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ABSTRACT.The local spectral expansion method for electromagnetic scattering from perfectly
conducting surfaces rough in one dimension was recently formulated amI it was shown in Re£. 13
that it is a more efficient formulation than other available analytical approaches. In this papel' the
formulation of the local spectral expansion method is extended for thc scattering from perfectIy
conducting surfaces rough in two dimensions. The full vector nature of the problem is accounted
fol'. The original formulation for one dimensional rough surfaces is recovered from the present
formulation in the appropriate limits.

RESUMEN. Recientemente se formuló el método de "expansión espectrallocal" para la difracción
de ondas electromagnéticas por superficies conductoras ideales y rugosas en una dimensión y se
mostró, en la Re£. 13, que dicho método es más eficiente que otros métodos actualmente en uso
En este artículo se extiende la formulación original para la difracción de ondas electromegnéticas
por superficies conductoras ideales pero rugosas en dos direcciones. Se torna encuenta en forma
rigurosa la naturaleza vectorial de los campos. La formulación original para superficies rugosas
en una dimensión se recupera en los límites correspondientes.

PACS: 42.25.B; 42.25.F; 78.66

1. INTRODUCCIÓN

There are two dassic approaches to the study of wave scattering frolIl rough surfaces.
These are the Rayleigh method or the small height perturbation method (SPM) to first
order [1,2] and the physical optics or Kirchhoff approximation (KA) [3]. For a long
time it has been recognized that these two approaches are not entirely compatible with
each other and there has been a continued interest to develop and study new analytical
approximations to the solution of the problem. Unfortunately, there is stillnot a simple
rule to deterrninc thc regions of applicability of an a pproximation to the scattering
of waves from an arbitrary surface. NevcrthelcssJ the regions of validity fOf randolIl
Gallssiall rough surfaccs in oue dimensioll Itavc hecn Htlldicn rccently in a qualltitative
manner [4-9], permitting us to get an approximate idea of the regions of applicability of
the different theories.
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The main interest so far has becn to formulate a theory capable of bridging the
gap between perturbation theory and the Kirchhoff approximation. Several analytical
theories have been put forward by different authors in recent years [10-12], all of them
with sorne degree of success. In a recent paper we formulated the local spectral expansion
method (LSEM) for c1ectromagnetic scattering from perfectly conducting surfaces rough
in one dimension [13]. A comparison with other available analytical approaches showed
that the results based on the LSEM provide more efficient approximations than the other
theories. A systematic series solution was formulated using the LSEM and the first and
second order approximations were analyzed to sorne extent.

The solution of the scattering problem for one-dimensional (I-D) rough surfaces is
important in that it gives the understanding of the scattering processes, of the physical
important aspects of the problem, and of the approximations that are important. How-
ever, most practical problems deal with two-dimensional (2-D) rough surfaces. In this
paper we extend the formulation of the LSEM to deal with 2-D perfectly conducting
surfaces. In this case we have to take into account the full vector nature of the problem.
The case of l-D rough surfaces is recovered from the present formulation when the surface
is made constant along one direction and when the angle of incidence is contained within
the plane perpendicular to the surface undulations.

The extension to 2-D rough sur faces is not obvious and need, some consideration.
Here we only derive the first order results using the tangent plane approximation in the
present formulation. Higher order results analogous to those for the l-D case may be
derived using the present formulation. The present results bridge the gap between first
order perturbation theory and the Kirchhoff approximation. The extension of the LSEM
for the scattering from dielectric-dielectric rough interfaces is also of importance and has
been published elsewhere [14].

2. THE SCATTERING EQUATIONS

The rationale of the method for 2-D surfaces i, analogous to that for l-D surfaces, the
main difference being that we now deal with vector equations and their transforms, and
these must be used carefully.

The surface profile function is now described by the equation y = h(x, z) and the
normal to the surface is given by

ñ = Ñ/ JI + hi + h; where Ñ = -axhx + ayhy - azhz. (1)

We use the same set of local basis functions ,po and ,pe [13] to expand the fields. We
follow closely the formulation of the regular full wave theory by Collin [15] to set up the
scattering equations and find their solution. The approximation is, however, different
and follow closely the concepts introduced in Re£. 13.

For a f1at surface we have Ex = Ez = Hy = O and we will expand these field
components in terms of the odd basis function, ,po. The other components Ey, Hx, and
Hz are expanded using the even set of basis fUllctiolls 'ljJf~. Hence we define the vector
transfonns

and (2)
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where the second subscript refers to the ,p.- or ,po-transformo Maxwell's equation for a
sourceless ,jw'-field are

v x E = -jwJ1.oH andV x H = jw£oE. (3)

If we operate on both sides of each cartesian-components of these vector equations with
either

or (4)

accordingly with the vector transforms defined in (2), we obtain six cOllpled linear in-
homogeneous differential equations. For example, when considering the z-cOlnpOrlent of
the first of Maxwell's equation in (3) we note that D,p;/Dy = jky,p~ and apply the first
operator in (4) to both sides of the equation. Applying the appropriate operator to each
cOlllponent of Maxwell's eqllation (3) and integrating by parts as indicated in Re£. 15
yields

Dey• 'k - . ,- [(E 'E) .1."] I 100 E D,p; 1-D +J yexo=-JwJ.lO!ze- x+ tx yo/e + Y-D (y.
X h h X

We may define

and write the transforllled Maxwell's eqllations as

v x e = -jwl'oh + (2,0,2) . (N X E)I" + 1m,
V X h = -jwl'oe + (0,2, O) . (N X E)lh + le,

where

(5)

(6a)

(6b)

and

rOO D,p" ( roo D,p" roo D,p" )
le = -ax Jh Hy Dzody+ay Jh Hx Dz. dy- Jh Hz Dx' dy

and we used ,p~Ih = 0, ,p; Ih = 2/.j2;. We can decollple these equations by operating
on both sides of the eqllations with V x and combining the results. For the electric ¡ield
transforlll we get

V x V x e - k~e = -jWJ1.o(O, 2, O) . (N X H)lh

+ V x (2,0,2) . (N X E)lh - jWI'ol. + Vlm, (7)
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(Ñ X E)lh is known from the boundary conditions but the term (0,2, O) . (Ñ X H)lh =
2ay(hxHz - hzHx) is noto On the other hand, 1m and le contain the derivative of.,pe or.,po
with respect to X or z, and thus, the integrands involved have the factor hx or hz. Hence,
if the guess to Hlh on the right hand side of (7) is correct to order n in the perturbative
parameter, the resulting approximation te e from (7) will be correct to order n+ 1 in the
perturbative parameter. This is similar to the case of 1-0 rough surfaces in Ref. 13.

\Ve will proceed along the same guide lines we used in the case of 1-0 rough surfaces.
Let us define the A(ky) of the electric field as

Then the vector-transform e is given as

(9)

where X = áxáx - ayay + ázaz. We may find the vector equation satisfied by A(ky) by
a similar procedure used to derive (7). We find

Thus, we may solve for A(ky) from this equation ami then construct e and invert the
transforms to obtain the scattered field. We may actually apply first the inversion op-
erator to the different terms in (9) and then construct the scattered field. To maintain
more compact our expressions we will do it the latter way.

Let us consider the scattered fields, E' and H', only. This is a source-Iess field aboye
the surface and satisfy the equations aboye. The boundary conditions yield (Ñ x E') Ih =
-(Ñ x E;)lh. Following our previous work we obtain the first order approximation using
the tangent plane approximation on the right hand side of (10). This is (Ñ x H')I" ""
-(Ñ x H;)lh.

3. SCATTERING OF A TM WAVE

Let liS consider an incident TM wave given by

. ~,o .k . +k .k .H1= -Eoe-) xIX J ylY-] zlZ(-a.rcos8iSini.pi+aljsill()¡+azcosOiCOSi.pi)
Eo .

alld
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The solution to (10), when the right hand side is known, may be obtained by Fourier
transforming both sides. We multiply both sides of the equation by exp(jkxx+ jkzz) and
integrate on dx and dz from minus infinity to plus infinity. Integrating by parts yields

The solution from this equation may be separated in its TM and TE components. The
TM component is given by [15]

F{A'(k)} = _ (k x k x ay)(k x k x ay) . (jWJlOF{e:ik,h(Ñ x JIi)! }
Y ™ k2(k2 _ k~)(k~ + k¡).j2ir h

+~k x F{e:ik,h(Ñ x Ei)!h})' (12)

The Fourier operator on the right hand side of the equation may be brought outside the
whole expression. .

The contribution to the scattered TM-field corresponding to the first ter m in (9)
is obtained by inverse-Fourier transforming (12), applying the inversion operator for
the ..pe-or ..po-transform accordingly to the definition of e in (2), and multiplying by
exp(-jkyh)/(27f)1/2. Thus, we should apply the operator

e-jk,h roo roo dk dk e-jk,x-jk,z roo dk _1_ (e-jk,(Y-h) :J:: e:ik,(Y-h»)
(27r)3/2 J -00 J -00 x y Jo y .j2ir

to F{AS(x',Z')}TM in (12), where the minus sign is used for the x- and z-components of
F{As}rM and the plus sign for the y-component. Upon expanding the vector products
and rearranging terms we get

(e-jk,(y-h) :J:: e:ik,(y-h))e-j(k~-k,)z'+j(k~+k,)h'-j(k:-k,)z' dk dk dk dx' dz'
x y Z l

where f means five integrals over (-00,00), one for each variable, and

S = kokzky sin 'Pi + kokzky COS'Pi + k2kz COSOiCOS'Pi + k2kx COSOisin 'Pi,

P = k2kzsinOi - ko(k; +k;)sin'Pi,

Q = k2kzsinOi -ko(k; +k;)COS'Pi,

where k2 = k~ + k~ + k;. Noting that 1/(k2 - k~) = l/[k; - (k~ - k~ - k~)] has two poles in
the kz-plane at kz = :J::(k~- k~ - k~) 1/2we may evaluate the integral over k, using residue
theory. The result is -27rjj(kz = -J) 2J if z' - z > O, and -27fjj(kz = +J)/2J
if z' - z < O, where J = k~ - k~ - k~ and j (-) is the remainder of the express ion.
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The integrals over kx and ky may then be evaluated using the method of stationary
phase by assuming than only a finite patch of the surface of area 2£ x 2£ is il1uminated
and assuming that the observation point r = (x2 + lP + z2)1/2 is very large compared
to £. The term with the factor ::l:ejk,(y-h) does not have a stationary phase and does
not contribute in the far-zone. The term with the factor e-jk,(y-h) has one stationary
phase point. The evaluation of the integrals with the method of stationary phase gives a
factor 21Tjlk~le-jkor /r which multiplies the remainder of the integrand with kx, ky, and
kz repiaced by k~ = kosinOiSill<Pi, k~ = kOCOSOi, and k; = kosinOiCOS'l'i [16]. We get

.E -jkor (kS k' -) JL JL-J oe x x ay (8 + h ,p + h ,Q)e-jv,x'+jpyh'-jv,z' dx' dz'
21fr 2k;5(ki2 + k;2) -L -L x z ,

where V = ki - kS v = ki - k' l' = ki + k' Noting that h ,ejl'yh' = (I/J.1' )d(ejpyh' -x x Xl Z Z Zl y y Y' .T. Y

1)/dx' and hz,eipyh' = (1/j1'y)d(ejpyh' - I)/dz', we may integrate by parts the last two
terms from the integral. The edge terms are zero since we have assumed that h(x, z) =
O for Ixl, Izl > £. Upon expressing (81'y + vxP + vzQ)/1'y in terms of the angles of
incidence and scatter and rearranging terms we may write (81'y + vxP + vzQ)/1'y =

2k3sinO,f~~)(ni,n,), where

(1 + cosOicosO,) cos('1'.,- '1';) - sin Oisin O,
cosOi+ cosO.,

where ni and ns stand for Oi, 'l'i and OS, 'l'S. Thus, the latter integral becomes

.E -jkor (k' k' -) [ iL JL-J oe x. xay f~~)(ni-ns) e-jvxx-jv,Z(e1p,h_l)dxdz
21fkor smO, . -L -L

1 iL JL .. ]2(cosOi+cosO,)cos('I', -'I'i) c-)V,X-]V,Zdxdz.
. -L -L

(13)

The first term is the non-specular component ami the second term is the speeular
component. If at this point we let £ increase to infinity the secoíld integral becomes
(21f)2Ó(k~ - k~) ó(k~ - k;) and we may replace Oi and 'l'i by O, ami '1', respeetivcly in
the scattering coefficient multiplying the integral. I3ecallse f,\~)(ni, n,) in the speelllar
direction coincides with the latter resnlt, we may incltlde the speeular t.errn in the first
term in (13) by dropping the -1 inside the parenthesis.

The scat tered TM field predicted by the first order approximat.ion eonsists of (13)
plus the term arising from the second term in (9), _cjkyh(x)X. A( -ky). \Ve may obt.ain
its contribution in the far-zone from the result in (13), simply by changing the sign
of ky. Thus, we should change (k~,k~,k;) to (k~,-k~,I.;~) itl k' x k' x ay and cos08

to -cosO, (cosO, came from ky = koeosO,) in f~~)(ni,n,) itl (1:l), ami dot-multiply
th~Jeslllt with -x (the factor cjkyh is tlnity when cotlsidering the far-zotle). Note that
-X. (k' x k' x ay)lky--+-ky = (k' x k8 x ay). Tlms we obtain the scattered TM field as
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where qy = kyi - kys,

(1 - cos lIicos 11,)cos(<P,- <Pi)- sin lIisin 11,
cos 11;+ cos 11,

and the notation Evv stands for the TM (vertical polarization) scattered wave arising
from a TM incident wave.

Next we need to find the cross polarized scattered field, i. e., the TE or horizontally
polarized scattered wave Ev H. The procedure follows very closely that used to obtain
Evv. The difference is that we must repiace the operator for the TM component

(k X k x ay)(k x k x ay)
k2(k; + k;)

with the operator for the TE component [15]:

(k x ay)(k x ay)
(k; + k;)

Upon doing this change in (12) and follow an otherwise identical analysis we get

-jEoe-jkor k' x ay [
EVH = 2 . 11 !vll(fl;, fl,)

1fT SIn s

where !vll(fli, fl,) = sin(<p, - <Pi).

4. THE SCATTERING OF A TE WAVE

In this case the incident field is given by

and

Hi = _ fIii Eoe-jkxiX+jk,;y-jk,iZ (-ax cos O;sin <Pi+ a'J sin Oi+ a, cos Oicas <p;). (16)VE;; .
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FIGURE 1. Coordinate system and definition of the angles of incidence and scatter. The figure
also shows the fields for a TM incident wave and a TM scattered waves.

The analysis is nearly identieal to that in the previous Seetion and the only dilIerenee is
in the surfaee terms, eN x E')Ih = -(Ñ X Ei)lh and (Ñ x H')lh '" (Ñ X W)lh, whieh
must be evaluated with the TE wave (16). We give here only the final results for the
far-fields. The seattered TE wave is obtained as

'E -jkor (k' ') [ 100 100
E - -) De x ay f(l) (n. f1 ) e-jvxx-jv,zejp,h dx dz
VH - . () HH Hz, s

21rT SIn s -00 -00

- f;;1(f1i, f1,) ¡: ¡: e-Jvxx-jv,zejq,h dx dZ], (17)

(1)( ) (1)(n (2)() (2)( )where fHH f1i,f1, = fvv "i,f1,) and fHH f1i,f1, = fvv f1i,f1, .
The eross polarized seattered wave is obtained as

5. PROPERTIES OF THE FIRST ORDER SOLUTIONS

The far-zone solutions in (14), (15), (17), and (18) satisfy allalogous properties to their
eounterparts in the ease of perfeetly-eondueting l-D rough surfaees. The first terms
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in each case coincide with the Kirchhoff approximation (KA). The second terrn in Evv
and EJI JI is zero in the specular direction, and the cross polarized fields are zero in
the specular direction. Thus, the present results coincides with the KA in the specular
direction. The scattered TE fields (15) and (17) are zero for grazing emergence, and thus,
the boundary conditions are satisfied. The TM scattered fields in (14) and (18) are not
zero for grazing emergence and they coincide with the regular full wave results in this
case. If we expand the exponentials in power series and keep only the first two terms
(e.g., ejp,h "'" 1+ jph(x,z)) we obtain the first order results from perturbation theory.
On the other hand, since our only approximation was the tangent plane approximation,
we expect a priori that the present results will coincide with the KA whenever this is
accurate.

If we assume that h(x, z) is constant along the z-direction, so that h = h(x) and take
epi = 0, we recover the results for 1-0 rough surfaces [13).

As in the case for 1-0 rough surfaces, we should use a reciprocity rule when dealing
with randomly rough surfaces, since the results are not reciproca!. The rule is very simple
and follows from the same arguments used in the case of 1-0 rough surfaces. We have
that we should use the result for which the angle of incidence is smallest. Invoking the
reciprocity theorem it follows that

MtffEM(íli, íls) = (1- oMt,fsEM(9i, epi, 9s, eps) + (~)MgtSEM( -9" ep" -9i, -ep;),

(19)

where M may be E or H, Mt,fsEM is any of the direct results given aboye where A and
B may be H or V (for vertical and horizontal polarizations), and

for - 9i < 9, < 9i
otherwise.

MBtSEM( -9" ep" -9i, -ep;) used in (19) may be called the reveresed or reciprocal results.
Note that the incidence and scatter angles are interchanged and the sign of the polar angle
is changed. Note also that the order of the subscript was changed to BA.

6. CONCLUSIONS

The formulation of the LSEM for electromagnetic scattering from perfectly conducting
surfaces rough in two dimensions was presented and the first order results using the tan-
gent plane approximation were derived. The properties of the first order solutions are
analogous to those in the case of 1-0 rough surfaces. In particular, it was indicated that
the present first order results reduce to first order perturbation theory in the appropriate
limit, alld OIl the other hand, the approxiIllation~ will coincide with the Kirchhoff approx-
imation when this is valíc!. Ir the surface is asslllIlcd COllstant alollg une direction alld
the incident field is assuIlled perpendicular to such direction we recover the formulation
for 1-0 rough surfaces in Ref. 13. A systematic series solution is in principie possible by
applying perturbation theory to correct the tangent plane approximation and find higher
order approximation as it was done for 1-0 rough surfaces.
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