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Exact fields of electrostatic and magnetostatic multipoles
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We show that the n-th order terms in the multipole expansions of the scalar potential, electrostatic field, vector potential, and magnetostatic
field depend on time independent electric charge and current densities, p (r) and j (r), only through suitably constructed electric and magnetic
multipole moment vectors, p™ (&) and M(™ (#), according to

1 Fap™ g - 1 (@ L [E ) p(ﬂ)] ~np™
o= 4req rntl T dreg pnt2 !
~ |2 (n) (n)
M) < ¢ fo (2n+1)¢ [r - M ] —nM
A = Ho B — Mo _

4w pntl T 4w ikl

We calculate the explicit forms of M) A and B™) for the example of a circular loop carrying a current .
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Mostramos que los términos de orden n en las expansiones multipolares del potencial escalar, campo electrostdtico, potencial vectorial y

campo magnetostatico dependen de las densidades de carga eléctrica y corriente, independientes del tiempo, p (r) and j (r). sélo a través de
los vectores de los momentos multipolares eléctrico y magnético apropiados p'™’ () y M™ () de acuerdo a

9, 2|8 (n) (n)
1 #.p@ 1 2n+1)F [r-p ] =
(n) _ r-p E™ :

Ol dmeq rntl - d7eg rnt2
’ 20+ )i [¢- M™] - M ™
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Calculamos como ejemplo las formas explicitas de M® Ay B para una corriente / en un rizo circular.

Descriptores: Tensores esféricos, expansién multipolar, campo magnetostdtico, campo electrostitico

PACS: 03.50.De; 41.20.Cv; 41.20.Gz

1. Introduction scalar potentials ™) (r) and electric multipole moments to
all orders n and for the magnetic multipole fields B (r)
In classical electrodynamics, the electrostatic and magneto-  and their corresponding magnetic multipole vector potentials
static fields due to time independent electric charge and cur- A™)(r) and magnetic multipole moments only to the low-
rent densities, p (r) and j (r), are frequently expanded in in- st non-zero order n = 1 (magnetic dipole). In this paper
verse powers of the distance between the observation point e make use of tensor methods to obtain formulas for the
and the origin of the sources [1]: magnetic multipole fields and their corresponding magnetic
= multipole vector potentials, magnetic multipole moment vec-
E(r) = Z E("'(r), E(“)(r) - n1+2 } (1) tors, and magnetic r.nulnvpole moment tensors to all orQers n.
=0 r We apply the resulting formulas to the example of a circular

- . . ’ loop carrying a current [.

- n n

Bjri= nz_':) B (r), Br) ~ rnt2’ & Section 2 introduces tensor methods, including basic def-

initions and theorems [2]. Section 3 contains properties of
Most textbooks give explicit formulas for the electric multi-  spherical tensors. Section 4 contains a discussion for the
pole fields EI") (r) and their corresponding electric multipole  electrostatic field. Section 5 contains the discussion for the
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magnetostatic field. A discussion of the consequences of
gauge invariance on the final form of the vector potential is
contained in the Appendix. Section 6 applies the results of
Sect. 5 to the example of a circular loop carrying a current [.
Section 7 contains conclusions.

2. Tensor methods

This Section presents properties of tensors that will be used
in subsequent sections. We consider only the cartesian co-
ordinates z; = z, 3 = ¥y, T3 = z of tensors in a flat, 3-
dimensional space [3]. Throughout this paper we will use
the summation convention which states that if an index is re-
peated twice in a formula, then a summation from 1 to 3 is
being performed over this index.

An object Ty, ;. that transforms under coordinate trans-
formations as the product of the coordinates x;, -~ x;, is
called a (contravariant) tensor of rank n. A trace of a ten-
sor T;, ;. of rank n > 2 is defined by the sum (contraction)
over two of its indices; e. g., Tiii,. 1, , and is a tensor of rank
n — 2%, A tensor of rank n has in general gn(n — 1) traces.

Tensors that satisfy the properties

T3 e =Tyt (symmetry),  (3)
Thisin = Litinin) (partial symmetry),  (4)
| (vanishing trace),  (5)

LT

are called symmetric tensors, partially symmetric tensors,
and traceless tensors, respectively. Indices within brackets
(iy ...1,) denote indices with respect to which a tensor is
symmetric; tensor components related by any permutation
of such indices have the same value. The partially symmet-

ric tensor 7., is symmetric with respect to the indices

A traceless symmetric tensor T ; is a symmetric tensor
whose trace is zero. A traceless symmetric tensor has 2n + 1
independent components. A traceless partially symmetric
tensor TP, . has (n + 1)> — 1 independent components.
Tensors that have the same form in all coordinate systems
are called invariant tensors. Two important invariant tensors

are the Kronecker delta tensor

__ ), ifi=j,
T8 Figy

and the totally antisymmetric Levi-Civita tensor

(6)

1, ifijk is an even permutation of 1,23,
gijk = § —1, ifijk is an odd permutationof 1,23, (7)
0, otherwise.

These two tensors fulfill the determinant relation

6l't" 5i]' 6ik'
EijkEi k! = 63‘{' é-jj' 6jk’ (8)
Okir Okyr Oknr

and, summing over one pair of indices,

_— i Dije
Eijk€itjk = ‘
’ b 0jy

’ = b 0jjr — Giyrdjw (9)
and, summing over two pairs of indices,
Eijk Eitjk = 205 (10)

One can show that when a tensor is contracted with a trace-
less and/or symmetric tensor only its traceless and/or sym-
metric part contributes. Similarly, when a tensor is contracted
with an antisymmetric tensor only its antisymmetric part con-
tributes.

(i2...in) with no symmetry assumed for the index ;. A Given a rank n symmetric tensor TP , one
symmetric tensor has 1(n + 1)(n + 2) independent compo- ~ can obtain the rank n — 2 symmetric tensors
1 1 1 8 H s
nents and only one trace, which is also a symmetric tensor. 77 . i i site? O T miy..in_,» and the
J rank n traceless symmetric tensor
n— n
s0 — TS
Tn TI] n—lz Z 613«“ bt TN ST YOS ( GICS | AL T
k=1 l=k+1
N - d;
+ (211,—].)(2” 3 Z ik iy l plq mruJJ1|...1k,1u+] sfjegippysndpaaippatyailpppe s iy (11)
k>l,p>q,
(k. 1)#(p.q)
The rank n symmetric tensor T}, ; may then be expressed as
S _ 7s0
Tzl...z Tz; ] In—1 Z Z 611:” mmis..tk_1%k41--H—1%41--tn
k=1t=k+1
- (21’2, ] (2’:‘1 3 Z 6‘“‘ ipiq mm]]tl B TORSRC (SRS, O S (M | (NS N DL (W i (12)
k>l,p>q,
(k)% (pa)
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Furthermore, the following theorem follows using mathemat-
ical induction:

Theorem 1 A symmetric tensor T}, of even (odd) rank
n can be expressed in terms of traceless symmetric tensors of
even (odd) rank smaller or equal to n, a scalar (vector), and

the invariant tensor 0;;.

A rank 2 symmetric tensor T7; can be expressed in terms
of the scalar 7' = T}, and the rank 2 traceless symmetric
tensor ) = T, — 36;;T5, according to

1

361-3-’1’.
A rank 3 symmetric tensor 77, can be expressed in terms

of the vector T; = ka and the rank 3 traceless symmetric

tensor T3, = T — 5(8i; iy + 6 T3y + 651 T5,;) accord-
ing to

T, =T + (13)

B =T 4 = (J.JTk +0uTy+0uT).  (14)

Given a rank n traceless partially symmetric tensor Tﬂ?ﬂin

one can obtain the rank n symmetric tensor

= .y (15)

in 1kll A= 12k4108n

and the rank n — 1 traceless partially symmetric tensor
: J

1
p0 p0 p0
TR T zﬂﬁhul (T Tzkal :k_likﬂ...iﬂ)
(16)
and express Tﬁ(.}..i according to
T =T o Z (17)
1.8 11‘..1 ‘-'?l'UJ .h,), k= g i
Furthermore, since theorem I applies to T}, , the follow-

ing theorem follows using mathematical induction:

Theorem 2 A rraceless partially symmetric tensor Tg?z

can be expressed in terms of traceless symmetric tensors of
rank n or smaller, a vector, and the invariant tensors dij
and Eijk-

A rank 2 traceless partially symmel;rlc tensor Tp can be ex-
pressed in terms of the vector T}, = sk, j Tp and the rank 2
traceless symmetric tensor 73 = %(Tpﬁ + Tpo) according to

pO0 _ 1 (4p0 po i p0 p0\ _ 0

T _E(Tij +T7; ) s E(Tij o )—Ti] +eijkTk. (18)
A rank 3 traceless partially symmetric tensor Tg?c can be
expressed in terms of the vector T, = Tg: and the trace-

[ess symrgletrlc tensors Tfok :D 3(ng?: zk + T;’S) -
P P 3 T
1585 Tkil + ik Ju + 0Ty ) and T = CLJthﬂc

EUQT according to

LM

0 0 0 0 0
ng = (Tagk ijik Tfn}) 15 (6 T kil Gl 5”“ Tﬁl g 6.7’“ ’1771?'! )
1
0 0 0 0
3 (Tw';k "I;[:k) 3 (T:F_;k Tkl}) 15 ( H + 6“ _j” + éJszF.!)i )
&1 1 1 1 2
= T3 + 35131T1k + 351ktTgJ = méika = E(ﬁij + +3§jkTa‘- (19)
3. Spherical tensors and expansions of ——— - P i
II‘ — E| Q(,T,L) ) (f.) = phtl (_1) e
JI etn =2 O e 0T, 000 T
The cartesian coordinates of a spherical tensor of rank n are ;
defined by _ i o Al
e Qs O, s T
-1\ ot 1 —
Q(n) (#) = prtl ( 1|) 3 — (20) 0, forr#0. (21)
s Ty wm o i : n 53 .
" 1 T ¥ The spherical tensor le ‘)‘,in (%) has 2n + 1 independent com-
Spherical tensors depend on only the direction # = r/r and, ~ ponents which, for n = [, are linear combinations of the
for n > 2, are traceless symmetric tensors. That QET):n(f') spherical harmonics Y, (6, ¢), m € {[,! & 5=

is a symmetric tensor follows from symmetry under inter-
change of the order of the partial derivatives. That fo) i, (F)
is traceless follows from the fact that the trace involves the
Laplacian of 1/7:

Spherical tensors satisfy the recurrence relalions

prtl i [QE?“QI(E)} (

Q. lF=- = 22)

n Ox;
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and

2, Q0 . (F) = Qi) (®): 23)
Explicit formulas for the lowest rank spherical tensors are
given by

QW(#) =1,
(0) (&
O 2 0 [QYE)| _ & _ .
Qz (r) 8.7:1[ r e r $‘I‘.:
2 . P8 [QY®) P
QE::,{T) = =3 bz, |: 1;2 = 5%ty 251'”,,,
4 (2) (=
@ o T | Qi)
Qin'zi:s(r) - a3 arm l: r3
5 e | N .
:Extlx‘-zria - 5(1'5151'2,-3 + $i25i113 + xla‘siliz)-

Multipole expansions for which the observation point r is
farther from the origin than the positions £ of all sources
are based on the following expansion of 1/|r — £ | valid for
F >

1 2 3 i
v — & | = Z pntl '511 fth . (l‘)
n=0
I N il G
- Z ,..2n+1‘r'1 e« (E) 24)
n=0

|
SR
[
C
= |

21’1( ) (n) = (n) 2
) (2n)! Qi i, (B)Q;, 5, ()

Multipole expansions for which the observation point r is
closer to the origin than the positions £ of all sources are

based on the following expansion of 1/|r — & | valid for
1oL
1 — " ) e
|l' - £ I - Z 2n+1 E“ : gt“Qh i (r)
= 1 T
=3 e 7 QL (€) 25)
n=0
- 1 = r n2“(n!)2 (n) - (n) -
- E;} (E) 2n)! Qi i, (B)Qy " ;. (§).

Multipole expansions for which the observation point r is far-
ther from the origin than some sources and closer to the origin
than other sources are based on a combination of the expan-
sions valid for r > £ and valid for r < £.

Legendre polynomials Py(cos#) are given in terms of

spherical tensors by
= P.(€ -§)= (n) (é) vasey
= Qiln...in (f')fn = 'éi., (26)

P (cos@)

where £ is the direction of a vector £ and @ is the angle be-
tween the vectors £ and r. Equation (26) may be used in
Eqgs. (24) and (25) to obtain

=13 (8) mew

RS JR el
=1i(§)nP(cosﬂ) for r>§g, @7
T‘ = & mn L) 1
and
1 1 o0 r n o
Lr—€|=gr§)(£) i
= %H_D (%) B, (cos8), for r <& (28)

4. The electrostatic field

In this Section we assume that the electric charge density p(r)
is zero beyond a distance R from the origin. For r > R, we
obtain exact, closed formulas that express how the electric
scalar potential ¢™ and electric field E(™ of the n-th or-
der electric multipole depend on the charge density p only
through an electric multipole moment vector p (™).

The scalar potential for the electrostatic field of a time
independent charge density p(r) is given by

4meqg r—¢|

Using Egs. (24), we immediately obtain

p(r) =

oo

1 B4 i v
!10(1') = dTey "2::,) 'l"l"+1

[ %€ p(€)" QM ; (€)

1 — 1z T
_ 1 o wola vl
- 41750 Z‘) E r2n+1 pi:.,.in (30)

where
gz [ el €) o
is the tensor for the n-th order electric multipole moments of

the charge density and where

L e o, 1

r2ntl - FF’E?.A“ (32)

(n)
Ll 47er
is the contribution of the of the n-th order electric multipole
to the scalar potential. The tensor pf-‘?___‘-_‘ is traceless and
symmetric and therefore has 2n+ 1 independent components.
The electric field of the n-th order electric multipole is given
as the negative gradient of (™ (r):
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EO)(r) =~V 1) = ~&; -p" 1) =

v—_e ————
dz; JB:I:J dmey rintl  pl

-Lip, ’,011 1,,§ ‘Th

where the last equality relies on the fact that the tensor pi¥
is symmetric. For n = 0, the second term does not appear and
the first term reduces to

1 a3
L 1 #p®
= B 34
4meg r? PEHE) = 4meq 12 34

where p(®) = [d®¢ p(& ) is just the total charge. Forn > 1,
the second term is proportional to the vector field

(n)

1
p(”) = éjpj =8 Tqq o Tyi—y (35)

n!p."l dn—1

and ¢(™ (r) and E(™ (r) may be expressed as

1 & p"(F)
™ (r) = = (36)

1 (2n+ 1) [F-p™(F)] —np™(F)

E(") ( ) rnt2

. (37)

4meq

The vector p{™ (#) is the n-th order electric multipole mo-
ment vector. The n-th order electric scalar potential 4™ (r

and electric field E(*)(r) depend on the electric charge den-
sity p(r) only through [he vector p™ (#) or only through the
r-independent tensor ,oﬂ1 -

Using Egs. (24), '™ (r) may also be written as

1 1 5
‘p(n} (l‘) = dmeq rntl QS?)I,. (r)pfl---in
1

= (n) & 2nn! 0
S rnﬂQ;l ! (r)—(%)!pf,‘__,-“ (38)

where

= [Peners . 6. (39)
is the tensor for the n-th order moments of the charge density.
The tensor p;, _;, is symmetric and the tensor p{° , is the
traceless symmetric part of g;.—';)%p,-l il

The electric multipole moment tensor, electric multipole
moment vector, electric scalar potential, and electric field of

1 &gy~ iy, 1

n

|p11 in

s i s Tats ...53:“:| (33)

an n-th order electric multipole may be calculated using the

formulas
= [ de @) - 6, (40)
I
pf® . = traceless symmetric part of (Zn)-pi i (41)
i1oin 2npl Tt
— ! [ @ (e )" Q.. ), “2)
(n) _ 1 50 2 s
By = et B0 e B (43)
1 & p™(§)
(n)(p) = i 44
P dreg rTnHl ke
1 (2n+ )i [E-pM(#)] - np™(§)
E{H) = 45
(r) drmeq e b

where pi | may be calculated using either Eqgs. (40)
and (41) or Eq. (42). For an electric dipole these formulas
reduce to

p = = [d% o€ )6, (46)
1 #:-pWr)
MY =
e T (47)
L 3 [Ep0 @) —pW ()
() = 48
E™(r) Treg 3 (48)
and for an electric quadrupole these formulas reduce to
o0 = [ @€ ()36 — €5, (49)
oD = L0 (50)
i Sl
! 1 &-p@(r)
D) = ——F 2 51
L 4Teq r3 ! g
. 1 5&[f-p@ —2p(2)
E®)(r) = il (rl] PE (s
4meq s

For the case that all of the charges are located outside a
sphere of radius R, one can use Eq. (25) in Eq. (29) to ob-
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tain the following formulas for the multipole expansion in-
side the sphere:

(n) 3
L Q" (€)
my _ 1 o B e (54)
p5" = —Phinoa B iy
o™ (r) = 1 i p(™(F), (55)
d7eq
1
(n) - n—1 (n)(a
By = e mp i), (56)

The only term that contributes to the electric field at the origin
is the dipole term:

Bir =0) = Egl)(r =0) = —Lpfo. 57
J 4meg
The tensor pi¥ ; of Eq. (53) is the n-th order tensor of the
internal electric multipole moments. Like the correspond-
ing tensor for the external electric multipole expansion given
in Eq. (31), it is traceless and symmetric and therefore has
2n + 1 independent components. The tensors of Eq. (53) and
Eq. (31) are not equal and have different dimensions.
External and internal multipole expansions have been dis-
cussed in Ref. 4. Reference 4 uses spherical harmonics to
simplify part of the discussion but the derivation of the field
is complicated because it requires detailed knowledge of the
spherical harmonics. Moreover, unlike Eqs. (37) and (56),
the expressions for the external and internal electric fields in-
volve products of spherical polar basis vectors with spherical
harmonics and their derivatives. Thanks to our use of carte-
sian tensors, Egs. (37) and (56) give the explicit forms of the
n-th multipole fields without any special functions or their
derivatives.

5. The magnetostatic field

In this section we assume that the electric current density j(r)
is zero beyond a distance R from the origin. For r > R, we
obtain exact, closed formulas that express how the magnetic
vector potential A(™) and magnetic field B(™ of the n-th or-
der magnetic multipole depend on the current density j only
through a magnetic multipole moment vector M (™)

The vector potential for the magnetostatic field of a time
independent current density j(r) is given by

Ar) = ;‘—;’r[d% j(gé} - (58)

Ir -

For each component of j and A, this relation is similar to
the relation between p and ¢. Using the same procedure as
that used for ¢, we may write

A(r) = i A =&Y AV (59

n=0 n=0

where

1
A(.n)(r) = u_o Q(ﬂ)i (f‘)M:u

3 40 prtl Vilin in
_ @l Liy . Ti, i
T 4! p2ntl 11...1n
B PN L
= 3 pntl Qi?...i"(r)mMiil...in (60)

is the contribution of the n-th order magnetic multipole to the
1-th coordinate of the vector potential, where

M. = f &€ Gi(€ )i - K (61)

is the tensor for the n-th order moments of the i-th compo-
nent of the current density, and where

M . =nl [ P E)EQM , (€).  (6)

Both of the tensors M;;, . and H,-ilm.r“ are partially sym-
metric. With respect to the indices (i) ...i5), but not the
iidex i, the tensor M,;, ;. is symmetric and the tensor

M, i, is the traceless symmetric part of %L!!Mihmin-
The components of the tensor Mj;, i, , or Mi.....’n, are
not independent but fulfill additional constraints that follow
from electric current conservation [5]. For any surface over
which the current density is zero, j(r) = 0, the following

surface integral is zero:

0= /dg n-[§(€ )6k, - & (63)

where n is a unit normal to the surface and do is the area el-
ement. The constraint equations are obtained by considering
a closed surface that contains all of the currents. For such a
closed surface, Eq. (63), together with Gauss’ theorem and
charge conservation, leads to the following identity involving
the tensors My;, i, and pi;, . 4, ¢

0= do (i€ )i, .- 6]
=‘[d“<s V- [§(€ )ik, - - &l
— [ @eite) Vet - )+ [ 6 6756
~ [ #€iu€) e 6 ) - [ PE 6 6 5
=M it Mis g o0

0 3
4 Miginins = 3y [ €068 6

- iy
= Mitiein T Z Miiii i i iniini ™ PT (64)
k=1
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For n > 1, we define from the rank n + 1 tensor M;;, ;. a

rank n tensor
0 (2n) n
Jhin-1 T onplp 4] Eijin

After a straightforward calculation using Egs. (65)
and (9), we obtain

Mis ot (65)

@) n
ZEU% 311 oI L S - Inpl n+1
n
X (an'il...in - ZMikil---ik_lik+1---ini) (66)
k=1

and then, using Eq. (64),

1 Opiiy..a
M'i o e Sobmrslm,
el T +1 6t

2"l 1 g
& _Z zj‘”“ﬂ/‘f.;:‘ll Apoyipgyaty (67)
k=1

(2n)!n &

For n = 0, the sums over k in Egs. (64) and (67) do not
appear and M; is given simply by
|

aA(n)
Oz

B(n) (r) = Elki

_ Ho 2"n!

d
T i M

Ji1.dn— 1aa:k

o 2"n! 0

5,01'

M; = e

(68)

The identity (67) is valid for time dependent charge and cur-
rent densities.

For the case that the charge density is time independent,
Eq. (67) reduces to

2" 1' 1
M Zaw ME iiirinr (69)

Ji1te—1ik4

with M; = 0 for n = 0. Using Eq. (69) in Eq. (60) gives

AV =5 ol @)
. (2;;;! % iﬁim MJ insivsroin (70)
k=1
:z%%-rnil (227:;: 'E:L.)..in(f.}g'i_ﬂn A{;')i?.“in,i»
with A9 (r) = 0 for n = 0. The magnetic field of the n-th

order magnetic multipole is given as the curl of A(i") (r):

Q. (1

,r.n+1 ]

. (n+1) 0 (n+1 i
= (ﬂ,-i'-].) [MPU o S 1Ql_1h B 1( ) P"sz, iy 1Qi:ini2‘..1nfl(r):|

= 4 (2 51&15131"M3153il‘..in—1
u,o 1 2 'n'
i 79 2n)!
,u,o 1 2nnf pD
= T )'( DM

(n+1)

Now, since @), (F) is a traceless symmetric tensor,

i
the only part of the tensor M ffl' ;._, that contributes to the
magnetic field is its traceless symmetric part M3 — [6]:

BM(py=Ho 1 2%n! L1 (n+1) 2y (79
1 ()= 4ﬂ-rn+2(2n) ( m !n—thjil...in_l(r)’ (72)
where M?? ,  is constructed from Mﬁ? ., according
to Egs. (15) and (11).
0 3 p0
Since M7 ; _ is the only part of M7, that con-

tributes to the magnetic field, it is also the only part that needs
to be included in the vector potential. The vector potential
may therefore be changed to

_Jar i, (1)

po 1 27n!

(n) ey _ (n)  (a 1,780
A;‘ (1‘) - E’;Tﬂ+1 (2,”)'@:1:,, (r)E?;jfn ‘1/‘[;1'1...1',.,_1
g 101 R 2 750 N .
o E—rnJrl Ebiﬂ" MJ“ i,._l‘lii . i

o MM () x #.
= E 1.n+l (73)

where the components of the vector M '™ (£) are given by

‘(”)n_lhsﬁ - -
.:43 (I‘)-—f\f{

'HIA jtl...i"_l‘ril s T
Ly o vy
- s0 17 tn—1
- ‘{JH An-1 pn—1 : (74)
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The magnetic vector potential of the n-th order magnetic
multipole is then given by

o M(™) (%) x #
47 Tn-i-l

A(r) = (75)
and, taking the curl of this, the magnetic field of the n-th or-
der magnetic multipole may be expressed as

po (2n + D)f [f - M) ()] — nM™)(§)
ar rnt2

B (r) = . (76)

The traceless symmetric tensor Mj?l has 2n + 1
independent components and is the n-th order magnetic mul-
tipole moment tensor. The vector M) (#) is the n-th or-
der magnetic multipole moment vector. The n-th order mag-
netic vector potential A(™ (r) and magnetic field B(™ (r) de-
pend on the electric current density j(r) only through the
vector M(™) () or only through the r independent tensor
ME 5

The magnetic multipole moment tensor, magnetic multi-
pole moment vector, magnetic vector potential, and magnetic
field of an n-th order magnetic multipole may be calculated

using the formulas

Mii, i, = /dSE Ji€ )&, - i (17
p0 (2n) n "
MJ'I = oannl n + 1 Eijin n'{u;‘..:.‘
_(2n)! n / i
T 2npin+ 1 ¢
X [£ Xj(E ”'Ei: o '61',;-11 (78)
M;‘?} ._, = traceless symmetric part of Mﬁ? iy (9
n 1 . .
MV = —ME, i B (80)
(n)(a =
bl ‘U;()M (#) x*
APy = B— oo @1
po (2n+1)# [£- M (#)]-nM ™) (§)
B™(r)= [ - ] . (82)

For a magnetic dipole these formulas reduce to
My = [2°€ € )6u, (83)

1 1 i
j"’fpo 251311 M, = ifdae [£ x J(€ )]j': (84)

1 .
M = =2 [ e xi);, (85)
(1)t =
AV (r) = ?*M (;) =t (86)
(s T
3¢ [¢- MW ()] = MW (F
A e 87)

and for a magnetic quadrupole these formulas reduce to
Mia = [ 4 36 61,66, (88)
ﬁffg = 25,“»_,;"-1-{1'”'2 = QdeE [f % j(f )]j 'fiiv (89)

M = [ e {le x3€ )], 6HE x (€], &}, 00

=5/

x{l€ xi(€)]; €-r + (€ xi€)]v; }, O

[l

@ _ 1,50 Zir _
M = M3 =

g o MUPN(E) x §
A e 2= ©2)
58 [8- M@ (8)] — oM@ (3
B(Q)(r) _ ?.)r {r M (rl] oM )(r). 93)
m r

6. Circular loop carrying current I

In this section we consider the circular loop carrying a con-
stant current / as an example and obtain explicit formu-
las for the n-th order magnetic multipole moment vector
M™)(#) and its corresponding vector potential A(™ (r) and
magnetic field B'™)(r) in terms of the Legendre polynomials
Foor(f-f), Fi(f-£), and By (8- F).

We assume that the current loop C has radius R, is cen-
tered at the origin, and lies in a plane perpendicular to the di-
rection fi. The current density of the current loop is given by

r):I?{dlb's(r-l) (94)
&

where the points along the current loop C are parameterized
according to

Rcosa
Rsina |,
0

la) = (t; t, n) 0<a<2r (95

where t, t,, i constitute a right-handed orthonormal basis.
The tensor ME! is given, using Eqgs. (94) and (95) in
Eq. (78), by

In—1

”po _ (2n)!

[ 1 G R r)”n] n+1/d E [E XJ(& ] 511 gln-l
(2n)!
= g n+11}(l)<d1”]~ =1

_(2n)! n
T oonplp 41

If (nden)il“ i

27
.{RHI/ donly = sl

IR*7;W;, .

_(2n)! =n
T onpln 41
(2r|) n
T ol g +1

1." 1 (96)
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where
27

Wi ios = | daly by, 97)

o

0

The tensor W;, ;. is symmetric and orthogonal to n:
tiWiiz...i, = 0. (98)

Also, due to the cylindrical symmetry of the the prob-
lem, the only direction upon which W; _; depends is
n. From these facts it follows that W; ; is propor-
tional to the tensor obtained by symmeterizing the tensor
(Biys, = sy fhiy) (Bt = Righia) - o (gt — Tty By )

Note that W;, ,;, = 0forodd k. W, _;, may be expressed as

Wi, . 4, =R® , (99)

r=0

dz;, ak dz;, e (72 = ﬁ)z)

where F'is any function whose derivatives are non-zero and
where R'¥) is a constant of proportionality that depends on
the particular choice for F'. The constant R(¥) can be deter-
mined from the value of one component of the tensor W;, ., ,

e. g., that component for whichi; =i =--- =1 = 1
2n
W.a= Rk/ da cos* a
0
2Rp (¥ for even k
= 2% \k2)’ o (100)
’ for odd k.
Choosing F' to be the exponential function, we then obtain
" k!
a_kerz—(r-ﬁ)2 = —(k/2)!‘ foreven k,
Oy r=0 0, for odd k,
(101)
so that
k | k
R 2nR* / k \ (k/2)! _ 2rR - (102)
28 \k/2/ K (k/2)12
and [8]
QTFRk 8’“ 2 =12
7 _ r*—(r-n) 103
Wi = [572)12% Bz, . Bza © B (0%

Using Eq. (103) in Eq. (96) then gives

n—i Ayl R+ (n =1

e (n+1)27 \ &5

+£ [B(fi-F) — (A-F) P (0 -F)]},

M = 4nlR™1 (2n)! n A,
tedn=t (g —1)/2)127 270l n + 1
an—l = -
v  r*—(r-A) 104
. Bril...axin_]e - £104)
=0
Note that M) , =0 forevenn.

To obtain the traceless symmetric part Mfﬂ i, of the

tensor Mﬁ?,“i,,,, we use the fact that any rank n traceless
symmetric tensor that depends only on a direction fi is pro-
portional to the spherical tensor QE:)..:',, (f1). Evaluation of

the constant of proportionality gives

n—1 = nn! n-—1
(—1)( )477IR HW( 35_1)

Mﬁo —

#) . dna

Q™ . (&), fornodd, (0%

0, for n even.

The magnetic multipole moment vector M("™) obtained from
Egs. (105) and (74) is a linear combination of  and f:

M®™ = C1# + Chia
#M™  fFh £ M0
n-M® AR -t a-M®|
= 4+ -—————n. (106)
| il 2 rn 23 12 rn
it nn nf fn

Using Egs. (74), (105), (23), and (26), the scalar products
£ M and i-M(™ are given, for n odd, by

. n conm1 AmIR™MH fp -1 5 =
#-M® = (-1)72 m(ngl)nfjn(l-r),
(107)
not 4rIR™ fn -1
s MO = (VT e P 4 (f-T).
n (=1)7 (n+1)2n ( —n;l )n st Ul )

(108)

Using Egs. (107) and (108) in Eq. (106) and then using
Eqgs. (81) and (82) gives the following explicit formulas for
the n-th order magnetic multipole moment vector, vector po-
tential, and magnetic field of the circular current loop in terms

of the Legendre polynomials B,_;(f - ), B, (A - ), and
By (f-1):
n -~ ~ ~ -~ -~ -~ -~
w1l ) T2 @52 {B[P-1(f-F) — (A-T)Ru(d - F)]
for odd n, (10
for even n,
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n=1 R"+1 n—1 Xt
_ B_.(h-f)—(i-f)P(A-£)], foroddn,
A () = { T mol ey (”T“l)(n+1)2”1(ﬁ~f*)2{ VA —@-DR@-H],  foroddn, 4
0, for even n,
n—1 Rn+1 n—1 1 - e . s
(=)= ﬂofm( Bzl ) GiTr G Tt DRG-F) - (6 DR @9
B(™(r) = i (111)
—An[P-1(h-F)— (A -F)F(Aa- )]}, foroddn,
0, for even n.

For n = 1, Egs. (109), (110), and (111) reduce to the
standard dipole results:

MY (r) = InR*A, (112)
pol R? i x

Am(r):T = (113)
pol R? 3(h - #)f — &

BW(r) = 1 3 A (114)

An analysis of the circular loop using toroidal coordinates
was carried out in Ref. 7. The exact form of the vector po-
tential A was found to involve a Legendre function of the
second kind with fractional index Q 1 and the magnetic field
B involves Q1 and its derivative. The study of the field near
the current Ioop was especially interesting. Two components
of B were found to diverge as the distance d from the current
loop approaches zero. The component of B that curls around
the current diverges as 1/d. This divergence is also present
in the case of an infinite straight wire. The component of B
normal to the current diverges as sin(f) /R x In(d/R), where
fl is a toroidal coordinate. This logarithmic divergence van-
ishes if one first takes the limit R — oo to obtain an infinite
straight wire. It also vanishes in the plane of the current loop,
where 8 = () corresponds to the disk bounded by the current
loop and ¢ = 7 corresponds to that part of the plane which is
exterior to the current loop.

The behavior of the terms in the multipole expansion can
also be analyzed near the current. Using Stirling’s expansion
we can show that both types of divergence, 1/d and In d, are
present but our predictions are not as precise as in Ref. 7
because the divergent terms must be summed to obtain the
behavior of the complete field. The multipole expansion is
not the best tool with which to analyze the properties of the
fields close to the sources. The lack of precise predictions
close to the sources is a general property of all multipole ex-
pansions rather than a deficiency of our method.

7. Conclusions

Equations (36) and (37) give exact, closed formulas that show
how the electric scalar potential ¢(™ and electric field E(™)
of an n-th order electric multipole depend on the charge den-
sity p only through the electric multipole moment vector
p™ . Equations (75) and (76) give exact, closed formulas
that show how the magnetic vector potential A and mag-

lnetic field B(™) of an n-th order magnetic multipole depend
on the current density j only through the magnetic multi-
pole moment vector M(™). The derivation of Eq. (76) for
the magnetic field was complicated because of the need to
use additional constraints imposed by electric current con-
servation. Equations (36), (37), (75), and (76) are valid for
time-independent sources p and j and for observation points
that are farther away from the origin than are the sources.

For the example of the circular loop carrying the constant
current /, Egs. (109), (110), and (111), respectively, give ex-
plicit formulas for the n-th order magnetic multipole moment
vector M (#), vector potential A(™ (r), and magnetic field
B(™)(r) in terms of the Legendre polynomials B, (i - #),
B,(fi-t),and B+ (0 - £).

Our tensor methods used rotational covariance to its full
extent. We also used the cartesian coordinates of spherical
tensors rather than spherical harmonics.

Equations (76) and (74) which relate the magnetic field
B{™(r) to the r-independent magnetic multipole moment
tensor MS? . are, apart from the factor poeg = 1/c?,
identical m Eqs (37) and (35) which relate the electric field
E'™)(r) to the r-independent electric multipole moment ten-
sor pi?l_._,\nil. It follows that, in analogy to Eq. (36), the
magnetic field B(™)(r) is also given as the negative gradient
of a magnetic scalar potential [9],

pao F - M(")(f-)]

4w prtl

B"(r) = -V [ (115)
and that, in analogy to Eq. (75), the electric field E(™)(r) is
also given as the curl of an electric vector potential,

1 p™(F) x ¢
47TE{] rntl 4

E™(r) = ¥ x [ (116)
except, of course, for n = 0, in which case an electric
monopole vector potential does not exist.

The facts that '™ and E{™) depend on p only through
a vector p (™) and the facts that A and B(™) depend on j
only through a vector M™) follow from the facts that p
and M0 | are traceless symmetric tensors together with the
fact lhal Maxwell’s equations are linear. The only scalars and
vectors that can be constructed from the traceless symmetric
tensors p3 . and M:° , and the unit vector £ and that are
linear in the sources are
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1 .
o™ = Epf?l_ i BBy, vector, (117)
Mgt B By
PR = iy i B scalar, (118)
] i B gt g, .
p'MxE| = n|e",1p,-1___i“.rjz,2 s g axial vector, (119)
1 .
p™ — L ars0 - .
i = oM 1B e B axial vector, (120)
w & « .
M .§ = ;;,Mflq..i,.fh . pseudoscalar, (121)
% 1 5 % 2
[M(“) xr]l_ = EsﬁleflO---in Tl 5 vector. (122)

From the linearity of Maxwell equations and the facts that
0™ is a scalar, E(®) and A are vectors, and B(™ is a
pseudo-vector it then follows that the potentials and fields are
given as linear functions of p™ and M of the following
form:

o™ = [p™-5] £(r), (123)
EM™ = ¢ [p(")-i-] ex(r) + pMey(r) (124)
A = [I\/I(")xi- a(r), (125)
B™ = [M(“}-i-] by (r) + MMy (r). (126)

The functions f(r) and a(r) are determined from Maxwell
equations and the functions e, (r), ex(r), bi(r), and ba(r),
are obtained by differentiation.
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Appendix

We will now use gauge invariance to show that only the trace-

less symmetric part of the tensor M J‘-’,-(:‘__,-"_ . that appears in

1,
47r rnt+l ( )

A{n) {i‘) |:E,'j,'“ N.fjsil

_ o !
47rr"+1( n)!

J g
Q(" () [Eim M 5™
where, for the last equality, the term

n—

o 1 27 n!
47 v+l (2n)!

L gm,

wevbm =1

k=1

[
Eq. (70) contributes to the magnetic field. Gauge invariance
states that any term in the vector potential A that is the gra-
dient of a scalar function does not contribute to the magnetic
field.

Accordmg to Theorem 2, the traceless partially symmet-
ric tensor MP? may be expressed in terms of the sym-

Ji1-dn—1
metric tensor

1
$ I
MJ‘H -1 nMjil...i,._l
n—1
+ = Z u_;n el =18kt b —1 (Al)
and the traceless partially symmetric tensor
p0 - p0 p0
Mg .= %gjinull(Mjil‘..zn_lMi,._lil...i,,_gj) (A.2)
according to
p0 s
MJ‘H A/IJ"] -1
n—1
p0
+ ijikau,...ikk,:H.. iy (A3)
k=1

Plugging Eq. (A.3) into Eq. (70) and using Eq. (9) gives

—_

n—

+ ¥ (8adi, —0i, 01:“)Mm u_lzkﬂ..:n_;}

k=1
n—1
p0O
1‘1"°6ti"M“1-‘-ik—lik+l-‘-l.n—l (A.4)
k=1
OitBiyin M tu Al 1Bkp1eedn_t1 (A.5)
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vanishes because Qf?) is traceless. Using Eq. (22), the term

dn

o 1 2™n! ,. . 6 o 2"n!n—-11 (n=1) p0
7‘1_7;7—114—1 (zn i I' Z‘sukfsh,. h] Apeyibpyeidpan (95171‘ E(QR)' 7 'r_ﬂQil...i“‘l( )M;,.*ln o (A6)
is seen to be the gradient of a scalar. Gauge invariance states
that this term does not contribute to the magnetic field B.
Omitting this term from the vector potential gives
n—2 n-—1
po 1 2%l iy . 5
A(n) i \T)E4ji M:o " A7 =+ !l.!t —1i ssbpegippradn
1 41r T"'H (ZTL)'Q ( ) 1Jtn Fhpoeln—q ( ) kz; 1 ;1 Jmmh b=t gy safretipgrinin-
Now, according to Theorem 1, the symmetric tensor o i (A.8)
M;H _, can be expressed in terms of its traceless symmet-
U - - .
ric Part Mjsn , Plus terms containing symmetric (ensors  when Eq. (A.8) is inserted into Eq. (A.7) those terms con-
of lower rank and (products of) the 4 tensor: taining the tensor d do not contribute because Qﬁj‘_?,in (%) is
MS, . =M% . traceless and symmetric. The final form of the vector poten-
P PRI tial is, therefore, given by
N 1 é]n M:nmz] A1t i 1
- b=l (n) _ Mo {n) s0
n-1 (l:l A‘i - E rntl ( ) Q vl (r)EIJtn MJ;, —e (Ag)
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Although the symmetry arguments are more general, this ex-
| pression may also be obtained by direct integration:

an /2 i (r-il)2+(r.iz)2 sin (ct+tan_’ :_‘:"_;_)

s az,l -

27 an
m]mi" :] da —er-l
0 6in & B 8:1?1" r=0

(R 2 2k
on o |3 ,~2—(r°ﬁ))
>y

an " 3
2/ dC!E!R r2—(r-f)° cos a

O e - Oz o Oxiy...0z;, = (k)2
r=0
2 (R)n 8" r2—(r-ﬁ)2
= — —c

(121)' 2 61‘"1 ...BI,‘n F=0
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