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Radiation emission from thin solid targets irradiated by short-intense laser pulses has been re-examined. Free electrons in the material are
driven by the applied external radiation field and harmonics are generated by the electronic response to the crystal lattice force. Recent work
on this phenomenon has drawn attention to a flat spectral profile featured by a sudden cut-off at high harmonic order. In the present work
we report a number of effects that may in practice have a bearing on the emission. A model was modified by introducing a more general
expression for the lattice force that by sharpening or by smoothing the potential in turn allows the strength of the electronic perturbation to
be varied. Results from the computed emission reported here show that the pulse shape and the intensity of the laser light may modify the
spectral characteristics. For infinite plane waves the obtained emission spectra are in accordance with a recent theoretical model.
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La emision de radiacién por blancos metlicos irradiados por pulsos cortos de luz laser intensa ha sido re-estudiada. El campo externo de
radiacién mueve a los electrones libres a través de un medio con estructura periddica. Los arménicos son generados por la respuesta de los
electrones al potencial de la red. Un trabajo teérico reciente sobre este fenémeno ha mostrado perfiles espectrales planos caracterizados por
un corte en la regién de arménicos de alto orden. En este trabajo reportamos un niimero de efectos que en la prictica podrian tener injerencia
en la emision de arménicos. Un modelo fue modificado introduciendo una expresién mds general para representar los efectos de la red
cristalina permitiendo variar la magnitud de la perturbacion electronica. Los cdlculos aqui reportados de la emision muestran que la forma e
intensidad del pulso pueden modificar las caracteristicas espectrales. Para trenes de onda plana infinitas la emisién obtenida es conforme a

un reciente modelo tedrico.

Descriptores: Interaccion laser-sélidos, dispersion y emision de radiacion

PACS: 52.40.Nk; 42.65.Ky; 52.25.Ps

1. Introduction

Recent work on the irradiation of thin solid targets by short-
pulse high intensity lasers has drawn attention to the high
order of harmonics that can be generated [1]. The model pro-
posed by Hiiller and Meyer-ter-Vehn [1] to study harmonic
generation from the interaction of laser light with thin film
targets describes the mechanism as one in-which the electric
field of the laser beam drives the free electrons in the solid lat-
tice to large amplitude excursions. Harmonic emission arises
from the perturbation produced by the lattice force. Results
reported in that work predict that ionized electrons under the
action of the periodic lattice potential radiate a spectrum of
harmonics characterized by a sharp cut-off which depends
on the lattice spacing and the excursion length. This model
has been modified, in this work, by introducing a more gen-
eral expression for the lattice force that by sharpening or by
smoothing the potential in turn allows the strength of the per-
turbation to be varied. For a particular choice of parameters
it can be reduced to the model used in Ref. I.

This mechanism for harmonic generation differs from
that involved in harmonic emission from materials illumi-
nated by CO, lasers in early experiments by Carman er
al. (2], where the long laser wavelength provided, for lower
input intensities, the conditions for a sufficiently steepened

plasma density profile. The emission was attributed to non-
linear resonant absorption with the plasma wave coupling to
the radiation field in the steep density gradient and generat-
ing harmonics. The spectra in those experiments were dis-
tinguished by a sharp cut-off at high harmonic number. This
feature led erroneously to identify the cut-off, in a theory pro-
posed by these authors, with that harmonic for which the up-
per density shelf, characteristic of the steep density profile
in these experiments, went underdense and to propose the
cut-off as a density diagnostic. This identification was sub-
sequently shown to be incorrect presumably because of the
low temporal and spatial resolution used in Carman’s calcu-
lations.

Recent experimental work [3] that made use of a novel
class of lasers known as T (tabletop-terawatt)—that per-
mit high intensities (> 10'® W/cm?) and short pulses (< 1
psec)—showed no cut-off in the emission spectra, as was
previously obtained by Gibbon in numerical plasma simu-
lations [4]. Presumably, when external electromagnetic ra-
diation is incident on plasmas characterized by steep density
profiles and by plasma frequencies several times critical, den-
sity fluctuations on the plasma surface are induced and con-
stitute sources for harmonic generation [35, 6].

The radiation mechanism studied here has features in
common with the Smith-Purcell (S-P) effect [7-10] in which
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radiation is generated when highly energetic electrons inter-
act with grooves in the surface of a grating. This effect was
independently discovered by Salisbury [11]. In this effect co-
herent radiation is produced from the radio to the ultraviolet
spectral region for electrons with energies above 50 keV. The
Smith-Purcell effect gives rise to coherent narrow band ra-
diation of frequency w = k, - v(1 — 3 cos )", where k,
is the grating periodicity, v denotes the velocity of a beam
electron, 3 = v/c and § is the angle between the beam direc-
tion and the source-observer axis. The last expression can be
deduced, as we will see later, from considerations that imply
a resonance condition to be fulfilled. The S-P effect offers
a means of producing radiation at high efficiency allowing
the emission frequencies to be selected by varying the grat-
ing period. If electrons strike the surface, the effect could be
screened by other mechanisms like transition radiation [12],
for example. Experiments have been performed to study the
relativistic limit for electrons of energy 3.6 MeV [10] and ra-
diation in the range of 350 m to 2 mm was detected for grat-
ing periods of (0.5-1) mm at emission angles of 56°-150°.
The tunability and spatial coherence of the S-P radiation may
offer scope for applications in areas such as microscopy and
microholography.

Using this idea, the crystal lattice might be re-
garded as a diffraction grating responsible for the emis-
sion when charged particles pass through periodically re-
peated inhomogeneities—in this case—the equidistant ion
cores. The quiver motion of electrons in the non-relativistic
limit gives rise to emission at the fundamental frequency w;
(Thomson scattering).

In this paper we explore, through numerical modeling,
the harmonic generation produced when short laser pulses are
incident on thin film targets. Emission arises from the elec-
tronic response to the lattice potential. We draw attention to
the distinct spatial characteristics obtained when effects due
to the pulse shape and the intensity of the laser light are in-
troduced in the computations. The remainder of this work is
organized as follows: In Sect. 2 we account for the mecha-
nism of harmonic generation by means of a modified theoret-
ical model. Section 3 outlines the dynamic equations used to
compute the emission and presents the results, for different
laser-target scenarios, from numerical integrations. Finally,
we conclude in Sect. 4 by discussing the obtained results.

2. Harmonic generation from periodic arrays

Radiation phenomena from short laser pulses of wavelength
Ar = 1 um interacting with matter have been analysed at in-

tensities from 10'# to 10'7 W/cm?. Disintegration effects of

the crystalline structure as the laser intensity is risen above

certain limit sets a limitation in the maximum amplitude of

the input radiation.

The mechanism responsible for harmonic generation
from these interactions corresponds to nonlinear effects in
the electron quiver motion produced by the periodic lattice

potential. Emission at the fundamental frequency w; is pro-
duced by non-relativistic electrons whereas the perturbation
due to the lattice potential will give rise to harmonics. As it
will be seen, the lattice periodicity for harmonic excitation is
required in the transversal direction to that of propagation of
the laser beam.

The transverse quiver momentum of an electron in the
presence of a laser field is given by p = mgc ag, where
ap = eAg/moc? is the normalized (unitless) vector potential
of the incident radiation field. Here e, ¢, mg and Ay denote
the electron charge, the speed of light in vacuum, the elec-
tron rest mass and the vector potential, respectively. The laser
strength parameter ap—the magnitude of the normalized vec-
tor potential—is related to the intensity I; of the field by

ap ~ 8.544 x 1()‘“’[,'7/2 (W/em?) A (um),

where Ay is the laser wavelength in microns. From now on
the scalar ag is used to denote the field strength. Relativis-
tic thresholds (ap ~ 1) for CO, (10.6 um), Nd (1.06 pm)
and Kr-F (0.25 ym) lasers are found for intensities beyond
1.22 x 108, 1.22 x 10'® and 2.23 x 10'? W/cm?, respec-
tively.

In terms of this parameter the velocity of oscillation is
given by vese = cag/y,, where v, ~ (1 + (3:%_)]‘f2 is the rel-
ativistic factor associated with the transverse electron motion.
Under the action of the external electric field the ionized elec-
trons perform large quiver excursions of length § = vgsc /wp .
The oscillation amplitude expressed in terms of the parameter
(017] reads

& = I\—I ! ;

279

ri

For instance, an electron driven by a 1 gum laser at an in-
tensity of 10'® W/cm? describes excursions of approximately
40 A and can be perturbed. in an optical cycle, by 20 ion cores
in a lattice array with period 4 A. In addition to this mecha-
nism, the emission produced from the atomic response to the
external radiation must be discerned and differentiated from
the type of emission we are concerned with.

Atoms exposed to intense laser fields develop time-
dependent dipole moments which radiate at odd multiples
of the incident frequency. The radiation emitted is associ-
ated with the anharmonic motion of bounded atomic elec-
trons. This process, known as optical harmonic generation,
is responsible for high order harmonic emission. The elec-
tron ionization process can be divided into two regimes. In
the first of these, corresponding to low intensities, the ioniza-
tion occurs when electrons make transitions between bound
levels or from atomic levels to the continuum. In those pro-
cesses harmonic generation is produced. For high field in-
tensities harmonic generation occurs when the electrons pass
over the resultant potential barrier of the atomic nucleus and
the incident field [13]. In single-atom approximations it has
been found that harmonic emission can be reduced when the
pulse intensity reaches a threshold value. Beyond that point,
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complete ionization takes place and the ionized electrons then
emit by bremsstrahlung scattering.

Atomic emission thus corresponds to a process in which
electrons experience transitions between different atomic lev-
els before emitting radiation. These processes are character-
ized by time scales larger than those for the type of emission
we are studying here, and this distinction offers a means of
discrimination.

At very high laser intensities the crystalline structure
might be affected by the action of the radiation field. Distor-
tions to the lattice configuration can then be produced alter-
ing the electron harmonic motion through Iattice cores. Using
ultrashort laser pulses it could be possible to measure the ra-
diation emitted when the interaction time with the driver field
is shorter than the disintegration time of a thin solid layer.

To estimate the disintegration time we need to calculate
the electron oscillation energy in the field [1], which can be
written as

=
Eose =~ 2.56 x 10° ( ) 2) eV, (1)
1+ag

a parameter that sets the upper limit for the hydrodynamic
disintegration velocity vgis < (EDSC/Am,,)'/Z, where A is
the mass number of the material and m, denotes the atomic
mass unit. For instance, the disintegration time for a solid
layer of thickness 100 A, A = 10 and E,oc ~ 200 eV—
corresponding to a Nd laser with intensity [, = 10
W/ecm?—is 74ic > 300 fs. Thus, for ultrashort laser pulses
with time duration below the disintegration time it is possi-
ble to ensure that lattice arrays will preserve their periodic
structure. -

On the other hand, the electrons driven by the electric
field have oscillation energies both above the Fermi energy
(several electronvolts) and the binding solid energy. For ex-
ample, for laser intensities greater or equal to (10'1-10'%)
W/cm? the electron energies are of the order of (10-10%) eV,

To account for collisional effects during the excursion of
electrons in the material a classical approximation for the col-
lisional cross section can be applied [1]. It can be shown from
Eq. (1) that the ratio of the mean free path to the quiver ex-
cursion 4 is given by

[mfp 3 x 10% ((10 )3

4 NeAL 7—L

From the last equation we see that for solid densities and
for laser intensities greater than 10'* W/cm? and A, = (0.1-
10) pm, lyg, > 6 and the electrons can make several number
of excursions before losing energy between collisions.

The classical equation of motion for free electrons in a
solid material under the influence of both a plane monochro-
matic linearly polarized electromagnetic wave and a lattice
potential ¢(r) can be expressed in the form

mr(t) = —eEpsin(wpt — kg 1) +eVe(r). (2)

The expression above is only valid for thin layers with
skin depths much bigger than the metal thickness under con-
sideration. For thicker layers, the laser field inside the mate-
rial must be calculated taking account of attenuation factors
characteristic of the medium. For those situations the laser
electric field assumes the form

Lo n
E = Epe™ = ™% coswr (—a: - t) ,
C

with attenuation determined by the exponential term. Here n
is the refraction index and n’k = 2mpo/wy, where u and
o are the permeability and conductivity of the medium, re-
spectively; & is called the attenuation index. Since the energy
density £ of the wave is proportional to the time average of
E?, & decreases as £ = £ge™ X7, where ¥ = 2wrnk/cis the
absorption coefficient. The energy density decays to 1/e after
the wave has travelled over a distance d = 1/x = Ar /4mkn,
the skin depth.

Essentially, the electron trajectories consist of harmonic
oscillations r(t) = ro + ri(t) + ra(t) , around centres rq,
where ry (t) = d sin(wpt —ky, -rg) is the quiver electron mo-
tion with amplitude 8 = ¢E; /mw? and ry(t) corresponds
to small deviations produced by the perturbation of the lattice
force.

With the aim of representing the periodic lattice force act-
ing on electrons as they make excursions through the crys-
talline array we considered a potential ¢( r ) of the form

&(r) = Z ¢, sinh [Asin (k. - 1)], (3)

c

where k. = k.e. corresponds to the reciprocal lattice vec-
tors and the strength amplitude ¢, is of the order of one volt
for typical metals [15]. The factor A in the last expression
can be incorporated into the model in order to include varia-
tions in the lattice potential. The lattice potential considered
in Eq. (3) can be reduced to the sinusoidal potential conven-
tionally used for representing periodic potentials and applied
by Hiiller and Meyer-ter-Vehn in Ref. 1. Some plots for this
function, normalized to unity, are shown in Figs. la and 1b,
where variations to the sinusoidal form were produced by as-
signing different values to the parameter A.

Following Hiiller and Meyer-ter-Vehn's model and incor-
porating a more general expression for the lattice potential,
as considered above, the lattice force gives rise to a perturbed
motion described by

mity ~ — Y eAd.k, cos(k, - r) cosh[Asin(k, - r)].
c

Using Jacobi expansions for the arguments one can get
the corresponding expressions for the sin and cos terms

sin(k. -r) = Z TR (e cos(mﬂﬂ ) Siﬂ{% + ke - 1),

n

cos(k, -r) = Z emdm(Z) (.'os(mB’ ) COS[% + ke - 1ol

m
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FIGURE 1, Lattice potential as represented by Eq. (3) for arbitrary

values of A.

where €, is the Neumann parameter defined by €,,, = 1 for
m=0ande, =2form #0,6 =n/2—6, Z =k, -8 and
8 =wrt+krS-rg — wrcf - Rops. Here Rops is the vector
to the observation point and €2 a unit vector from the particle
to the observer.

Harmonics are generated due to the lattice force m 1 » (t' ),
evaluated at the retarded time t =t — €2 - (Robs —1)/c. In
what follows, the prime has been dropped for convenience.

Hence, the acceleration is given by

fFr~ =Y %q&ckcfl Y €mdm(Z) cos a(t) cos B
i
x cosh | A Z emdm(Z)cosa(t)sin3|, (4)
where

1
a(t):ﬁmw —wrt+b,

1
B:Emrr + (k¢ - 1o),

Z=(k. - 6),
T R T,
c
The power radiated by single electrons per unit solid an-
gle in the direction €2 is given by [14]

dP(t) ¢ 2
W = 'Er'l RErad(t1ﬂ) | )

where

e X x (QxF(t))
Erad (f, Q) e 2 R )
and R =| Rops — 1 |.

The spectral components are then obtained by evaluating
and Fourier analysing the acceleration field. The emission
calculated by means of this procedure is in accordance with
that obtained by integrating numerically the electron force
equation, step we follow in next section. The lattice force as
a function of time is also shown for different intensities.

In order to have an insight into the maximum harmonic
number that can be generated from the action of the lattice
force on the electron motion we follow a procedure that in-
volves conservation of energy and momentum.

The radiation spectrum produced when a charged particle
moves in the vicinity of a periodic structure can be explained
from conservation laws. Radiation arises only if resonance
conditions are fulfilled. To explain the last statement, let us
assume that the medium changes its properties periodically
along a certain direction y. If we consider a particle trav-
elling through a medium with velocity v emitting quanta of
energy fiw and momentum hw/c, the conservation laws for
the longitudinal momentum and the energy can be written in
general form as

vip hw v 27
— 0os8 = —m,
U o B l

0F — hw =0,

= =it

where 6 is the angle between the direction of a quantum
emitted and the velocity v. The changes in energy and mo-
mentum of the particle are denoted by § F and dp respec-
tively, m is an arbitrary integer and [ the periodicity of the
medium. Since 6 = vdp for small changes of the energy
of the particle, the principal condition for radiation from the
conservation laws reads

Weff W v 2mm
= =—(1——Cosl9'): .
v v o [

For the finite plane wave-solid interaction, the spectrum
forms a plateau in the region of low harmonic orders with a
cut-off near the peak intensity. The location of the cut-off
can then be derived from the resonance condition 1y wr ~
ke voge, Which yields

A a
Nmax = (TL) A'_O (5)

where [.. is the lattice spacing.

The overall strength of the spectrum is determined by the
electron distribution. From the analysis of the phase factors
involved in the expression for the acceleration field it can be
shown that correlations between electrons are important [1],
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in the sense that for cases in which the electrons are corre-
lated the radiation emitted will be enhanced and at the same
time will produce only harmonics of odd order. For disor-
dered electron systems, the emission is found to be less in-
tense and harmonics of any order are permitted. The former
case—which represents a more realistic electron behavior—
would correspond to oscillation centres that cluster at the
sites of the ions or at interstitial locations.

3. Integration of the equation of motion

In spite of the fact that the model outlined above is restricted
to low laser intensities, we have adopted it to solve the elec-
tron dynamics using a relativistic description, which allows
effects that arise for relatively high laser powers to be in-
cluded. In order to study the dynamics of electrons in the
radiation field, a single-particle relativistic force equation for
a linearly polarized electromagnetic plane wave with a lattice
force term as an external source was solved in order to incor-
porate nonlinear and quasi relativistic effects that arise when
the laser intensity increases to high values.

The electron dynamics was obtained through the numeri-
cal solution of the Lorentz equation

I _

—eE — fvxB + eV, (6)
dt ¢

where the electromagnetic fields are related to the vector po-
tential in the form

E= 298, B=VxA,
cat’

and ¢ denotes the lattice potential as given by Eq. (3). We
have considered a lattice close in shape to the conventional
potential, depicted in Fig. 1a. Variations of the lattice poten-
tial and its réle in harmonic generation will be consider in a
future publication.

For a monochromatic plane wave of arbitrary polarization
propagating along the z direction, the vector potential can be
expressed as

A(r,t) = a(n)An),

where a(n) is a shape factor, and

A(n) = [0,6cosm, (1 62)*sing),
here 7 = wy (¢t — z/c) is the Lorentz invariant phase. The
propagation is taken in the direction of the Poynting vector.
The parameter § characterizes the degree of elliptic polar-
ization. Linear polarization corresponds to 6 = 0, £1 and
circular polarization to § = £1/v/2.

Using the expression for the electromagnetic potential,
as well as the gauge fields equations, the components of the

force equation take the form

B, o S (1—3)( a4y v.dA“) +FE, (D)

mey c v d"r) ©dn
oo o (i v v d4
¥ mey e €} dn
ewr, dA

z
7—rw37vyvzd_1]- + 5, &

L ew l_v_x_vf dA,

Y= mey c  €¥) dn
: A

2L 0, M g (@)

med y dn

where 7 is the relativistic factor given by v = (1 - 5?) e
and 3 =| v | /c. Here, F,(i = z,y, z) stands for the compo-
nents of the lattice force, given by

)2
Fem— [(1 — 2—) (Vo),

I2
Fi=—— [(1 - t) (Ve), - “5-(V9),

vzvy

(Vo) ] (10)

Y

my c*
. €U,
Fy= i [(V9), +0y(V9), ). (12)

For linear polarization, which is the case of interest for
us in this calculation to obtain the emission from the quiver
electron motion, one can consider the electric field directed
along the y cartesian axis, and by setting d equal to unity it
results in

_ _wyi [da(n) B ;
E, = . [ an cosn a(n)smn].

In any model of short-pulse irradiation of targets it is
clearly important to take account of the pulse shape a(n),
which we have incorporated as a gaussian envelope of the
form

a(n) = age™1="0)",

where ag gives the strength of the field and « the width of the
envelope.

An equation that approximates the acceleration force on
the electrons during their excursions through the atomic po-
tential can be written in a short form by considering only
the first term on the right hand side of Eq. (11), since for
the laser intensity regime we are considering, contributions
of the lattice potential along the direction of propagation of
the wave can be neglected. In fact, for a laser intensity of
I = 10" W/cm? the electron displacement in the forward
direction during a laser period is approximately 6. /{, = 0.5.
We can then represent this force by the expression

2
\/l—ﬁ‘zt;ﬁck sin(k.y) (l—u—)

With the aim of verifying the numerical integration of the
force equations during the pulse duration we have applied the
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conservation of energy which can be expressed in terms of the
electron velocities in the form

3
,-Y i e
C_2 E ViV = -——r-Cz E UV [Eg = (Cqb)l] )

where the index 7 denotes the spatial coordinates x, y and z.

The electron trajectories represent harmonic oscillations
with large amplitudes proportional to the electric field. The
electric field of the laser beam causes the electrons to oscillate
at the fundamental frequency, and as the intensity increases
the electron motion develops higher harmonic components
due to the nonlinear lattice interaction. Different graphs rep-
resenting the lattice force as a function of time were ob-
tained. The numerical integration performed here was car-
ried out using atomic units, in whiche = m = h = 1 and
¢ = 137.07. In this metric the most used units are given as
1 gr = 1.098 x 10?7 au., 1 cm/sec = 4.572 x 10~% a.u,, 1
sec = 4.132 x 1019 a.u, 1 cm = 1.889 x 10% a.u., 1 V/icm
=1.945 x 1071% a.u. and 1 W = 5.554 a.u.

The procedure discussed here reproduces the emission
spectrum with the plateau and the cut-off obtained by Hiiller
and Meyer-ter-Vehn [1] for a thin solid layer illuminated by
a subpicosecond laser pulse. The cut-offs were also found
at the predicted values nmax, as given by Eq. (5). In what
follows, we describe some results obtained from numerical
calculations.

We have considered a number of cases including top-hat
profiles and gaussians of different half-widths. In the fol-
lowing we present some radiation spectra obtained from the
perturbed electron motion. Figs. 2—6 show some results for
an infinite plane wave incident on target.

Figure 2a shows the lattice force as a function of ¢’ =
wpt/m for an electron perturbed by the potential described
by Eq. (3). The lattice period is taken as [. = 4 A, the laser
intensity as I; = 10'* W/cm? and the laser wavelength as
Az = 1 um. The electrons oscillate with amplitude § = 14 A
and experience an additional acceleration produced by 13 lat-
tice cores during one optical cycle. This graph shows the
lattice acceleration and deceleration of electrons as they per-
form excursions through the solid layer. The wider peaks cor-
respond to turning points where electrons complete half their
oscillation. Figure 2b shows the emission for this motion. For
this low intensity, the cut-off is found to be at n = 22 which
is in accordance with the analytic prediction given by Eq. (5).
The spectrum is normalized by a factor f, = 6.5 x 10~* and
where the emission at the fundamental frequency has been
removed.

For an intensity of I; = 10 W/cm? Figs. 3a and 3b
show the electron acceleration and the radiation emitted, re-
spectively. For this case, the electron traverses through 40
lattice sites and the radiation spectrum forms a well-defined
plateau with a cut-off located around n = 71, as predicted
again by expression (5). The peak intensity is near the cut-
off value and in this case f,, = 1.27 x 107°.
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FIGURE 2. a) Lattice force vs. t' = wrt/m I = 10" Wicm?,
Ap=1pmandi. =4 A. b) Radiation spectrum.
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Ay = lpumand l. =4 A. b) Radiation spectrum.
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Figures 4a and 4b correspond to the case I, =
106 W/em?. Here the electron acceleration is greater than
in previous cases and the spectrum is characterized as well
by a plateau with a sharp peak near the cut-off. Values are
normalized according to f, = 1.0 x 1075 In this case, the
cut-off is at n = 220.

In the plot shown in Fig. 5a the harmonic numbers cor-
responding to the peak intensities for the plane wave-solid
interaction are sketched as a function of laser intensity. Al-
though the high order emission might be resolved experi-
mentally, it is of particular interest that the emission grows
parabolically with laser intensity.

Figure 5b displays the power for the highest harmonic
number produced as a function of intensity. Here is evident
that as the driver intensity rises the generation of harmonics
increases but with lower energy. This can be explained in
terms of the energy distribution that decays from the funda-
mental order to the high order region. This figure shows that
the decrease with intensity of harmonic amplitudes scales ap-
proximately as 151/6. No theory, until now, has corroborated
this scaling.

In Fig. 6a total power for the overall production is plotted
as a function of intensity. From this graph, it is clear that the
power emitted increases with input energy.

At an intensity of 10'® W/cm? Fig. 6b shows the max-
imum harmonic order produced for different laser wave-
lengths. As expected, the larger the laser wavelength the
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FIGURE 4. a) Lattice force vs. t' = wrt/m. I = 10'® Wicm?,
Az = 1pmand l. =4 A_b) Radiation spectrum.
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higher the harmonic number produced. The wavelengths
used in this figure correspond to Dye (A = 0.3-1.1 um),
Ti:Sapphire (A = 0.7-0.9 pm), Nd-glass (A = 1.06 um), To-
dine (A = 1.32 pm), Holmium (A = 2.06 um) and Color
centre (A = 1—4 pm) lasers.

With the purpose of studying a more realistic laser-solid
interaction, envelope functions of gaussian type were used
for the vector potential that describes the electromagnetic
laser fields. Different graphs from these analyses are shown
for several pulse durations and were modulated by envelope
functions as the one shown by Fig. 7a. In Fig. 7b the emis-
sion is shown. The duration of the pulse for this case is of the
order of 180 fs and f, = 1.8 x 1076,

Figure 8a corresponds to a gaussian-like pulse of dura-
tion 90 fs. The emission for this case is depicted in Fig. 8b,
where f,, = 6.0 x 1078,

Finally, Fig. 9a shows the electric field modulated by a
gaussian envelope. The emission is shown in Fig. 9b, here
Fi = 1LA%I02,

For completeness, we analyse the dynamics of single free
electrons inside a lattice in the presence of an external ra-
diation field modulated by an arbitrary profile. The lattice
potential, as treated here, represents a small perturbation in
the dynamics and for the cases studied there were no signifi-
cant deviations in the electron trajectories as compared to the
unperturbed case. The electron dynamics for linearly polar-
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ized waves can be solved analytically for arbitrary pulse
shapes, in both classical and quantum mechanics. Solu-
tions to this problem were provided by Sarachik and Schap-
pert [16] in a classical theory based on a Hamilton-Jacobi
scheme. Kriiger and Bovyn [17] analysed the relativistic
motion of charged particles in a plane-wave electromagnetic
field with arbitrary amplitude, as a generalization of previous
work by Sanderson [18].

The free electrons are considered to be at rest prior to
the arrival of the laser pulse, and return to that state after the
passage of the external field. In general, according to differ-
ent situations—as those for initial conditions—electrons may
not return to their rest state. Similar situations were analysed
numerically by Bardsley er al. [19] with the inclusion of the
plasma response, associated with space charge forces for high
plasma densities. In their analyses, strong residual momenta
were acquired by the electrons after the electromagnetic in-
teraction for certain threshold values of the plasma frequency.
For the present analysis, the introduction of the lattice poten-
tial in the force equations did not show the appearance of
residual momenta.

The electron dynamics is shown in the following figures,
from Figs. 10 to 12. For the case of a laser pulse duration of
the order of 200 fs, peak intensity of I;, = 10'® W/cm? and
Ar = 1 um, Fig. 10a shows the electron displacement in the
direction of propagation of the wave. It also shows that elec-
trons return to rest after the interaction. The time is scaled
aswyt/m. Figure 10b shows the corresponding electric field,
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while Figs. 11a and 11b show respectively, as a function of
time, the electron velocities in the parallel and perpendicular
direction to the wave propagation.

Finally, Figs. 12a and 12b sketch the electron phase space
for the velocities and for the accelerations, respectively.

4. Conclusions

Optical harmonic spectra from the electron motion driven by
a laser field and under the influence of a periodic lattice po-
tential were obtained.

It was found that the maximum harmonic number emit-
ted from these interactions was located at the cut-off in the
spectra and is in accordance with those values predicted by
the perturbation model outlined in Ref. 1. It was also showa
that the emission power depends strongly on input intensity.
For high intensities the cut-off is localized at large harmonic
numbers, but at the same time the strength of the emission for
the highest harmonic numbers is considerably reduced. This
fact is reminiscent of emission processes in single electron-
atom interactions, where high intensity laser pulses do not
necessarily increase the harmonic production rate. Energy is
then distributed among the lower harmonic orders near the
fundamental frequency leaving less for the rest of the emis-
sion.

Another feature that emerged from computed emission
was that the spectra changed significantly from the plateau-
cut-off configuration when the external electric field was
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modulated by different envelopes. In particular, for gaus-
sian pulses, the strongest emission was found to be emitted
by lower harmonic numbers and a cut-off was still observed
and localized around the value which corresponds to the peak
laser electric field during the pulse. From the examples pre-
sented along with a sensitivity to the magnitude and form of
the lattice potential we conclude that each of these effects
will affect the spectral characteristics.

The cut-off in the vacuum-UV or, for higher incident in-
tensities, in the soft X-ray region, provides the most distinc-
tive signature of the emission and, if detected, might hold
some potential as a diagnostic.

A possible application of harmonic light emitted from the
mechanism discussed here is that it could be used to deter-
mine the structure characteristics of irradiated targets.

All in all it seems likely that interpretation and study of
spectra from the effect identified by Hiller and Meyer-ter-
Vehn would be challenging.
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