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1. Introduction

According to the 3+ 1 formulation of general relativity (see
Refs. 1-6 for details) the spacetime (M*, g) is foliated by a
family of spacelike hypersurfaces £, labeled by a real pa-
rameter ¢ called the coordinate time. The hypersurfaces £
are thus a family of Riemannian subspaces (M3, h), where
h is the induced metric (the 3-metric) on M?3. Moreover,
on every hypersurface one can introduce a spatial coordinate
system (z*) = (z!, 22, z?).

The induced metric (first fundamental form) of the hyper-
surfaces ¥, is given by

h=n®n+g, (1)

where n stands for the timelike unit fourvector normal to ¥;.

This vector defines the fourvelocity of the Eulerian observer

(2, which is orthogonal to £; [7]. Its components with re-
spect to the coordinates (¢, z', 2%, 2°) are

1 N' N2 N3

= (=N, 0, 0;0), 0% ==, = — == |3 {2

ma = hom (N NN N) @

where N = N'e; is a 4-vector tangent to ¥, called the shift
vector, N is the lapse function and {e;} represents a coor-
dinate basis of ¥;. Therefore, {n, e;} constitutes a basis of
the tangent space to (M*, g).

We can decompose tensors with respect to this basis and
obtain components parallel and orthogonal to ¥, [8]. In par-
ticular, a 2-rank symmetric tensor T', like the stress energy-
momentum tensor, is decomposed as follows [7]:

S =T BERE, (3)
JE = (4)
SO e JERE (5)

E =T nami., (6)

where S is called the tensor of constraints, J is the momen-
tum density vector, and E is to be interpreted as the total
mass-energy density measured by the Eulerian observer (0.
Then, T reads,

TAK = §PK 4 JBp# 4 nB gk 4 EnPn# . (7)

It it clear that Eq. (7) can be also written in terms of the
components associated to a tetrad constructed from the ba-
sis {n,e;} (see the Appendix B and Refs. 9-12 and 24 for a
review of the tetrad formalism).

1.1. The 3+1 Equation of conservation of energy

The general relativistic equations of motion for matter are
obtained by applying the covariant divergence to (7):

V:T==F, (8)

where F stands for some external fields.
Applying the operator V- to each term of the tetrad com-
ponents of T" we obtain for the time component,

BN g JH (9;0)( +EV - n
(3
(B

+0) . JW.4 Jor o y Ao E = _FO , 9
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where the indices in parenthesis refer to the components with
respect to the tetrad (hereafter referred to as physical compo-
nents), and we have used the fact that the physical temporal
components of vectors and tensors tangent to £; vanish iden-
tically (see the Appendix C), and also thatn(*) = (1,0,0,0).
The quantities (see the Appendix B)

(r.t) _— v
OBy = i Gy 9oy » (10)

are called the Ricci rotation coefficients (hereafter referred
to as RRC). We remind that, unlike the Christoffel symbols,
the RRC are not symmetric with respect to the covariant in-
dices, and therefore they satisfy some remarkable properties
(see Refs. 11 and 12 for a review). In particular, they are
related with the 3+1 variables in a very particular way (see
Appendix C). Using such relations in Eq. (9) we find,

—S(i)(” f{(‘-}(j) T 2.}“} agy — EK + 6(.-) J(i)
(1) 31(d) _ _ rl0)
+J O(j)(i)+8(0)E_ F (1D
where 3(98)) (1) are the 3-RRC (i.e., the RRC compatible with
the triad associated to the 3-metric h); K ;)(;) are the physi-
cal components of the second fundamental form of the hyper-

surfaces ¥; (also known as the extrinsic curvature), which is
defined in terms of the Lie derivative by [7]

K= —%th, (12)
|

with the property that its trace is simply
K=TtK=-V:n. (13)

The quantities a(;) which contract with J(*) in Eq. (11)
are the physical components of the 4-acceleration of the Eu-
lerian observer .. This is defined by

R — vn‘n =Hhs V(ln 1'\") y (14)

which suggests the interpretation of the lapse function as the
acceleration potential for O, (cf. [7]). From the normaliza-
tion conditionn-n = —1, itis clear that @ and n are mutually
orthogonal: n - a = 0.

Finally, we remark that the operator ) is the time
component of the so-called directional or Pfaffian deriva-
tive [11-13], which in terms of the usual derivatives, and the
tetrad fields qf‘a) reads (see Appendix B)

O(a) = q;‘ﬂ)@ﬂ . (15)
Equation (11) can be arranged as to obtain
doyE+ 3V -1- EK +2J%a,

= 5(!)(1)]\’(1)(1,) = —F(0) (16)

We can identify this as the triad version of the equation
of conservation of matter-energy of Bardeen & Piran [14].1

1.2. The 3+1 equation of conservation of momentum

In the same way, the spatial components of (8) lead to

1)(7 i)(J i)(7) 3D () 3mn(1)
BU)S( 17) 4 5(1)(1),1(],) + S5) o“)m + 5@ O(;)(j)
+810) ™ - % (—K((ti)) - 0}3)(”) ~ S Bl =, (17)
This can be written as
i (4)(4) i) (j ‘ l (1) (1) i) _ 1
Aoy d D + SN + 5Dy — JW K — J© (K“) - owm) + Ea® = —F (18)

(1)(5) ._ i) (4 i (1) :
where .S'l(j)J = a(,-)s< W) 4 s 3(’)“’}(1.), and the iden-
tities of Appendix C were used. The term in parenthesis can
take different forms whether we use (C.32), (C.33) or (C.34).

Let us take for instance (C.32). Then,

80) IV + {5 + SO Wag;
~JOK + 7O + B = -FD . (19)

This can be identified as the triad version of the equation
of conservation of momentum of Bardeen & Piran [14].

2. General relativistic hydrodynamics

Let us consider the tetrad components of the energy-
momentum tensor for perfect fluids:

T(2)(8) — (e + p) w(@), (B) 4 ,](tﬂ(d)p_ (20)

The physical components of the fourvelocity of the fluid
u'@) contains indeed the kinetic relativistic effects (Lorentz
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factors) which are a landmark of the relative motion of obser-
vers (namely, the Eulerian observer O, and the observer co-
moving to the fluid Oy). It will be convenient to remove such
effects by introducing the more meaningful quantities:

(a) (a)
pla) e X B
U = B (21)
where I' = —n,u* = u'% is the Lorentz factor between the

hereabove quoted observers:
~1/2
V= (_U(O)Uw)"?(a)(ﬁ))
2y —1/2
_ (1 - UW’) 22)

Therefore, from the expression of the fourvelocity u* =
T'/N(1,dz'/dt), and Egs. (21), (B.5) and (C.19), we obtain

3 = % (Vm _ N(”) ' 23)

where V") and N(*) are the triad components of the coordi-
nate 3-velocity V' = dz'/dt, and the shift vector N respec-
tively. Moreover, we have added an upperscript ‘3’ to stress
that *U(* are in fact projections on ; [¢f. Eq. (C.22)).

The quantities /(") are the general relativistic general-
izations of the Newtonian fluid velocity components as “mea-
sured” by the Eulerian observer.

As we mentioned, the meaning of the term
(V) — NW) /N is clear, it gives the physical components
of the fluid-velocity relative to the Eulerian observer O, and
therefore we notice that such an observer is forced to move
with a physical 3-velocity N(*) with respect to the coordi-
nates z*. This is the well known phenomenon of dragging
of inertial frames (cf. [2]). Furthermore, the lapse factor
N in (23), indicates that the time intervals measured by O,
undergo a contraction due to the gravitational field.

Moreover, the relative velocity V) — NU =
el (V! = N') contains in addition some other general rel-
ativistic effects like those associated to the coordinate fac-
tors and metric potentials given by the triad fields ef'), which
in fact provide the physical units (units of length/time) to
this new variables. For instance, in the case of a fluid in
relativistic rigid axisymmetric motion, the angular compo-
nent of U/(*) in the direction of the angle of symmetry (i.e.,
¢-component) reads in the so-called maximal slicing quasi-
isotropic coordinates (MSQI) as follows [15, 16]:

Iy = (2-N?) . (24)

A%Brsind
N
Here A(r,8), B(r,6) are the metric potentials which give
the actual length of the corresponding curved spacetime;
) := V¢ = d¢/dt is the coordinate angular velocity of the
fluid, and rsin @ is a coordinate factor which give the units
of length/time to this velocity component. In other words,
the Eulerian observer measures with his rods the infinitesimal

fluid displacements A% Br sin #d¢ in the ¢-direction. How-
ever, since he is also moving with coordinate angular dis-
placements N?dt = d¢,, he has to make a subtraction in
order to find the actual infinitesimal fluid distances measured
with respect to his reference frame (his triad). These actual
distances are then given by A?Brsin8(d¢ — N®dt). On
the other hand, his clock measures infinitesimal time inter-
vals V dt. When dividing the above local displacements by
these time intervals, he finally obtains the fluid velocity with
respect to his triad frame [i.e., Eq. (24)].

It is to note, that the entire factor A% Brsin# is the cir-
cumferential radius of a circle centered around the axis of
symmetry in the MSQI coordinates, i.e., the radius obtained
from the quotient between the circumference of such a cir-
cle and the factor 2x. This suggest the following quasi-
Newtonian expression:

U@ = RN, (25)

with R, := A’Brsin6, and Q, := (2 — N?¢) /N, which
in the Newtonian limit reduces to the well known tangential
velocity {7 sin 8.

Substitution of (21) into (20) leads to

TN = (E + p) U@UB 4+ pl@)B)p, (26)

where, E := (e + p) ['? — p is, as mentioned, the total mass-
energy density measured by O, [ ¢f. Eq. (6)].

The remaining 3+ 1-energy-momentum entities for the
perfect fluid, i.e., the tensor of constraints and the momen-
tum density vector given by Eqs. (3) and (5), lead together
with (26) and (23) to the 3+ 1-triad components

S = (E + p) ) 3y 4 5(0(1’)10, (27)

J& = (E + p) 3U® . (28)

2.1. Equation of conservation of energy for perfect fluids
Using Egs. (16), (27) and (28) we obtain:

d0E+[(E+p)*U®| +(E+p) [2°00a

=30 YD Ky - K| = -FO. 29)

We are now in position to interpret the different terms appear-
ing in this equation. The operator ‘do)" for example, is iden-
tified according to (B.6) and Eqs. (C.13) and (C.15) with the
directional derivative ‘n*3d,". Such a term represents the time
variation (as measured by O, ) of the energy density E. The
general relativity corrections are contained in n* via the shift
and the lapse. In the flat limit, ‘3o’ reduces to the ordinary
operator @/dt. The second term gives the flow of the momen-
tum density relative to (.. The general relativity corrections
to the flat limit appear in this term not only from the covariant
divergence, but also from the lapse and the dragging of iner-
tial frame terms included in J* = N~1(E + p)[V — N¥].
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The term such as 23U (E+p)a(j) = 2JWay;), istobe
interpreted as a power (by unit of volume) developed by the
system due to the coupling between the acceleration of O
and the fluid current JU); the term (E+p) *UW 3UW K ;)
gives a kind of energy stored by the coupling of the velocity
field with the extrinsic curvature tensor. Finally, we can ap-

preciate the trace of K (K), which is in fact related with the
slicing condition. For instance, the maximal slicing condition
corresponds to coordinates with vanishing K [7].

2.2. The Euler equation in general relativity

The 3+ 1 equation of conservation of momentum (19) applied
to perfect fluids leads to

i ) 377(4) 3rr(a 3rr(i (f) - 3 () 3 (i)
(E +p) [010) U + *UD3UQ | + 20D + 2V B + 18~ E+p)K] +p (20, + 0

+389p + (B +p)°UY U Wayy + (E +p) *UVCY + (E +p)a™ = -FY. (30)
Using the antisymmetry property of the 3-RRC, and the equation of conservation of energy we obtain after some simplifica-
tions [15]
: @ 37703 (3) _ 1 34(i i i
0(0) IUW 4 UU) 3U\(J") = —m [ 8(1)17-4— 3U( )3([})}5'] = (L( )
37 3 g ) - spe® o L (36 p0) _ £l
+ 30300 (ag) - VDK ) - 00 + e (CuDFO - FO) . @D

We begin the interpretation of (31) from the left to the
right hand side. We can first split up the term U9 SUl((?)
into 3UWHE, UM + B 3UU)O€:;U). The expression
B0y UM + 2UWS U is the convective or material
derivative of the velocity field. This generalizes the Newto-
nian expression by the operator ‘J(q)’, and also by the fact
that ‘9jy = q i) 33, includes the metric potentials qii)‘
which provide l%le physical lengths in the directions of the
coordinates z°.

The remaining term, i. e., U SUU)OEQU , generalizes
the Newtonian inertial accelerations acting on t%xe fluid, such
as the centrifugal ones. Note, that it is quadratic on the ve-
locity field (see Ref. 17).

In the right-hand side, we can recognize the factor
—1/(E + p) which is well known from the special-relativistic
limit [¢f. Eq. (2.10.16) of Ref. 18 ]. Inside the square bracket
we appreciate also a special-relativistic term which couples
the velocity field with the “physical” time derivative of the
pressure [cf. Eq. (2.10.16) of Ref. 18 ]. Such a term van-
ishes in the Newtonian limit. The remaining term inside the
brackets gives the physical pressure gradients.

Next to the bracket we see the acceleration of the Eulerian
observer (the term a'*)), which generalizes the Newtonian ac-
celeration potential —V & [cf. Eq.(14)].

The second line of (31), shows the term 3U ) 30" q
which is also quadratic in the fluid-velocity field, and which
couples with the acceleration of the Eulerian observer. Such
a term represents a kind of flow of power (velocity X power)—
per unit of mass—. Moreover, this term is the equivalent of
the relativistic correction of the inertial acceleration which is
present in the formula that governs the motion of a particle in
the proper reference frame of an accelerated observer [2]. It

is to be stressed, that in such a formula usually a factor of ‘2’
appears multiplying the equivalent term to U 30U a ;).
In our case, that factor has been split up in two parts since
the use of physical components. The “hidden” one is in fact
contained in the convective term U/ 87, U("). So, the well
known factor of 2’ is recovered when returning to coordinate
components V' = dx'/dt via Eq. (23).

As far as we know, the remaining term in parenthesis (cu-
bic! on the velocity field) as well as the linear one which mul-
tiplies some structure constants, do not have an equivalent in
the Newtonian or flat limits, so they do not allow an interpre-
tation as easy as the previous terms. Nevertheless, in some
cases (i.e., spherical symmetry), it is possible to use the 3+1-
Einstein equations (see [14]) for replacing them (namely, the
cubic term on the velocity field), in terms of metric potentials
and its derivatives, such as to recover after some manipula-
tions some Newtonian effects [19, 20].

Finally, we find the external forces F (other than the iner-
tial and gravitational ones, e.g., the electromagnetic Lorentz
force) acting on the fluid.

It is to be emphasized that such a quasi-Newtonian Euler
equation, up to our knowledge, has not been considered be-
fore, except in spherical symmetry with the so-called radial
gauge polar slicing coordinates (see [19, 20]). We also point
out that equations for relativistic spinning fluids has been al-
ready studied in the past by [21-23].
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Appendix A: Tangent vectors to X,

Let *w be a 4-vector tangent to I, given by

3

w:=h- w, (A.1)

where w is a fourvector of 7,, [the tangent space of (M*, g)].
It is easy to check that the following holds,

3wt =0, (A2)
Swt = w' —wtNE, (A3)
In the same way we find
3wy = —Nlwj, (A4)
Sw; = w; . (A.5)
On the other hand we have,
31,11“L = G ¥ = Ry 3uw¥ (A.6)

The last equality comes from (1) and the fact that 3w is or-
thogonal to n. It yields then

3wy = —N; 3w, (A7)

dw; = hij 3w . (A.8)

We conclude upon equation (A.6), that for lowering or ris-
ing indices of tangent vectors to £; we can employ both the
4-metric or the 3-metric. In particular, Eq. (A.8) shows that
we can use the 3-metric to lower or rise the spatial indices of
tangent vectors by considering these as 3-vectors on ¥;.

Appendix B: The tetrad formalism

According to the tetrad formalism (see Refs. 10-12 and 24
for a review), a linear transformation eL") between a coor-
dinate basis e,, and an orthogonal one e, allows to write

|

(p1)(p2)-(kn) =d,

(p1)(p2)(1n)
(rr)(w2) - (vm )il P it

(v1)(va)(vm)

(Vi)(Uz} (Vm)
(1) (p2) - (ka) (o)
‘P(a)(w} “(Vm) Oa) (n1)

where, as mentioned b&fore, the quantities

O()

B)() ° (B.8)

( v
€ a0, 900

are called the Ricci rotation coefficients (RRC).

Appendix C: The 3+1 decomposition of a tetrad

Returning to Eq. (B.1), and then comparing this with each
term of g given by (1), we find (see Refs. 8, 25-27 for details
about this appendix)

P(U Y(m2)-(pn) 0 m + P

Guv = egf’) eE,'G) T’(o)(.@) . (B.l)
In the same way we find
9 = Q(o, Q(g) ’?( AP (B.2)

()

where the tetrad fields e,, " and qf‘a) are simply related by

(a) _g(a)
98y =g » (B.3)
ele) q(a) = (B.4)

The g{,,, coefficients are to be seen as the components of the
tetrad vectors with respect the coordinate basis. Here, the
(internal) index ‘p’ is an index of general coordinate trans-
formations (i.e., a 4-vector index).

A consequence of these results is that the coordinate and
orthonormal components of 4-tensors are related by

(1) (p2)(ma) _ _( olh2) . (i)
Pltatnny =88 el -afl)
* q(”vll) qg?z) o qzr'::‘n)P:I):zz i (B.5)

The inverse relationships follows immediately.

A particular case of (B.5) is the directional or Pfaffian
derivative [11-13] given by

8(0) = q(“a)au . (B.6)

Moreover, the indices of tetrad components (physical
components) are lowered and raised by the Lorentz metric
M(a)(p) and 7@ ) respectively.

It will useful to recall that covariant derivatives of arbi-

trary rank 4-tensors when projected on a tetrad take the fol-
lowing form:

P(ul){f-lz) (a) O(ﬂn)

(11 )c n2)
(v1)(v2)(vm) ~(p)(o)

(o)) T

(1) (2) (i) ry() (1) (12)++(a) (@)
1 )orums Clodva) — "'~ Fodon)erte) Oy BT
[
~N? 4+ NeN* = g = —(ef)? + ey, (C.D)
—Ni = g = e{0el” + e P, (€2
k ]
h;j = gij = e( ) (U) +€( )e( )’?(k)( (C.3)

Since the matrix e}i ) is not symmetric, then its sixteen en-

tries seem to be linearly independent. However, Egs. (C.1)-
(C.3) form a system of ten linearly independent algebraic
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equations. So, there are six coefficients e,(f} which are lin-

early dependent (actually those related to the six parameters
which define a general Lorentz transformation between two
observers). In fact, the 3+ 1 decomposition fixes a natural
choice for the coefficients /). Such a choice is closely re-
lated to the way a tetrad carried by the local observer (0, is
constructed with the normal vector n and a triad lying on ;.

C.1. Gauge choice

In order to determine the matrix of coefficients eLu) in terms
of the metric-tensor components we impose the following

condition:

el = —elIN?, (C.4)
P = (C.5)
Then Eq. (C.3) reduces to
hij = e e na )
i (C.6)

Indeed, Eqs. (C.4)—(C.6), allow us to recover via Eq. (C.2)
the rule for the lowering of spatial indices of tangent vectors
toZ; [¢f (A8)]:
=N = (5) (”Nk : e Nk
i = —eg e, Nongy = —haN®. (C.7)

Furthermore, Eq. (C.1), and the use of (C.4)—(C.6) give the
condition

N=¢?, (C.8)
To summarize, we have
ef) = el N7, (C.9)
el =0 (C.10)
e =N, (C.11)
hij = f’-ik)efa”mk)u)
=0 5 - (C.12)
Again, we stress that the coefficient matrix egk) is not sym-

metric, however three coefficients are linearly dependent; the
other six are to be obtained in terms of the 3-metric compo-
nents from Eq. (C.12). This means that modulo a rotation
SO(3), the triad is ‘single” defined (the three rotation param-
eters are those related with the three linearly dependent coet-
ficients). In the Appendix D we show that if h;; has a certain
form, then eik) may be solved in terms of h;; as a triangular-
matrix (with its lowering part equal to zero).

We can follow the same procedure to determine the coef-
ficients qf‘ﬂ) by means of Egs. (1) and (B.2). This leads to

Qo) = % 13
q{” =i (C.14)
glgy =N"*, (C.15)
W = gy afyn®

- q;“q{” . (C.16)

C.2. Physical components of tangent vectors to X,

Let *w be a 4-vector tangent to X;.
Then, according to Eq. (B.5) we find

(@) 3ok (C.17)

3ple) —
w =&y

From the gauge condition (C.5), and the fact that *w! = 0
[¢fEq. (A.2)] we have

3w'® =0, (C.18)
3“!(1:) = (,Ei) 3w,t ) (Clg)
By lowering the indices we obtain also
31{’(0) - O, (CZO)
SH.‘“) = 3 (C.21)

We appreciate that the temporal physical (covariant or con-
travariant) components of tangent vectors to ¥; vanish identi-
cally, and that the covariant and contravariant spatial physical
components coincide with each other. In addition, Egs. (1),
(A.1)and (C.17), simply lead to
Bl = (9 (C.22)

Previous results can be generalized to higher rank tangent
tensors to X;. For instance, the extrinsic curvature verifies:

KO <K = K5 = Ko =0, (€2
KW = gimeDel) (C.24)
A1) _grd) _ ge

C.3. Link between the 4-Ricci rotation coefficients and
the 3+ 1 variables

In the following we present a series of identities which link
the 4-Ricci rotation coefficients with some of the 3+ 1 varia-
bles introduced in previous Sections. As we saw in Sec. I,
these identities allows us to incorporate easily the curva-
ture effects (as “forces™) acting on the Eulerian observer O,.

Rev. Mex. Fis. 44 (1) (1998) 1-8
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These identities are the following [8]:

i) c)ég;(m =0. (C.26)
i) Bt =at. (€.27)
iii) Oy = (C.28)
iv) Ot = — K- (C.29)
v) Oty =iy (C.30)
vi) Oy ==K (C.31)
vii) O =Pyt =Kiim +*Ciye- (€32)
Or
Ooyiyiiy = ~ K = *Clay- (C.33)
Or even more
o)) (i) =% [*Coa = *Cayn]- (€.34)
where
*Cayy) =~ @nﬁm + 4(m) i\j\i")a(i)'f}”
+aly 00y’ . (C395)
viii) Gt = Ok - (C.36)

Appendix D: Potential representation of the 3-
metric

In the Appendix C we showed that the triad representation of
the 3-metric obeys

hy = FE”E{-I) :

; (D.1)

The question that arises is the following: given a 3-metric,
Is it always possible to solve the above non-linear algebraic
equations for ef” in terms of h;; ?

For our purposes, it suffices to answer this question in the
positive for the special case in which h;; is given in terms of
potentials. Then, it is possible to solve (D.1) for eE”. From
the practical point of view, the potential representation of the
3-metric is well adapted to treat a broad set of problems on
gravitational collapse as well as for constructing static and
stationary equilibrium configurations of relativistic objects.

So let us assume

oy B ¥ ¥y Q)03
(hij)= iz a2® + Bo* a3 + 3233 (D.2)
oz agag + By az? + Bs° + 3’
where a;, (3; and v, are scalar functions of t, r, 6, ¢.
Then, it is easy to show that
) ap G2 O3
()= 0 8 8 |, (D3)

0 0 3

solves equation (D.1). Notice the triangular form of eEI).

By choosing conveniently «;, 3; and 7, in terms of
new metric potentials we can recover isotropic or radial
gauges. For instance, by imposing a; := A2CB™!, ay =
A2aB7!, a3 := A?B~, By := A2B~1, 33 := A%2Bg, and
v3 1= A? B, ie.,

_ CB-! aB~! By
(?)=42 o B Bp|,
0o 0 B

(D.4)

one generalizes the maximal slicing quasi-isotropic coordi-
nates (MSQI coordinates) [16], employed for constructing
stationary relativistic axisymmetric rotating bodies. For re-
covering the MSQI coordinates we set &« = 3 = v = 0 and
&= 1,

t. Indeed their equation has a wrong sign in the divergence of J.
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