( Nn- (10)

2T

Thus, we may solve for A(k,) from this equation and then construct € and invert the
transforms to obtain the scattered field. We may actually apply first the inversion op-
erator to the different terms in (9) and then construct the scattered field. To maintain
more compact our expressions we will do it the latter way.

Let us consider the scattered fields, E* and H?, only. This is a source-less field above
the surface and satisfy the equations above. The boundary conditions yield (N x E*)|, =
—(N x E')|,. Following our previous work we obtain the first order approximation using
the tangent plane approximation on the right hand side of (10). This is (N x Hf)|, ~
—(N x HY)s.

3. SCATTERING OF A TM WAVE

Let us consider an incident TM wave given by

s 140 S T R . . ) N
H' = f—Fge Jkzizt+ikyty—gksiz (—az cos B; sinp; + a, siné; + a, cos b; cos p;)
€o :
and

E! = Ege k=i +ikyiy—ik:i2 (3 c0s 0, sin ; + a,sinf; + a, cosf; cos ;) | (11)
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The solution to (10), when the right hand side is known, may be obtained by Fourier
transforming both sides. We multiply both sides of the equation by exp(jk,z + jk.z) and
integrate on dr and dz from minus infinity to plus infinity. Integrating by parts yields

(1 e+ k) F(A(ky)} = LELR (MR F) ) = —Lle x B (N x B[4}

The solution from this equation may be separated in its TM and TE components. The
TM component is given by [15]

F{e/™MN x H')|n}

PAr (i = XX By (ot

k2 (k2 — k3) (k3 + k2) Ve

1 ik (N x E )
+mkxF{e (NxEYp} ). (12)
The Fourier operator on the right hand side of the equation may be brought outside the
whole expression.

The contribution to the scattered TM-field corresponding to the first term in (9)
is obtained by inverse-Fourier transforming (12), applying the inversion operator for
the 1e- or 1,-transform accordingly to the definition of € in (2), and multiplying by
exp (—jkyh)/(Zw)lfg. Thus, we should apply the operator

g AR dk dk ~jkaz—jk:z —iky(y—h) 4 oiky(y—h)
(2n) 2 ¢ v ,/— ( ¢ )

to F{A%(z', 2')}7ar in (12), where the minus sign is used for the z- and z-components of
F{A%}7 and the plus sign for the y-component. Upon expanding the vector products
and rearranging terms we get

—J3Eqo —jkyh[ (k x k x éy) S+ huP + ha —jkzx—jk:2
et B v m et e Qe

(e~ Tkv(u=h) 4 ejky(y—h))e—j(ki—k:)$'+j(k§+ky)h'—j(’ci—kz)f dk dk, dk, dz' dz',
where [ means five integrals over (—oo, 00), one for each variable, and
S = kokzky sinp; + kok,k, cos p; + K%k, cos 0; cos ©; + kzkI cos @; sin ;,
P = K?kysinf; — ko(k2 + k2) sin ;,
Q = kk, sin8; — ko(k2 + k2) cos ¢;,

where k* = k2 +k2+kZ. Noting that 1/(k* —k3) = 1/[k2 — (k§ — k2 — k2)] has two poles in
the k,-plane at k, = +(k3 — k2 wkg)lf 2 we may evaluate the integral over k, using residue
theory. The result is —27jf(k, = —/)/2\/- if 2/ — 2z > 0, and =27 f(k, = +/)/2\/"
if 2/ — z < 0, where /- = ,/kj —kZ — k2 and f(-) is the remainder of the expression.
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The integrals over k; and k; may then be evaluated using the method of stationary
phase by assuming than only a finite patch of the surface of area 2L x 2L is illuminated
and assuming that the observation point r = (z? + y? 4+ 2%)1/2 is very large compared
to L. The term with the factor +e/*¥(¥=h) does not have a stationary phase and does
not contribute in the far-zone. The term with the factor e7%+(¥=") has one stationary
phase point. The evaluation of the integrals with the method of stationary phase gives a
factor 27j|k$|e~7*oT /r which multiplies the remainder of the integrand with kg, k,, and
k. replaced by kj = kosin8;singp;, k; = ky cos 6, and kI = kq sin ; cos ¢; [16]. We get

—jEoe ko7 (k° x k® x &)
2nr  2kE (k32 + k32)

f f (S + Ay P + hy Q)e3v=% +ipyh' =iv:2' gt gt

where v, = ki —k3, v, = ki — k3, p, = k" + ky,. Noting that h. 2€P = (1/4p,)d e L

1)/dz' and h, :ejpvh‘ (1/4py)d d(edPvh’ — 1)/dz we may integrate by parts the last two
terms from the integral. The edge terms are zero since we have assumed that h(z,z) =
0 for |z|, |z| > L. Upon expressing (Spy + vz P + v;Q)/py in terms of the angles of
incidence and scatter and rearranging terms we may write (Spy + v, P + v.Q)/p, =
2k3 sin Bsfigll,)(ﬂi, ), where

(1 + cos 8; cos bs) cos(ps — ;) — sinb; sin b,
cos f; + cos 6

8, Q) =

7

where Q; and Q; stand for 6;, @; and 6s, @,. Thus, the latter integral becomes

_ —jkor (1.8 s A L L ) ) )
JzEUZ (k X.kBX ay) l: 511})(91 . Qs)[ f eij)mxf_]U;Z(e]Pyh _ 1) dr dz
wkor sinf, .

%(cosﬂi + cos 8,) cos(ps — @;) [ / g~ dv=E=vez gy dz] (13)

The first term is the non-specular component and the second term is the specular
component. If at this point we let L increase to infinity the second integral becomes
(2m)26(ki — k) 8(k: — k%) and we may replace 6; and ¢; by 6, and ¢, respectively in
the scattering coefficient multiplying the integral. Because fq(nl,) (€;,9Q) in the specular
direction coincides with the latter result, we may include the specular term in the first
term in (13) by dropping the —1 inside the parenthesis.

The scattered TM field predicted by the first order approximation consists of (13)
plus the term arising from the second term in (9), —e/®"#)X . A(—k,). We may obtain
its contribution in the far-zone from the result in (13), simply by changing the sign
of ky. Thus, we should change (k;,k;,k;) to (k3,—k;,kZ) in k* x k* x &, and cos 6,
to —cosfs (costls came from ky = kgcosb;) in f )(Q,,Q ) in (13), and dot-multiply
the result with K (the factor e?*v" is unity when considering the far-zone). Note that
—X - (k* x k® x &)|g, -k, = (k® x k® x &;). Thus we obtain the scattered TM field as
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y —jk 8 o o0
—jEpe 7% (k® x k® x &) {l)(ﬂi Q) /‘00 / o~ JVsT—jV22 oPyh o
2mkor sin f; Lh i P

+fl(tg)(ﬂiaﬂs)/ / e V=i edqvh dyp dz |, (14)

—00 v =00
where g, = kyi — kys,

(1 — cos B; cos 8;) cos(ps — ;) — sinf; sin b,
cos #; + cos B

fl(,ﬁ)(ﬂ,;,ﬂs) = H
and the notation Eyy stands for the TM (vertical polarization) scattered wave arising
from a TM incident wave.

Next we need to find the cross polarized scattered field, i.e., the TE or horizontally
polarized scattered wave Eyy. The procedure follows very closely that used to obtain
Eyvy. The difference is that we must replace the operator for the TM component

(k x k x a,)(k xk x a,)
k2(k2 + k2) '

with the operator for the TE component [15]:

(k x a,)(k x &)
(kZ2+k2)

Upon doing this change in (12) and follow an otherwise identical analysis we get

—jEge~ikom k* x &,

27T sin @,

w w & i “
Evyg = fvr(4,8) [ / / e IV=T=JVz2IPy I g
—00 J—o0

——/ / e IveE=Iv=2 ek gy dz| | (15)
-0 J —00

where fv g (£, Qs) = sin(ps — ¢:).

4. THE SCATTERING OF A TE WAVE
In this case the incident field is given by

E' = Ege ik=ietikyiy—ik:i2(_a cosp; + 4, sin ;)
and

H = - /@Eoe_jk’iz”kyiy"jk‘u (—&, cos 0; sin ; + &, sinf; + a, cosB; cos ;).  (16)
€0
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Ficure 1. Coordinate system and definition of the angles of incidence and scatter. The figure
also shows the fields for a TM incident wave and a TM scattered waves.

The analysis is nearly identical to that in the previous Section and the only difference is
in the surface terms, (N x E®)|, = —(N x E)|; and (N x H%)|, ~ (N x H')|;, which
must be evaluated with the TE wave (16). We give here only the ﬁna.l results for the
far-fields. The scattered TE wave is obtained as

: —jkor ] A
Evy = —jEge 7% (k . X ay) f(l) (Q, ) f / e~ IV=T=JV:2 odPyh g0 4
2rr sin @,
(2) Q“Q / [ jvzxfjv;zequh dr dzjl: (17)

where £ (%, 925) = £ (i, 95) and fi7)(Q, Q) = A7 (2, Q).
The cross polarized scattered wave is obtained as

jEge~7%0m (k* x k° x a,)
2mkor sin 6,

v (Q4, Q) [/ / e IV2T=J:2 Py oy

+/ /' e,_;,,,‘nggfjv;zequh dzx dz, (18)
—00 —00

5. PROPERTIES OF THE FIRST ORDER SOLUTIONS

Eyvyg =

The far-zone solutions in (14), (15), (17), and (18) satisfy analogous properties to their
counterparts in the case of perfectly-conducting 1-D rough surfaces. The first terms
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in each case coincide with the Kirchhoff approximation (KA). The second term in E,,
and Egg is zero in the specular direction, and the cross polarized fields are zero in
the specular direction. Thus, the present results coincides with the KA in the specular
direction. The scattered TE fields (15) and (17) are zero for grazing emergence, and thus,
the boundary conditions are satisfied. The TM scattered fields in (14) and (18) are not
zero for grazing emergence and they coincide with the regular full wave results in this
case. If we expand the exponentials in power series and keep only the first two terms
(e.g., e?Pvh 2= 1 4 jph(z,z)) we obtain the first order results from perturbation theory.
On the other hand, since our only approximation was the tangent plane approximation,
we expect a priori that the present results will coincide with the KA whenever this is
accurate.

If we assume that h(z, z) is constant along the z-direction, so that h = h(z) and take
w; = 0, we recover the results for 1-D rough surfaces [13].

As in the case for 1-D rough surfaces, we should use a reciprocity rule when dealing
with randomly rough surfaces, since the results are not reciprocal. The rule is very simple
and follows from the same arguments used in the case of 1-D rough surfaces. We have
that we should use the result for which the angle of incidence is smallest. Invoking the
reciprocity theorem it follows that

M8 (U, Q) = (1 — OMBE 0 (8i, 01,05, 05) + (OMEA s (=05, 05, —0;, —0;),
(19)

where M may be E or H, Mgfs gz 18 any of the direct results given above where A and
B may be H or V (for vertical and horizontal polarizations), and

£ = 1 for—6; <8, <6,
0 otherwise.

MP2epr (=05, 05, —0;, —p;) used in (19) may be called the reveresed or reciprocal results.
Note that the incidence and scatter angles are interchanged and the sign of the polar angle
is changed. Note also that the order of the subscript was changed to BA.

6. CONCLUSIONS

The formulation of the LSEM for electromagnetic scattering from perfectly conducting
surfaces rough in two dimensions was presented and the first order results using the tan-
gent plane approximation were derived. The properties of the first order solutions are
analogous to those in the case of 1-D rough surfaces. In particular, it was indicated that
the present first order results reduce to first order perturbation theory in the appropriate
limit, and on the other hand, the approximations will coincide with the Kirchhoff approx-
imation when this is valid. If the surface is assumed constant along one direction and
the incident field is assumed perpendicular to such direction we recover the formulation
for 1-D rough surfaces in Ref. 13. A systematic series solution is in principle possible by
applying perturbation theory to correct the tangent plane approximation and find higher
order approximation as it was done for 1-D rough surfaces.
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