ENSENANZA REVISTA MEXICANA DE FISICA 44 (1) 92-98 FEBRERO 1998

The calculation of atomic structures for non specialists

G. Ferndndez, R. Solanilla, and H.O. Di Rocco*
Instituto de Fisica Arroyo Seco, Facultad de Ciencias Exactas,
Universidad Nacional del Centro, Pinto 399, 7000 Tandil-Argentina
e-mail hdirocco@ifas.exa.unicen.edu.ar

Recibido el 21 de enero de 1997, aceptado el 5 de junio de 1997

A program was written to calculate atomic structures and spectra for non specialists. After the introduction of radial integrals, the program
calculates energy levels, wavelengths and oscillator strengths. The calculations are made both in LS and intermediate coupling. Several files
inform the worker about theoretical details used to construct Hamiltonian matrices. Running secondary programs, pertinent matrix elements
useful in atomic calculations, 3n — j symbols, etc. are provided. The set of programs was used to teach a course in Applied Atomic Physics
to graduate students of Astrophysics and Plasma Spectroscopy. The programs are available upon request to the senior author (HODR).
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Fue creado un programa disefiado para calcular estructuras y espectros atémicos, para no especialistas. Después de la introduccién de
las integrales radiales, el programa calcula niveles de energfa, longitudes de onda y fuerzas de oscilador. Los cdlculos son realizados en
ambos acoplamientos: LS e intermedios. Diversos archivos informan los detalles teéricos usados para construir las matrices hamiltonianas.
Corriendo diversos programas secundarios, pueden calcularse diversos elementos de matriz ttiles en cdlculos atémicos, simbolos 3n — j,
etc. El conjunto de programas fue usado para ensefiar un curso en Fisica Atémica Aplicada a estudiantes de posgrado en Astrofisica y

Espectroscopia de Plasmas. Los programas pueden solicitarse libremente a uno de los autores (HODR).

Descriptores: Estructura atémica, espectroscopfa atémica, célculos por computadora

PACS: 31.10; 32.20; 32.70

1. Introduction

Atomic-structure data involving energy levels, transition
probabilities, etc. are very important for many users. De-
spite the enormous effort made in the past sixty years, a
great amount of work remains to be done, specially on rare-
earth spectra and highly ionized atoms. In addition, many old
works need to be redone because of errors arising from both
inadequate experimental equipment and theoretical knowl-
edge existing at that time [1]. A study made under the aus-
pices of the U.S. National Research Council [2] indicates
that diverse technical fields (Fundamental Physics, Coherent
Light Generation, Surface Science, Microelectronics Tech-
nology, Laser Isotope Separation, Atomic Analysis, Astro-
physics, Plasma, Nuclear and Solid State Physics) and ar-
eas of society (Physical Sciences, Industry, National Defense,
Environmental Studies, Biomedicine, Metrology) need some
atomic-structure and spectral data.

Due to the very specialized nature of the theory, peo-
ple from different areas other than atomic spectra analysis
(such as modeling of gas and plasma discharges, terrestrial
and stellar atmospheres and, in general, radiation-matter in-
teractions) do not know appropriately the details of atomic
structure theory. This theory is properly given for example,
in the advanced books by Cowan [1], Sobelman [3], Shore
and Menzel [4], Condon and Odabasi [5], Weissbluth [6] or
Slater [7].

Our experience with people working in other areas indi-
cates that they usually apply formulae based on hydrogenic
approximations and elementary LS coupling and its conse-
quences. Moreover, is very common the use of tabulated co-
efficients for hand calculations but these tables turn out to be
uncomfortable and subjected to human or printing errors.

Therefore, it was desirable to develop a general com-
puter program to calculate coefficients as needed, for an ar-
bitrary configuration and involving minimum input informa-
tion. This work is based on Cowan’s treatment [1] and was
developed about a year ago, ignoring the fact that the set
of Cowan’s programs for atomic structure was charge free.
Then, when Dr. Cowan kindly sent us his package, our orig-
inal purpose turned into a pedagogical one useful for both
graduates and students of atomic and molecular physics, as-
trophysics, chemical physics, etc. with a general background
in quantum mechanics as given, for example, in the classic
texts of Landau and Lifshitz [8] or Messiah [9].

For every configuration of interest, each one containing
up to three open shells, the program calculates the energy
matrix elements, diagonalizes the energy matrix obtaining
the energy levels (eigenvalues) and wave functions (eigenvec-
tors), calculates intermediate-coupling dipole line strengths
(explaining the appearance of the “spin-forbidden™ singlet-
triplet transition) and takes differences of the eigenvalues
of all configurations belonging to either parity to compute
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approximate spectra plotting “oscillator strength” values in
terms of wavelengths.

Input data require proper specification of open sub-shells
of each configuration and several radial integrals that can
be theoretically obtained from Hartree-Fock values or esti-
mated through semiempirical regularities [10]. Other uses of
the package include the calculation of 3n — j symbols, di-
verse matrix elements, matrix diagonalization, if necessary
for other purposes (for example, problem solving in quantum
mechanics). Due to both the complicated nature of the theory
and the (very) long resultant expressions, we do not present
them in detail.

The purpose of this paper is to give teachers and advanced
students in atomic physics, a recapitulation of the basic for-
mulae and examples of how the programs work. For the inter-
ested reader, we indicate that a short introduction to the the-
oretical aspects can be found in two articles: one accounting
for the matter of two-electron spectra [11] and the other deal-
ing with structures of general complexity [12]. A lucid ele-
mentary treatment of atomic structure is given in Woodgate’s
book [13] whereas spectroscopic information can be obtained
from the one by Kuhn [14]. None of the last two references
are adequate for quantitative calculations , therefore our pro-
gram can be reckoned as a useful complement.

The programs were written in C** and remain available
upon request to the senior author (HODR). The junior authors
(GF and RS) are MS students in Computational Sciences.

2. Theory

The questions related with the most elementary aspects of
atomic structure theory such as the vector model, the cou-
pling of individual orbital and spin moments to obtain the
terms (labeled by L and S) and then the levels (labeled by
J) and the treatment of hydrogenic and helium-like atoms
are supposed to be known as given, for example, in modern
physics books [15-17].

In the central-field model, the probability distribution of
electron ¢ is described by a one electron wavefunction, also
called a “spin-orbital”, of the form

@i(ri) = 17 Pty (ri) Yiem, (83, 6:) o, (54,), (1

and the antisymmetrized wave function for the N-electron
atom is made up by appropriate linear combinations of prod-
uct functions

T = (V)2 S (=1)P01 (rs, pa(ria) ..

P

‘PN(TJ'N )a (2)

where the sum is over all N! possible permutations of the
normal ordering 1 23 ... N and p is the parity of the permu-
tation P. In other words, the wave function ¥ can be written
in the form of a determinant, called Slater determinant.

A consequence of the above dependencies on radial and
angular variables, is that the quantitative calculation of wave-
functions and energy levels involves two distinct stages:

a) The shape of the radial functions Py, (r) of the one-
electron spin-orbitals.

b) The calculation of the energy matrix elements Hyy =
(b|Hb"), b and b’ being the basis functions and H the
Hamiltonian.

Applying atomic units (e = h = m, = 1 and energies
are measured in Rydbergs), we write the more important in-
teractions in the form

H:—Xi:v?_; ZZ—-

r
i>3 Y

+ 3 &(r)li-s:), (3)

where the terms represent, respectively, the kinetic, electron-
nuclear, electron-electron and spin-orbit operators.

For our purposes we are interested in the level structure
relative to the average energy of each configuration E,,.
The level structure is given by the electrons outside closed
(sub) shells and only the electron-electron and spin-orbit in-
teractions become of interest at this stage. It is to be clearly
pointed out that for the numerical calculation of E,,, all terms
of the Hamiltonian must be taken into account. This step in-
volves radial functions and equations outside the realm of the
present paper. The calculation of the radial part of the or-
bitals is a very involved task and the general procedure is
called the Hartree-Fock method [1,18). The diverse radial
integrals (Slater parameters) that appear, can be considered
as adjustable quantities, because they follow smooth trends
and regularities. Furthermore, they can be estimated semi-
empirically [10].

From a theoretical point of view, when we calculate the
matrix element

(1512/r12|tu)

the R*(ij, tu) integrals appear, such that the direct Slater in-
tegral

*® ork
k(ig) [ / kfx |Pi(r1)|%| P;(r2)|2dry dry, (4a)

and the exchange integral

o opk
*(19) / [ k+<1
x Pi(r1)Pj(r1)Pi(r2) Pj(rz)dry dra,  (4b)

become particular cases:

F*(ij) = R¥(ij,1j), G*(ij) = R*(ij, ji).
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Moreover, we need the spin-orbit integral

-l e 3 L TP
a=% [T H(E) P ©

where a = 1/137 is the fine-structure constant.
Another quantity, essential to calculate line strengths, is
the radial dipole integral, defined as

P”l — (—1)!+[> \/j:f Pnl (T)Pn'f" (T)Td?‘. (6)
0

In the single configuration approximation the energies of
the various states are given by the eigenvalues of matrices
(one matrix for each value of J, the total angular momentum
that is conserved in absence of external fields) that, for two
states b and b, can be written in the form

Hyy = 8oy Eaw + Y [feF* (L ly) +9xG*(Li, )]

ijk

+Yy di&, (D)

where fi, g, and d; are coefficients that depend only upon the
angular quantum numbers of the basis states b and b'. Thus,
they are independent of the radial part of the wavefunctions.

2.1. The importance of Racah methods

Although from a theoretical point of view, the wave functions
are made up of linear combinations of Slater determinants,
the evaluation of matrix elements results tedious when fol-
lowing the original approach. The mathematical techniques
developed by Racah make it possible to bypass the explicit
use of determinantal functions [1, 3-7].

The coefficients of fractional parentage (cfp) are of cen-
tral importance in the evaluation of matrix elements. Their
significance should be set as follows: if we have the antisym-
metrized wave functions for (N — 1) equivalent electrons,
the addition of one more equivalent electron results in an an-
tisymmetric wavefunction given in terms of the cfp:

iaLs) = Y |(*'a'L'S'1)LS)
o' L'S!

(I al L8 }%LS). (8)

In the £S scheme, for several open (sub)shells 15, the
various L; are coupled together successively to give a total
L, and the various S; are similarly coupled to give a total
Sq. The notation is

{[(lim L SI Elsl,f;’?LgSg)CQSm. : .l;ﬂq Lqu]Lqu}jq. (9)

LS coupling is not the only possible way of coupling. For
two-electron atoms, Cowan considers four types of coupling
schemes [1,4,11] depending on the relative importance of
different radial integrals F', G and (: LS, jj, jK and LK.
For configurations of arbitrary complexity, no pure-coupling

representation describes the atom thoroughly. Besides, for
purposes of numerical calculation of energy levels by numer-
ical diagonalization of the Hamiltonian matrix, it is imma-
terial what sort of coupling is used [1]. LS scheme is the
best single approximation to a larger proportion of spectra
and provides a convenient designation of levels: 25+1L ;.

2.2. The coefficients fi,, g, and d;

The above coefficients can be derived using the Racah meth-
ods through the algebra of irreducible tensor operators, which
is concerned with the evaluation of the angular portion of
matrix elements. Such operators of integral rank k are de-
fined as an operator T(¥) whose 2k + 1 components Tq(k) (f=
—~k,...,k) transform in the same way as the spherical har-
monic operators do. Therefore the commutation relations
with the angular momentum operators are

[, 0] = [k 7 @) (k £ g+ D)2 TE)
[42, 70 = g1f® (10)

and the first example of a tensor operator is the renormalized
spherical harmonic

c6.0) = (52 )W Yiq(6.9)

g ¥ 2k + 1 BAETEY

such that the position vector 7 may be written as
P — (1)

Of great importance for the evaluation of matrix elements
of the type

((xjm|T{§k’|a'j"m’),

is the Wigner-Eckart theorem, that separates the geometrical
properties of the tensor operator from the physical nature (the
interaction) of the operator.

The geometrical properties are the rank k& and the com-
ponent g and are contained in the 3 — j symbol (a quantity
related with the coupling of angular momenta). The physical
nature is contained in the reduced matrix element (a quantity
independent of the quantum numbers appearing in the 3 — j
symbol)

(ajm]Ték)\a'j'm') = (=1)"™83;05,k,j's —m,q,m’)
x (g TMle’s"), (D)

where by S3;(...;...) we denote the 3 — j symbol and by
(L|| ||L) the reduced matrix element.

The results for parameter coefficients are expressed in
terms of three types of reduced matrix elements [12] de-
fined as

e e, (12)
{"aLS||UP||i”a' L'S", (13)
(I"aLS|| VD |i"a/L'S"). (14)
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All these expressions are too long to write down explicitly.
The interested reader can consult the paper of Cowan’s pa-
per [12].

Once the energy matrix is diagonalized, we obtain the
eigenvalues (energy levels) and eigenvectors (mixed wave-
functions in terms of pure LS coupling functions). Eigenval-
ues are independent of coupling schema and if mixed wave-
functions are used in further calculations (as for example line
strengths) the results are also independent of coupling (in the
single-configuration approximation, see below).

2.3. Dipole line strength in pure and intermediate
coupling

From classical arguments, it is known that if an electron suf-
fers an instantaneous acceleration, there is a radiative loss of
energy [19]. The quantum mechanical generalization [13] is
given by the quantity known as total transition probability
from an excited state |[y'J'M") to all states M of the level
1vJ)

_ 64r'e’ado’ &
T 3n(2J'+1)

The dipole line strength S is given by the reduced-dipole
matrix element

A (15)

§ = Dis = |(vJIIPI' T2 (16)

Results for the LS coupling schema are given for transi-
tions of the particular types [FI5* =1 — 17215, 1%l — %1} and
[ —I', usually involved in spectra analysis [12]. In all these
cases, the results can be expressed in terms of three factors:
the line factor, the multiplet factor and the square of the radial
integral [4], such that

S = 5parents<555" R%R%(P“:)?_ (17)

The physical significance is that R} gives the relative
strengths of the lines within a multiplet whereas R3, (P )?
provides the relative strengths of different multiplets. Line
and multiplet factors are tabulated, for example, in Shore and
Menzel's book [4]; exact expressions for particular cases can
be found in our source programs.

We also establish the line strength for intermediate cou-
pling. If matrix elements D s were known and the upper and
lower states eigenvectors |y'J’) and |y.J) were expressed as
linear combination of pure LS functions, we could find the
line strength in the physical J representation.

Let Y be the square matrix of eigenvectors for hJ ) states
and similarly, let Y’ be the square matrix of eigenvectors for
|7'J') states. Then, in the actual (physical) 3 representation
we have the matrix

(55*) = YT (DLs)Y", (18)

where Y7 is the transpose of Y.

Certain sum rules indicate that for any given J — J' pair,
the total line strength for all transitions v.J — ~'.J" is an in-
variant, independent of the actual coupling conditions of the
atom. This property serves as a check of the validity of sub-
routines.

3. Computer program (main)

The computer reads the input configurations (each configu-
ration can include up to three shells, although this restriction
can be removed). For each open shell, the program reads
the cfp. After reading the configurations, it asks for the di-
verse radial integral values: E,,, F*, G¥, ¢, and Py.. The
program also demands for the so-called Tress and Sack cor-
rections whose significance will be seen below. No further
information is required and everything else is done by the
computer program. The explanation for each step is as fol-
lows:

a) The reduced matrix elements of C, U and V are ob-
tained for each shell.

b) Summation of intermediate L and S up to the total £, §
values and then the .7 ones. Automatically, the parity
of each configuration is achieved because the spectral
lines are obtained as differences between energy levels
of opposite parity.

¢) The coefficients f, g and d are ca]culatea and the en-
ergy matrices are formed.

d) The energy matrices are diagonalized for each 7, and
the energy levels (eigenvalues) and eigenvectors are
found.

e) Dipole matrices are calculated in both LS and 3 (LS
mixing) schemes.

f) Energy levels of both parities are differentiated to ob-
tain the spectral lines and spectrum results are ordered
by wavelength.

g) gf values are plotted in terms of wavelengths, for a
rough but even appreciable help in the analysis of spec-
tra.

Then, if one is interested on atomic structure data, the
program Espectro.exe can be run and diverse files provide
us with preliminary and final results. Final results remain
available in the file intensi.sal whereas other files, as sal-
ida.txt and nodos.txt can be used for debugging and check-
ing purposes. The graph gf vs. A can be obtained through
grafico.exe.

4. Other options

Particular values of 3n — j symbols, diverse matrix elements
as the ones on Cowan’s appendixes, eigenvalues and eigen-
vectors, etc. can be obtained running diverse special pro-
grams. For example, in solving a specific problem of quan-
tum mechanics, the programs 3—j, 6—j and 9—j yield right
values of the 3n — 7 symbols.
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FIGURE 1. (*P)6p — (*P)6s spectrum of Xe II. a) Purely theoretical (Hartree-Fock) wavelengths, b) semiempirical wavelengths, ¢) exper-

imental spectrum.

5. Program debugging and checking

The program has been debugged principally by (a) compar-
ison with values of f;,gx and d found in the literature [5],
(b) comparison with already published line and multiplet
strength values [4], (¢) verification that computed eigenvalues
are independent of whether the calculations are performed for
p*d, dp*, or whatever the configuration be, (d) calculation of
the sum of the squares of all dipole elements in LS and in-
termediate coupling, to verify that this value is equal in both
cases.

6. Program applications, an example

We aimed at the development of a computer program to cal-
culate energy matrix for configurations up to three (open)
electron shells. Orientation to a pedagogical point of view
follows, in order to consider details step by step. The pro-
gram can be applied to the study of the departures of LS
coupling either in eigenvalues or oscillator strengths, etc. If
values of E,,, F'* and G* are to our disposal, preliminary en-
ergy levels, wavenumbers and wavelengths and gf’s are ob-
tainable. A gf vs. ) graph may be compared with experimen-
tal spectrograms.

As a quantitative example, we consider the 55%5p*6s and
5525p*6p configurations of Xe II, using Hartree-Fock (H-F)
and semiempirical values (S-E) from Ref. 20. In Tables I and
IT we can see, respectively, the parameter values in cm ™' for
6p and 6s configurations, both H-F and S-E. In Fig. 1 we
plot the (*P)6p 2*+! L9—(2P) 6s***! L; (not the complete)

TABLE L. Parameter values (cm™!) for the 55°5p* configuration
in Xe I

Parameter H-F Semiempirical
E(av) 124035 124035
F%(5p, 5p) 50539 39378
Qep -96
F*(5p,6p) 8808 8298
G°(5p, 6p) 1401 1396
G*?(5p, 6p) 1953 1700
Csp 6608 7633
Cop 528 965

TABLE 11. Parameter values (cm ) for the 5325;)“ 65 configura-

tion in Xe II.

Parameter H-F Semiempirical
E(av) 103737 105052
F2(5p, 5p) 50095 39590
Q6s —140
G*(5p, 6s) 3442 2866
Cap 6527 7913

spectrum of Xe II comparing: (a) Hartree-Fock (purely theo-
retical values for the radial integrals), (b) semiempirical and
(c) experimental spectra [20]. Note the good agreement be-
tween S-E and experimental values, specially at A ~ 4250 A
and A ~ 6000 A.
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When comparing the theoretical and experimental values
of the parameters one notes the discrepancy between them.
It is known empirically that computed energy-level intervals
will agree better with experiment if the Coulomb parameter
values are 5 to 30% smaller than the theoretical ones. This
discrepancy can be explained, in part, from the theory of ef-
fective two-body operators developed, among others, by Ra-
jnak and Wybourne [1]. In the empirical analysis of spec-
tra, their effects are automatically absorbed into the smaller-
than-theoretical values for the Slater integrals F* and G*.
Furthermore, our paper treat the simplest point of view (the
single configuration approximation) and better results are ob-
tained with the use of the Configuration Interaction approach;
a brief introduction is given in the next section.

It is important to note that we have chosen an example
where the structure of the ion (Xe II) is complex and a com-
plete agreement for all structural parameters (energies, transi-
tion probabilities, g-factors) is very difficult. Indeed, only af-
ter extensive Configuration Interaction calculations and using
least-squares fitted parameters, it is possible to obtain oscilla-
tor strengths within a factor of two or three when comparing
with experiment. An experimental and theoretical work de-
voted to the spectrum of Xe III carried out in our group, can
be viewed in Ref. 21.

7. Configuration interaction

The concept of configuration interaction may be visualized
through some examples:

1) in the case of s*p” or s*p* configurations the Slater-
Condon theory predicts the ratio

E('S) - E('D) _3
E(!D)-E(RP) 2’
whereas experimental ratios differ systematically from
this value, especially in the first period.

2) In the p* case, the ratio
2P L .ZD
2D - 48
is predicted to be 2/3, whereas experimental values are
0.50 for NTand 0.51 for both O II and the isoelectronic

ions. Furthermore, theory predicts that the level > D, /2
must coincide with the configuration energy average.

3) When levels belonging to different configurations of
equal parity, for example p™s and p™d, have nearly val-
ues, it is difficult to assign each value to a specific con-
figuration,

A complete treatment of this topic is found in the book by
Cowan [1]; simpler cases are (1) two electrons (for example
fs—fd), (2)p*l—p*(1+£2) and (3) sp® —s2p¥~2(s+d) [1].

In several cases, the effect of configuration interaction
can be modelled by applying the empirical effective opera-
tors v, 3 and e, introduced by Trees, Sack and others [1]. If

L. is the total orbital momentum of the “parent”, and L and
S are the orbital and spin momenta of the terms, then we can
form the correction

al(L+1)+38S(S+1)+acL. (L +1). (19)

It is important to know that the “a priori” empirical cor-
rections can be derived, in part, from second-order perturba-
tion theory, but this is a very difficult topic and we only give
some examples.

The single configuration theory predicts for the level
D5, of p* configuration a coincidence with the average en-
ergy of the configuration. In the case of Kr IV isoelectronic
sequence [22], the values are, in cm~!

Kr IV : E(av)= 18804,
RbV : E(av)= 21194,

E(2D5/2) = 18700,
E(2D5/2) == 21080«

SrVI: E(av)=23651, E(*Ds/;) = 23527.

The discrepancy can be explained by introducing the a,.’s
and adjusting them jointly with the parameters F*(4p, 4p)
and (4,, as can be viewed in [21].

Our program allows the introduction of the effective op-
erators «, 3 and a; although the calculations from first prin-
ciples are very difficult, they can be estimated through iso-
electronic sequences or other trends.

8. Conclusions

We created a program that permits the quantitative calcula-
tion of atomic structures in the single-configuration approxi-
mation, requiring the introduction of several radial integrals.
If good values of E,,, F*, G*, ¢, and Py are available,
for example from isoelectronic sequences, a semi-theoretical
spectrum can be constructed where the gf values vs. A pro-
vide an appreciable help for the empirical analysis of the ob-
served spectrum. The program will be useful for advanced
students of Atomic and Molecular Physics, Astrophysics,
Chemical Physics, etc. As particular examples, individuals
in the field of Plasma Spectroscopy and Gas Discharges and
Collisions [23-25] need a good background on the rigorous
theory of Atomic Structure (3n — j symbols, LS mixing, line
strengths, etc.). If the advanced books cited above [1,3-7]
are not at disposal, we are sure that our programs together
with the papers by Cowan and Andrew [11] and Cowan [12]
can be a good help for making quantitative calculations.
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