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We provide a new general relarivistic version of [he Euler equarion for perfeet fluids and its corresponding equation of conservation of
malter-cnergy. 5uch equarions are written in a component language hascd on [he 3+ 1 and [CiTadformalisms of general relativity.
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1. Introduction

where S is calleJ the tensor 01 cOflstraints, J is the momen-
tllm densit)' vector, and E is to he interpreted as the total
mass-energy dcnsity mcasured hy the Eulerian observcr Oo.
Thcn, T reads.

According lo lhe 3+ 1 formulaIion of general relalivily (see
Refs. I--{\ for delails) lhe spaceIime (M' .g) is folialed hy a
family of spacelike hypersurfaces El, laheled hy a real pa-
rarneter t caBed the coordinare time. The hypersurfaces ¿t
are thus a family of Riemannian subspaccs (.Af3, h), wherc
h is the induced metric (the 3-metric) on Af3. Moreover.
on evcry hypersurface onc can introduce a spatial coordinate
syslem (x') = (x1,x2,x3).

The indueed metrie (firsl fundamenlal form) of Ihe hyper-
surfaccs ~f is givcn by

.lo. := _Tny Hy,

./'j := .lo h~.
E := TOY Ha lly ,

(3 )

(4)

(5 )

(6)

whcrc n stand s for (he timelike unit fourvector normal to L:t.
This vector deflnes the I"ourvelocity of the Eulerian observcr
00 which is orthogonal lo ~t [7J. Its components with re-
spect lo (he coordinales (t, Xl, x2, x3) arc

h:= n0n +g, (I)
(7)

11 il cleat lhal Eq. (7) can he also wriuen in lerms of Ihe
components associatcd to a telrad constructed from Ihe ba-
sis {n. e;} (see Ihe Appendix B and Refs. 9-12 and 24 for a
rcvicw of the (ctrad I"ormalism).

1.1. The 3+ I Equation oCconservalion oCenergy

no = (-N.O, 0, O), N
2

N
3
).N' N . (2)

The general relativistic equations al" mOlion for mattcr are
ohlained hy applying Ihe covatianl divergence lo (7):

(9)

(8)\7. T = -:l'.
wherc :F stand s I"orsorne ex(ernal tlelds.

Applying lhe operalor \7. lo each Icrm of lhe lelrad com-
ponents 01"T wc ohtain for the time component.

SI')U) dO) + ¡l') 0'0) + E \7 . I
(i)()) , (O)(i) -' 1

+D JI') + JI') (')(0) + D E - FIO)l') (¡'JI') lO) - - ,

whcrc N = Niei is a 4-vector tangenllo Et• callcd thc shilt
vcClor. N is the lapse function and {ed rcpresents a coor-
dinate hasis of ~f' Therefore. {n , ed constitutes a basis 01"
lhe langenl space lo (M', g). .

We can decompose tensors with respect to this hasis and
ohtain components parallel and orthogonal to Et [8]. In par-
ticular, a 2-rank symmelric tensor T. Iike Ihe stress energy-
momentum tensor, is decomposed as follows [7]:
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The quantities ali) which contracl with jli) in Eq. (11)
are the physical components of the 4-acceleration of the Eu-
lerian observer Oo' This is defined by

where the ¡ndices in parenthesis refer to the components with
respect to !he telrad (hereafler referred to as physical compo-
nents), and we have used the fact that !he physical temporal
componcnts of vcctors and tensors tangent lo Lt vanish iden-
tically (see the Appendix C), and also !hat ni") = (1, O, O, O).
The quantities (see lhe Appendix B)

with the property thal its trace is simply

K:=TrK=-v.". (13)

( 10) a:= vn" = h. v(lnN), (14)

(11 )

( 15)

are called lhe Ricci rolation coefficienls (hereafter referred
lO as RRC). We remind lhal, unlike the Christoffel symbols,
the RRC are nol symmctric with respecl lo the covariant in-
dices, and therefore (hey satisfy sorne remarkable properties
(see Refs. II and 12 for a review). In particular, they are
relaled wilh lhe 3+ I variables in a very particular way (see
Appendix C). Using such relations in Eq. (9) we find,

_sti)U) Kli)(j) + Vii) ati) - EK + ali) jli)

jti) ,o(j) a E - FIO)+ (j)(i) + ID) - - ,

wbere 'Ogiti) are lhe 3-RRC (j.e., the RRC compatible wilb
tbe triad associaled to lhe 3-melric h); Kli)(j) are tbe pbysi-
cal componenls of tbe second fundamental form of the hypcr-
surfaccs Lt (also known as the extrinsic curvature). which is
defincd in tcrms of lhe Lie derivative by [7J

which suggesls lhe interpretation nf the lapse function as the
acceleration potenrial for 00 (ef 17]). Prom (he normaliza-
lion condition n.n = -1, it is clcaT that a and n are mutually
orlhogonal: " . a = O.

Finally. we rcmark that the operalor D(o) is the time
component of the so-callcd directional or Pfaffian deriva-
tive [11-13), which in lerms of the usual derivalives, and lhe
telrad fields q(o) reads (see Appendix B)

ato) := q(o)a" .
Equalion (11) can be arranged as to oblain

atOlE + 'v. J - El{ + 2jl<)al')

- S(i)IJII\li)lJ) = _FIO). (16)

We can identify this as the triad vcrsion al' the cquation
01'conservation of mattcr-cncrgy uf [lardeen & Piran [14]. t

( 12) 1.2. The 3+ 1 equation of conservation uf momentum

In lhe same way, the spalial components of (8) lead lo

a . st.)(j) + Sti)(j)a . + sti)(j) 3d') + SIJ)(I)'di)
tJ) IJ) tl)(j) (1)(j)

+ i) jt,) - j(l) (Xti) - di) ) - jti) K + Ea(') - _Fti)
ID) (') (0)(1) -.

This can be written as

aIO)jli) + sti)(j) + Sti)(j)al') - jti) l{ - ¡I') ([(1') - 01') ) + Ea(') - -FI')I (j) J 'tI) (0)(') - ,

( 17)

( 18)

where sti)(j) .- a . s(i)(j) + S(j)(I)'di) and the iden-IIJI .- tJ) (I)(j)'

tities of Appendix e were used. The terro in parenthesis can
lake different forms whelher we use (e32), (e33) or (e34).
Let us lake for inslance (e32). Then,

aIO)jli) + sti)(j) + S(i)lJ)al')I (j) J

- jti) [( + jtIlC
I
\;) + Eati) = -FI.). (19)

This can be identified as the triad version of the equation
of conservalion of momenlum of Bardeen & Piran [14J.

2. Gerteral relativistic hydrodynamics

Lel us consider lhe tetrad componcnts uf the energy-
momentum tensor foc pecfeet fluids:

Tlo)(¡J) = (e + 1') ,,(0),,101 + ,¡lo)(")I', (20)

The physical componenls of lhe fourvelocity uf lhe Iluid
uta) conlains indeed the kinetic relativistic cffects (Lorentz
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where r = -njjuJJ = u(O) is the Lorentz factor between the
hereabove quoted observers:

(25)

where, E := (e + p) r2 - pis, as mentioned, lbe total mass-
energy density measured by 00 [ef. Eq. (6»).

The remaining 3+ I-energy-momentum entilies for lbe
perfect fluid, i.e., the tensor of constraints and the rnomen-
tum density vector given by Eqs. (3) and (5), lead together
with (26) and (23) to lhe 3+ I-triad eomponents

S(')(J) = (E + p) 'U(i) 3U(j) + Ó(i)(j)p, (27)

1(0 = (E + p) 'U(') . (28)

T(oJ(~) = (E + p) U(o)U(~) + r¡(o)(~)p, (26)

with Ro := A2BrsinO, and 00 := (O - N.) IN, whieh
in the Newtonian limit reduces to the well known tangential
velocity Or sin O.

Substitution of (21) into (20) leads to

fluid displaeements A2 Br sin Od</>in lbe </>-direction. How-
ever, since he is also moving with coordinate angular dis-
plaeements N.dt = d</>o, he has to make a subtraetion in
order to find the aelual infinitesimal fluid distanees measured
with respeet to his referenee frame (his triad). These actual
distanees are then given by A2 Br sin O(d</>- N.dt). On
the other hand, his dock measures infinitesimal time inter-
vals N dt. When dividing the aboye local displaeements by
these time ¡ntervals, he finally obtains the fluid velocity with
respeel to his triad frame [i.e., Eq. (24)).

It is to note, that the entire factor A 2 Br sin O is lbe cir-
cumferential radius of a cirele centered around the axis of
symmetry in the MSQI eoordinates, i.e., the radius obtained
from the quoticnt bctwecn the circurnference of such a cir-
ele and the factor 2". This suggest lhe following quasi-
Newtonian expression:

Using Eqs. (16), (27) and (28) we obtain:

8(0)E + [(E + p) 'U('t, + (E + p) [2 'U(j)a(j)

-'U(/) 3U(j)K(/)Ul- KJ = _.F(O). (29)

2,1. Equation of conservation of energy for peñect ftuids

We are now in position to interpret the different tenns appear-
ing in this equation. The operator '8(0)' for example, is iden-
tified aeeording to (B.6) and Eqs. (C13) and (CIS) wilb the
directional derivative 'nl'8IJ'. Such a term represents the time
variation (as measured by 00) of the energy density E. The
general relativity correcrions are contained in nI! via the shift
and the lapse. In the flat limit, '8(0)' reduces to lbe ordinary
operator 818t. The seeond term gives the flow ofthe momen-
tum density rcJalivc to Oo. The general relativity corrections
to the tlar Iimit appear in this term not only from the covariant
divergence, but also from the lapse and the dragging of iner-
tial/rame terms included in l' = N-1(E + p)[V' - N'].

(21 )

(23)

(22)

( )

-1/2
r = -u(o)U(~)r¡(o)(13)

(
(.)2)-1/2= I-U'

faelOrs) whieh are a landmark of Ihe relative motion of obser-
vers (namely, the Eulerian observer 00 and the observer co-
moving lo the fluid O/). It will be eonvenient to remove sueh
effeets by introdueing the more meaningful quantities:

,,(o) ,,(o)
Uro) := ,,(0) = r '

Therefore, from the expression of lhe fourvelocity uJJ =
rI N(I, dx' Idt), and Eqs. (21), (B.S) and (C19), we obtain

'U(.) = 2- (V(I) - N('»)N '

where V(') and N(') are the triad eomponents of the eoordi-
nale 3-velocity V' = dx' Idt, and the shift vector Ni respee-
tively. Moreover, we have added an upperseript '3' to stress
that 'U(i) are in faet projections on E, [ef. Eq. (C22»).

The quantities 3U(i) are lhe general relativistic general-
¡zatioos of the Newtonian fluid velocity components as "mea.
sured" by the Eulerian observer.

As we rncntioncd, the meaning of the tcrm
(V(') - N(I)) IN is elear, it gives the physieal eomponents
of the fluid-velocity relative lo the Eulerian observer Oo. and
therefore we natice that 5uch an observer is forced lo move
with a physieal 3-velocity N(') with respeet lo the eoordi-
nates xi. This is the well known phenomenon of dragging
o/ ¡nertial trames (ef. [2)). Furthermore, the lapse factor
N in (23), indieates that the time ¡ntervals measured by 00

undergo a eontraetion due to the gravitational field.
Moreover, the relative veloeity V(l) - N(I)

e~i) (Vi - N') contains in addition sorne other general rel-
ativistie effects Iike those associated lo lhe eoordinate fae-
tors and metrie potentials given by the triad fields eli), whieh
in fael pro vide the physieal units (units of length/time) to
this new variables. For instance, in the case of a fluid in
relativistic rigid axisyrnrnetric motion, the angular compo-
nent of 'U(') in the direetion of the angle of symmetry (j.e.,
<p-eomponent) reads in the so-ealled mm:imnl slicing quasi-
iSOlropiecoordinates (MSQI) as follows [15, 16):

Here A(r, O), B(r, O) are the metrie poten tials whieh give
the actual lenglh of the eorresponding eurved spaeetime;
O := V. = d</>Idtis the coordinatc angular velocity of the
fluid, and r sin 8 is a coordinate factor which give the units
of lengthJtime to this velocity componenl. In other words,
the Eulerian observer measures with his rods the infinitesimal

Rev. Mex. Fís. 44 (1) (1998) 1-8
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The lerm such as 2 3UU) (E+ p)aU) '" 2JU)aU), is to be
interpreted as a power (by unil of volume) developed by lhe
system due lO the coupling between the acceleration of 00
and the fluid currenl JU); lhe terrn (E+p) 3U(I) 3UU) K(l)(j)
gives a kind of energy slored by the coupling of lhe velocity
field with the extrinsic curvature tensor. Finally, we can ap-

preciate lhe trace of K (I{), which is in faet related wilh the
sficing condition. For instance, the maúmal slicing condition
corresponds lo coordinales with vanishing J( [7].

2.2. The Euler equation in general relativity

The 3+ I equation of conservation of momentum (19) applied
lo perfcct fluids Icads lo

(E + 1') [0(0) 3U(i) + 3UU)3U
1
¡;)] + 3U(i)0(0)p + 3U(i) [E,(o) + '/1\'1) - (E + 1')K] + l' (30ig(i) +" Oi;;(/))

+ 30(i)p + (E + 1')3U(i) 3U(l)a(/) + (E + 1') 3U(l)C(\;) + (E + 1')"(') = -Ft'l. (30)

Using the antisyrnmetry property al' the 3-RRC, and the equation 01'conscrvation 01'cnergy wc ohtain after sorne simplifica-
tions [15]

a 3U(i) + 3UU) 3U(i) = __ 1_ [30(i)p + 3U(i)0 1'] _ a(i)
(O) IU) E+ l' (O)

+ 3U(i)3U(l) (a(l) - 3UU)K(l)U)) - 3U(l)C(\;) + E~p ('U(')F(O) _F(i)) (31)

We hegin the inlerprelation of (31) from the left to the
right hand side. We can firsl split up lhe term 3UU) 3U¡¡iJ)

into 3UU)0(j)U(i) + 3U(l) 3UU)Oi;¡u)' The expression
0(0) 3U(i) + 3UU)0(j)U(i) is lhe eonvective m material
derivativc al' the velocity field. This generalizes lhe Newto-
nian expression by the operatm '0(0)'. and also by the faet
lhat '0U) = qlj) 301, ineludes lhe melric potentials qij)'
whieh provide t~e physical lengths in the directions of lhe
coordinates Xl.

The remaining lerm. i. e" 3u(l) 3U(j)0¡:;U)' generalizes
the Newtonian inenial accelerations acting on the fluid, sueh
as the centrifugal ones. Note, that it is quadratie on the ve-
locily field (see Rel'. 17).

In the right-hand side, we can rccognize the factor
-l/(E + p) which is well known from the special-relativistie
limil [e! Eq. (2.1O.16)ofRel'. 18]. 1nside lhe square bracket
we appreciate also a special-relativistic term which couples
the velocity field with the "physical" time derivative of the
pressure [e! Eq. (2.10.16) of Re\. 18]. Such a term van-
ishes in thc Newtonian limit. The remaining tcrm inside the
brackelS gives lhe physical pressure gradients.

Next lo the bracket we see the acceleration of lhe Eulcrian
obscrvcr (the term a(i», whieh generalizes the Newtonian ae-
celeration potential-V'oI> le! Eq.(14)].

The second line of (31). shows the term 3u(i) 3U(l)a(l)
which is also quadratic in the tluid-velocity field, and which
couples with the acceleration of the Eulerian observer. Sueh
a term represenls a kind ofjlow ofpower (velocity x power)-
per unit of mass-. Moreover, this tcrm is the equivalent of
the relativistic correetion of the inertial aeeeleration whieh is
present in the formula that governs the motion of a particle in
the proper reference lrame 01mi accelerated observer [2]. It

I
is to be stressed, that in su eh a formula usually a factor of '2'
appears multiplying the equivalent term to 3U(i) 3U(l)a(l)'
In our case, that factor has been split up in two parts since
the use 01' physical components. The "hidden" one is in faet
contained in the convective term 3U(j)8(j)U(i). So, the well
known faetor 01''2' is recavered when returning to coordinate
components Vi = <ixi /<il via Eq. (23).

As far as we knaw, the remaining term in parenthesis (cu-
hic! on lhe velocity field) as well as the linear one which mul-
tiplies sorne structure constants, do not have an equivalent in
the Newtonian or Ilat Iimits, so they do not allow an interpre-
tation as easy as the previous terms. Nevertheless, in sorne
cases (i.e., spherical symmetry), it is possible to use the 3+ 1-
Einslein equations (see (14)) fm replacing lhem (namely.the
cubie term on the velocity fletd), in terms 01'metrie potentials
and its derivatives, such as ta recover after sorne manipula-
lions some Newtonian elfects [19,20].

Finally. we find lhe external forces F (other than the iner-
tial and gravitational anes, e.g., the electromagnetic Lorentz
force) acting on the fluid.

lt is to be cmphasized that such a quasi-Newtonian Euler
equation, up to our knowledge, has not been considercd be-
fare, exccpt in spherical symmetry with the so-called radial
gauge polar slicillR coordinates (see [19,20)). We also poinl
out lhat equations for relativistic spinning tluids has been al-
ready studied in lhe past hy [21-23].
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Appendix A: Tangent vectors to ~t

s

where w is a fourveelor of T" [lhe langenl spaee of (M', g)].
lt is easy lo check lhal lhe following holds,

Ler 3W be a 4-veclor tangent 10~t given by

3W:= h. w, (Al)

_ (o) (fi)
9111I - el-' elJ 77(0')(13)'

In the same way we find

g"V _ q" qV r¡(o)(fi)
- (o) (m

(B.I)

(B.2)

(A.2)

(A3)
where lhe letrad fields el:') and q(o) are simply relaled by

The lasl equalily comes from (1) and lhe fael lhal 3W is or-
lhogonallo n. lt yields lhen

The q(~) coefticients are lo be seen as the components of [he
tctTad vcctors with respect the coordinare basis. HeTe. [he
(interna/) index 'Ji: is an index of general coordinate trans-
formations (Le., a 4-vector index).

A consequence of these results is that the coordinate and
orthonormal components of 4-tensors are related by

In lhe same way we find
3 .
lOt = -NJwj,

3 lU¡ = lU¡.

On lhe olher hand we have.

(AA)

(AS)

(A.6)

(o)" _6(0)
e" q(fi) - (fi) ,

e(n)qJI =151'
IJ (a) v .

(B.3)

(BA)

We eondude upon equalion (A.6). lhal for lowering or ris-
ing indiees of langenl veelors lo El we can employ bolh lhe
4-melrie or lhe 3-melrie. In particular, Eq. (A.8) shows lhal
we can use [he 3-metric la lower or rise [he spatial ¡ndices of
tangent vectors by considering these as 3-vectors on Et.

3Wt = -Nj 310) ,

3Wi = hij 3wj .

(A.7)

(A.8)
(B.5)

The inverse relalionships follows immedialely.
A parlieular case of (B.5) is lhe direetional or Pfaffian

derivative [11-13) given by

Appendix B: The tetrad formalism

Aeeording lo lhe telrad formalism (see Refs. 10-12 and 24
for a review), a linear transformation ehO') between a COOT-

dinate basis €¡.¿, and an orthogonal one €(IJ) allows 10 write

(B.6)

Moreover. lhe indiees of lelrad eomponen!s (physical
components) are lowered and raised by the Lorentz metric
tl(o)(fi) and l¡<o)(~), respeelively.

It will useful to recal! that covariant derivatives of arbi.
lrary rank 4-1ensors when projeeled on a tetrad lake lhe fol-
lowing form:

p("')("')"'("') _ [) p("')("')"'("') p(a)(",)"'("') d"d + p(,,,)(a)'(,,,) 01''') + ... + p(",)(",),"(a) 01"')
(V¡)(V2)"'(V",,);(p) - (p) (Vd(V2)"'(V",,) + (V¡)(V2)"'(V ••• ) (p)(l1) (VL)(V2l ... (v •••l (p)(l1) (V¡)(V2)"'(V",,) (p)(l1)

_ p("d(",)"'(",) da) _ p(,'d(",)"(",) da) . _ p(",)(",) ...(".) da) (B.7)
(I1)(V2)"'(V ••• ) (p)(v¡) (V¡){I1)"'(V ••• ) (P)(V2) (V¡)(V2)"'(O) (p)(v ••• )'

where, as mentioned b~ore, the quantities

Appendix C: The 3+ 1 decomposition of a tetrad

d0) ._ e(o)q" qV
(fi)h)'-" h),v (fi)'

are ealled lhe Rieei rolalion eoeffieienlS (RRC).

(B.8) N2 "Nk _ _ «0»)2 (i) (j) . .- + ¡'l/k - gtl - - et + e, et 7](l)(J)'

_ (O) (O) (¡) (k)
- Ni - g,¡ = e, e¡ + e, e¡ 7](j)(k) ,

(O) (O) (k) (1)
hij = gij = e¡ ej + e¡ ej 7](k)(l)'

(C.I)

(C.2)

(C.3)

Relurning lo Eq. (B.I). and lhen eomparing lhis wilh eaeh
lerm of 9 given by (1). we find (see Refs. 8, 25-27 for delails
aboullhis appendix)

Since the matrix e~)) is not symmetric, then its sixteen en-
lries seem lo be linearly independent. However, Eqs. (C.I)-
(C.3) form a syslem of ten linearly independenl algebraie

Rev. Mex. Fis. 44 (1) (1998) 1-8
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(e.14 )

(e.15)

(e.13)

cquations. SO. there are six cocfl1cients e~a) which are lin-
early dependen! (actually those related to the six parameters
which define a general Lorent7. transformation between two
obscrvers). In faet, the 3+ I dccomposition fixcs a natural
choice for the coeffkicnts e~J(I). Such a choice is c10sely re-
laled to the way a tetrad earried hy the local observer O, is
constructed with the normal vector n and a triad Iying 00 ~t.

c.l. Gauge choice

In arder 10 determine the malrix of cocfficients eta) in tcrms
of (he metric-tensor componcnts we ¡mpase the following
condition:

. 1\,1
fJ(o) = ¡:¡.
'1(.) = O,

t V-I
9(0) = j 1

/
1) i j (k)(l)
I = 'l(k)q{l)T)

=q(t)qfl)' (e. 16)

C.2. Ph)'sieal eomponcnts 01'tangent \'cctors lo Et

Indeed, Eqs. (e.4)-(e.6), allow us lo reeover via Eq. (e.2)
the rule [oc the lowering 01'spatial ¡"dices of tangent vcctors
to E, lef (A8) ]:

LeL3W he a 4.vector tangent to ~t.
Then, according lo Eq. (B.5) we find

(e.17)

(e.18)

(e.19)

By lowering the indices wc ohtain also

From Ihe gauge eondition (C.5), and Ihe faet Ihal '!VI = O
IcfEq. (A.2) I we have

(C.6)

(CA)

(e.5)

(i) . __ (i) Jlli
el .- el '

e~O) := O.

I l') (1)
lij = e¡ ej Tl(k)(l)

= ell)el/) .
• J

Then Eq. (C.3) reduces to

(e.7)

Furthermore, Eq. (e.I), and the use of (CA)-(e.6) give Ihe
condition

,
w(O) = O.

3W(I) = 3w{i).

(e.20)

(e.21)

N = elO) .

Tu surnmarize. we h<lve

(i) ._ li)Nie, .- -ej ,

(e.S)

(e.9)

We appreciate that the temporal physical (covarianl or con-
travariant) components of tangent vectors to Lt vanish identi-
cally. and that the covariant and contravariant spalial physical
cornponents coincide with cach other. In addition, Eqs. (1),
(A.I) and (e.17), simply lead lo

CiD) .= O.' . (e.IO) (e.22)

Again, wc stress that the coefficicnt matrix erk) is nol sym-
mctric. however three coefficients are linearly dependent; the
other six are to he obtained in terms of the 3-metric compo.
ncnts from Eq. (e.12). This mean s that modulo a rotation
50(3). the triad is 'singlc' defined (thc three rotation param-
etcrs are those related with the three linearly dependcnl eoef-
ficients). In the Appendix D wc show that if hi] has a certain
formo then e~k) may he so)ved in terms of hij as a triangular-
matrix (with its lowering part equal to zero).

We can follow the same procedure to determine the coef-
fic;ents '1(a) by means of Eqs. (1) and (8.2). This leads lo

C.3. Link bctween thc 4.Ricci rolation coeflicients and
Ihe 3+ 1variahles

Previous results can he gencralized 10 higher rank tangent
tensors to ~t. Fur instanee. the extrinsic curvaturc vcrifies:

(e.24)

(e.25)

(e.23)

¡(Ii) ¡.()) ¡'
U) = \(i) = \(i)(j)'

¡'(OlIo) -1'(01 _ 1'(0) - l' - O
\. - \(n) - \(O) - \.(0)(0) - ,

J((i){j) = K1me(i)eU)
I tu'

In the following we present a series of identilies which link
the 4-Rieci rotation coefficicnts with sorne of the 3+ 1 varia-
blcs introduced in previous Sections. As wc saw in Seco l,
these identities allows liS lo incorporate easi)y Ihe curva-
ture effects (as ''forccs'') acting on the Eulcrian ohscrvcr Oo.

(e.II)

(e.12)

CID) _ '\'t -J ,
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These idenlilies are Ihe following [8]:

i) (O) (C26)0(0)(0) = o.

ii) di) - (i) (C27)(0)(0) - II .

i ii) (O) (C28)0(.)(0) = o.

iv) 01°) - r (C29)(i)U) - - '(')(j).

v) (O) (C30)O(O)(i) = fl(i).

vi) 0(') r(i) (C31)U)(O) = - 'UI"

vii) Oi;;)u) =O(o)(j)(i) = l\U)(i) +3CU)(i). (C32)

Or

O(O)(j)(i) = -l\U)(i) - "C(i)(j). (C33)

The qucstion (hal ariscs is the following: given a 3-metric,
15 le al~va)'s possible 10 salve che above non-linear algebraic
equatioflsjor e~1)in Ierms of hij ?

For OUT purposes. it suftices to answcr this question in the
positivc for the spccial case in which hij is given in tenns of
poremia/s. Thcn. il is possible lO salve (D.l) for e~J). From
(he practical point of view, the potential representation of the
3-rnctric is well adapted to treat a broad set of problems on
gravilational collapse as well as for constructing static and
stationary cqllilibrium configuralions of relativistic objects.

So Jet lIS assume

(D.2)

whcre 0i, (Ji and /'i are sea lar fllnctions of t, r, B, <p.
Then, il is easy to show lhat

Or cvcn more

1 [" "]O(oIU)(i) = 2 CU)(') - C(i)(j) . (C34)
(D.3)

Appendix D: Potential representation of the 3.
metric

(DA)B1 )s¡'

solves cqualion (D.I). Notice lhe triangular fonn of e~l).
By choosing convcnicnlly 0i, Pi and /'" in terms of

new mClric potcntials wc can recover isotropic or radial
gauges. For instancc, by imposing 01 :=- A2CB-1, 02 :=-

A20B-I. "3 := 042 B1. 132 := 042 B-1. 133 := 042 R13. and
13 : = 042 B. i.e..

(C36)

(C35)

3()(i)
U)(k) .

where

In the Appcndix e \Ve showcd that the triad reprcscntation of
lhe 3-lllctric ohcys

(D.I)

one gcncralizcs lhe maximal slicing quasi-isotropic coordi-
nales (MSQI coordinales) [lG], employed for constructing
slationary rclativistic axisymmclric rotating bodies. For re-
covering lhe MSQI coordinates we set o =-13 =- '"'; =- Oand
C=l.

t. Indeed lheir equation has a wrong sign in the divergence of J.
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