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Discretizing the deformation parameter in the su,(2) quantum algebra

B.E. Palladino and P. Leal Ferreira
Instituto de Fisica Tedrica, Universidade Estadual Paulista
Rua Pamplona 145, 01405-900, Sao Paulo, S.P, Brazil

Recibido el 3 de abril de 1997; aceptado el 5 de junio de 1997

Inspired in recent works of Biedenharn [1, 2] on the realization of the g-algebra su,(2), we show in this note that the condition 27 +1], =
N,(j) = integer, implies the discretization of the deformation parameter o, where ¢ = e®. This discretization replaces the continuum
associated to v by an infinite sequence a1, a2, o, ..., obtained for the values of j, which label the irreps of su,(2). The algebraic properties
of N,(j) are discussed in some detail, including its role as a trace, which conducts to the Clebsch-Gordan series for the direct product
of irreps. The consequences of this process of discretization are discussed and its possible applications are pointed out. Although not a
necessary one, the present prescription is valuable due to its algebraic simplicity especially in the regime of appreciable values of a.
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Inspirados por trabajos recientes de Biedenharn [1, 2] sobre la realizacion de la g-algebra su,(2), mostramos en esta nota que la condici6én
[2j 4+ 1]q = Ny(j) = entero, implica la discretizacién del pardmetro de deformacion a, donde ¢ = e®. Esta discretizacion substituye el
continuo asociado a cv por una sucesion av, ceg, cvg, ...obtenida para valores de j que rotulan las irreps de suq(2). Las propriedades algebréicas
de N, (7) son discutidas con algiin detalle, incluso su papel como un trazo, que conduce a la serie de Clebsh-Gordan para el producto directo
de irreps. Las consecuencias de este processo de discretizacion son discutidas y sus posibles aplicaciones son indicadas. Aunque no necesaria,
la presente prescripci6n es de interés debido a su sencillez algebrdica, especialmente en el régimen de valores apreciables de a.

Descriptores: suq(2), algebras cudnticas, discretizacién de parametros

PACS: 12.15Ff, 11.30Na

1. Introduction

Quantum algebras are by now known to play a distinguished
role in several fields of theoretical physics [1, 2]. Some years
ago Biedenharn [1] extended the Jordan-Schwinger proce-
dure to the su,(2) quantum algebra by means of a pair of mu-
tually commuting g-harmonic oscillators a;; and a;; (1 = 1,
2). He constructed a basis |7, m), for (2j + 1) dimensional
irreps of suy(2), DY, for every j = 0, 1/2, 1, ... with m
running in the range —j < m < j by integer steps.

The action of the generators of suq(2) on |j, m), obey, as
is well known, the following relations:

Jeljim)g = (F Fmleli £ m+1])"2lim£ 1), (1)
Je|jm)g = mlj,m)q. (2)

It is remarkable that Egs. (1) and (2) are similar to those

of su(2), except for the appearence of the g-number brackets,
characteristic of the g-deformed case. In this note we wish to
study a problem in the framework of the above su4(2) alge-

bra, namely, we wish to discuss the meaning and algebraic
consequences of the condition

[27 + 1]a = Na(j) = integer. (3)

The bracket in the left-hand side of Eq. (3) is the g-number
defined by
610/2 Zhe e—:ra/2

- sinh (re/2)
{ﬂ“ T a2 —g=a)3

~ “sinh (af2)’

(4)

where the parameter o is defined by ¢ = e®, with ¢ a real
positive number. The condition (3) says that in the right-hand
side N, (7) is an integer number. Thus, it implies a discretiza-
tion of e, obtained for the values of j defining irreps of the
s (2) algebra. Instead of a continuous a we have now a dis-
crete set of values of a: ay, a2, @3, ... . In the next Sections
we show the consequences of this discretization and some of
its useful aspects in possible applications. This paper is or-
ganized as follows: In Sect. 2 we discuss the properties of
Na(7) and the consequences of the « discretization. Sec-
tion 3 discusses N, (7) as a trace (or character), see Eq. (30),
and develops its consequences [see Eq. (32)], and the use-
ful relations, given by Eqs. (32)—(37), with N,(j) integer.
Finally, Sect. 4 contains our concluding remarks.

2. Properties of N, (7)

Firstly, we recall that N,(7) can be written in the following
equivalent forms:

i) Na(j) = (25 + 1]a, S
i)

ii) Na(j) = 3 e™, (©)
m=-—j

. _ sinh ((j +1/2)a)
i) Nal) = —Gihtara)

(7
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Equation (5) is the defining equation for N,(j) and
shows that the defined positive integer number N, cor-
responds to what is called g-dimension of representation,
namely [2j + 1],. Equations (6) and (7) follow readily from
Eq. (3) in terms of a. Equation (6) follows from the finite-
series sum for the g-numbers of an integer n:

n—1

S it (8)

I=—(n-1)

[n]e =

The expression for N, (j) given in Eq. (7) will be useful to
obtain the equations which follow, with a dependence on hy-
perbolic functions. From Egs. (5) and (6) one gets

(l]a = Na(0) =1, Va. 9)
And using Egs. (6) and (7), one has, for Ny(7),

[2]e = Na(1/2) = 2 cosh (a/2), (10)
[3]a = Na(l) = 2cosha + 1, (1D
[4]a = Na(3/2) = 2cosh (3a/2) + 2cosh (a/2), (12)
[5]a = Na(2) = 2 cosh (2a) + 2 cosh (a) + 1, (13)

[6]a = Na(5/2) = 2cosh(5a/2) + 2 cosh(3a/2)
+ 2cosh(a/2), (14)

and so on.
Several relations involving N,(j) arise from Egs. (9)-
(14). For instance, one has

Na(1/2) = V/Na(@) + 1. (15)

Furthermore, by taking j = 1, one gets, from Eq. (11),
cosha = %[Na(l) -1]. (16)

Inspection of the above equations involving cosh shows that,
if [3]a = Na(1) = integer number, then for all integer val-
ues of 7 one has [odd number] = integer number, while if
[2]a = N.(1/2) = integer number, then one also has [even
number] = integer number, corresponding to half-integer val-
ues of j.

Thus, we can list the values of « which satisfy condition
(3) by inverting Eq. (16), which reads

a = cosh™! [%(Na(l) - I)] , (17

and by just taking the values of N, (1) which are integer num-
bers > 3.
Equation (17) gives, for real «,

a::tln(a:+\/:c2—1), (18)

with z = (1/2)[N4(1) — 1] an integer or half-integer number
> 1. Notice that, as ¢ = e® one has

g=z++vV22-1 or (z+vz2-1)"1 (19

We will consider here the positive values of . From
Eqgs. (17) and (18) one obtains the results displayed in Ta-
ble L.

The first 25 solutions or “roots” «; which satisfy the con-
dition of Eq. (3) are listed in Table I. From that list one
can note that some values of a; are of the form 2a;, like
ag = 2ag, a13 = 2a3, agy; = 20y, ... . Besides, these val-
ues of a correspond to those in which N (1/2) is of the form
v/integer = integer. The same fact will occur for j = 3/2,
5/2, ... at the same “roots” «. Instead, for j = integer,
one has N(j) = integer too. In general, for N, (1/2), with
a of the form 2a;, one has Ny, —24,(1/2) = /integer =
V(7 +1)> = j + 1. For instance, ag = 2, correspond-
ingly, Na, (1/2) = V9 = 3.

As another example: when dealing with triplets (; = 1),
we found

5 [2]0{
Yo = 12

This quantity, Y,, is related to the trace of mass matrices for
the j = 1 representations (see Ref. 3). Notice that for any «
of the form 2a; one then has Y,, as an integer number, too.
Some results for a; = 2a; are given in Table II.

In Table III we show the values of [2j + 1], = N, (j) for
the first 6 “roots” a.. Notice that when [2], = integer, then
(4] and [6], are integers too, as we already mentioned.

We note that if we enumerate the discrete values of a in
our Tables by means of an index ¢ (writing «; ), we have

[2la; = Nei(1/2) = VNa, (D) +1=v5+3, @D

= =L=NZ_ . .(1)=1 {20)

a'=a/2

as
[Bla; = No,(1) =i + 2. (22)

If one wishes to extend Table III for higher values of j and
a;, the following relations will also be useful:

[4la; = Nai(3/2) = (i + 1)vi + 3, (23)
[5)a; = Na:(2) = (82 + 31 + 1), (24)
[6la; = Na:(5/2) = (i + 2)ivi + 3. (25)

From these relations one sees that every time the number
(24 3) is a perfect square, then [2],, [4]a, [6]a, ... = integer
numbers. Furthermore, the number Y,,, defined in (20), can
be written as

Yo =Vi+3 (Vit3+2), (26)

and then, in the case /i + 3 = integer, Y,, is an integer too,
which explains the results for Y, in Table II. Besides, we
should mention that for the &; = 2a; onehasi = (j+1)2-3,
with the index 7 = 1, 2, 3, ... (as can be checked from the
values in the first column of Table II) and then one finds, for
instance

Yo,=20;, = (4 + 1)(7 + 3), 27
withid =71, 2,3, =24«
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TABLE 1. List of solutions of condition (3) for real o with N until 25. These solutions were obtained for integer j, from the case of j = 1.
For half-integer 7, they satisfy N, = (integer)'/?.

N(1) z=3(N(1)-1) @i Na(3) = +/N(1Q)+1
3 1 a; =0 Vv
4 3/2 a2 =0.9624236 V5
g 2 a3 = 1.3169579 NG
6 52 aq = 1.5667992 VT
7 3 as = 1.7627472 V8
8 712 as = 1.9248473 V9
9 4 a7 =2.0634371 V10

10 9/2 g =2.1846438 V11
11 5 g =2.2924317 V12
12 112 a0 = 2.3895264 V13
13 6 aq) = 2.4778887 V14
14 13/2 a2 = 2.5589790 V15
15 7 a3 = 2.6339158 V16
16 15/2 a4 = 2.7035758 V17
17 8 ais = 2.7686593 V18
18 172 a6 = 2.8297350 V19
19 9 o7’ = 2.8872709 V20
20 19/2 s =2.9416573 V21
21 10 oo = 2.9932228 V22
29 2172 @20 = 3.0422471 V23
23 11 21 = 3.0889699 V24
24 23/2 az2 = 3.1335985 V25
25 12 a3 =3.1763131 V26

TaBLE I1. List of solutions of Eq. (3) for half-integer j. They satisfy & = 2a’ and are also solutions for integer j. Numerical results for the
first 10 s of the form a; = 2a; are displayed.

a; = 2a; [3]a = Na(1) [2]la = Na(1/2) Ya

a1 = 2a;1 =0 3 Vi=2 8
as = 2a; =1.9248473 8 Vi=3 15
a13 = 203 = 2.6339158 15 V16 =4 24
a2 = 204 =3.1335985 24 V25=5 35
33 = 2as = 3.5254943 35 V36 =6 48
ags = 206 = 3.8496946 48 Va9=7 63
as = 2a7 =4.1268741 63 V64=38 80
ars = 208 =4.3692876 80 VBI=9 99
o7 = 20 = 4.5848633 99 V100 =10 120
o118 = 20010 = 4.7790528 120 121 =11 143

3. N,(7) as a trace

After all these numerical remarks we wish to discuss the
meaning of N, () from another point of view. As described
by Biedenharn [2], the g-dimension is defined by 2,,510 q’s,
and for irreps labelled by j it is given by [2j + 1];. Thus,
according to (3), N,(7) was identified with the g-dimension.

On the other side, we can take j = 1 and one generator, say
Jz, of the SU(2) group, which is represented by the 3 x 3

matrix
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TABLE II1. Values of [2j + 1], for the first 6 "roots” a;.

@i [2]la = Na(1/2) [3]a = Na(1) [4]a = Na(3/2) [5la:= N,(2) [6]a = Na(5/2)
a1 =0 Nz 3 2v/4 5 3v4
ag =0.9624236 V5 4 35 11 8v5
a3 =1.3169579 NG 5 16 19 15v6
as=1.5667992 V7 6 5vV7 29 24/7
as = 1.7627472 V38 7 6v38 4] 35v38
as = 1.9248473 Va 8 79 55 48/9

We wish to exponentiate e®/=. To this end, we diago-
nalize J, and apply the Cayley-Hamilton theorem [4]. One
obtains

€)= = I 4 (sinha)J; + (cosha — 1)JZ.  (29)
As Tr J, = 0, Tr J? = 2, we obtain the trace
Tre®’s =1+ 2coshe, (30)

a result which coincides with N4 (1). A similar result is valid
for j = 1/2. Of course, the same holds for the other two
generators .J, and J., as their traces are the same. Then,
from a similarity transformation one can rewrite 3, etJ:
as Tr e/, which is equal to N,(j), as we have seen for the
case j = 1. The same has to be valid for the other generators
and the result, of course, can be generalized. Thus, we write

Tre™i = Ng(j)- 31)

The main point is that here N,(j) is a trace (not a di-
mension) and is expressed in function of the generators of the
usual SU(2) through analogous relations of those of Egs. (29)
and (30).

The above remark has obvious consequences. For exam-
ple, if we multiply two N,(j)'s, corresponding to values j;
and j», we reobtain, for this specific case, the well known
Clebsch-Gordan summation for the direct product

j1+i2
> Na(h), (32)

i=li1—jal

Na(41)Na(j2) =

a result that can be easily verified by using Egs. (9)—(14). For
instance, one has

Na(l/z)ch(l/z} =Na(0)+Na(1)a (33)
Na(1/2)Na(1) = Na(1/2) + Na(3/2), (34)
Na(1)Na(1) = Na(0) + Na(1) + Na(2),  (35)

etc. ...

Consider, for example, the case of @ = ag. The values
of N,(y) are given in Table III. For cg we have N(0) = 1,
N(1/2) = 3, N(1) = 8, N(3/2) = 21, N(2) = 55, as

displayed in the last row. Then, in Eqs. (33)—(35), one gets
Nog(1/2)Nag(1/2) =3 x3=9=1+48, (36)

Nag(1/2)Nag(1) =3 x 8 = 24 = 3 + 21, (37)

Na6(1)Ngs(1l) =8 x8=64=1+84+55, (38)

and so on.
On the other hand, by taking j; = j» = j, one obtains

Na(3)? = [Na(0) + Na(1) + ... + Na(27)]. (39)
And Eq. (39) can be rewritten, by means of Eq. (3), as
27+ 12 =1+ [8]a+..-+[4] + 1]a), (40)

which give rise to a number of interesting relations. We call
attention to the fact that most of the g-number identities found
in Ref. 2 can be verified from the above equations, where the
discretization plays its role for integer numbers NV,

4. Concluding remarks

We would like to address now to some concluding consider-
ations. Throughout this note we have shown several useful
relations for g-numbers which are consequence of the condi-
tion that [2j + 1], = integer. This condition led us to a dis-
cretization of the set of values of a. Very practical relations,
like Egs. (21)—(25) for example, allow a quick calculation of
[n]o for any a; of the enumerated list of a’s. We have applied
the present scheme in a calculation of fundamental fermion
masses using the algebra of the SU,(2) group as a spectrum
generating deformed algebra [3]. The simplifications occur-
ing by the use of the discretization were gratifying. We re-
mark, however, that the values of « for the problem treated
in Ref. 3 were typically rather larges, of the order o = 2.6~
4.8. Notice that for values of «; in Table I—obtained from
discretization—we have 0.96 < a; < 3.18. We recall that
for instance, for the problem of nuclear rotational bands [5]
treated with deformation, values of the order |a| = 0.030
were obtained. There is a difference of some orders of magni-
tude for the values of « in the two problems. We explain this
apparent discrepancy by the very difterent context of each
treatment. While here, and in the work of Ref. 3, which is di-
rectly based on the su,(2) algebra, the effect of deformation
is large, in other models in hadronic, nuclear and molecular
physics the deformed algebras are meant to describe small
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deviations from an almost exact symmetry, implying much
smaller values of the deformation parameter, not necessarily
belonging to our “discretized” set.

We point out that for o = e/, that is, for ¢ a pure phase
factor (¢ = e'l2l), the same discretization process could be
carried out leading, however, to a different regime, charac-
terized by cosha — coshi|a| = cos|al. Finally, we wish
to emphasize that the present prescription of integer values
of the g-dimension, in general applications is not a neces-
sary one. Nevertheless, due to its algebraic simplicity, it is an
useful procedure especially in dealing with problems involv-
ing large values of . This, of course, means that we do not
exclude the case of ordinary g-dimension in other physical
applications. We further remark that one of the useful con-

sequences of the discretization is the possibility of obtaining

relations like Egs. (32)—(40), with N, (J) integer, in a simple
way.
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