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A derivation of Anderson's equation for the phase slip in superfluids
from Kelvin's theorem
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An experimental arrangement has beco considered in which a supcrl1uid is Corced (o pass through a hole whefe the nel force thar compels il
lo tlow is the force of the field oC gravity. From Kelvin's theorem. it is possible lo derive Anderson's equation for the phase slip. whefe, il
regaTds (he phase oC the wave function oC the stale superfluid as a dynamic variable (har may be macroscopically identificd.
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Ha sido considerado un arreglo experimental en el cual un superf1uidoes forzado a pasar a lravés de un agujero donde la fuerza nela que
lo obliga a fluir es la fuerza del campo de gravedad. A partir del Teorema de Kelvin es posible deducir la ecuación de Anderson para el
deslizamienlo de la fase, donde la fase de la función de onda del estado superfluidoes evaluada como una variable dinámica que puede ser
macroscópicamente identificada.
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I. Introduction

One of the most fascinating propcrties of He- 11is superfluid-
ity and not less surprising are the theories that try to explain
this, which is a consequence of the macroscopic manifesta-
tion of quantum mechanical effects. Concretely, for the case
oflhe operalor assoeiale<! wilh lhe parIicle densily, aeeording
lo Landau [1], ils malhemalieal slruelure formally coincides
wilh lhe density of mass in Ihe poinl of interesl. If p repre-
senls this latter density and p is the reduced density matrix
assoeiated with Ihe parIicle densily, lhen

p=mó(r - r')=p(r,r')=('V.(r)'V(r'))=ml'V(r)12, (1)

where'l1 is the wave function associated with the state of the
system, m is the mass of He4 and O an average takcn over
an appropriate ensemble of lhe syslem. SlrieIly speaking this
ensemble may he either an equilibrium or a quasi-equilibrium
one [2J.

From lhis ohservation. lhe cornmutation properties 01'lhe
operalors associated with the dynamic variahles, and assulll-
ing that lhe flow of superfiuid is irrolational, Landau derives
his quantum hydrodynamie model for the lwo lIuids [1, 3J.

In relation to the one particle reduced density matrix p
ohtained [rom the density matrix for a system of N particles,
Penrose [4J and Penrose and Onsager [5] poslulaled thal Ihe
superfluidily is a Slale in which Ihe redueed densily matrix ji
may he factorized as

p(r, r') = ('V.(r))('V(r')) + O( 1" ~ r'I)' (2)

and lhat. furthermorc. the property of off-diagonallong-r:.mge

order for Ihe densily malrix (ODLRO) is fulfilled [61. There-
fore,

Iim P(", r') = eO(!) = cle. '10. (3)
1,.-T'I ....-H"lO

In othcr words. the superfluid is a slatc which exhibits lhe
Bose-Einstein condensalion, and therefore a finite macro-
scopic fraction of He4 aloms Hes in the ground state.

Anderson [5J re-interpreted Eqs. (2) and (3), by poslulal-
ing thal the average of Ihe field operalor ('V) associated lO
Ihe wave funetions {'V} Ihat eharaelerize Ihe superfluid slale,
may be inlcrpreled al) a macroscopic dynamic variable, such
Ihat:

(4)

In words. lhe average associated with lhis dynamic variable
is considered as bcing composed of lwo dynamical variables,
namely, an amplitude f(r,l) and the phase q,. Moreover, this
phase, is inlerpretcd ali a dynamical variable conjugaled lo
Ihe numher of parlieles N Ii, 8],

From Eqs. (2), (3) and (4), Anderson proeeeded in anal-
ogy with Josephson's cffect in superconductivity. and carry-
ing out his calculations within the frame of the quantum me-
chanics [i,8]. he derived an equation lo evaluate lhe phase
slip, thal cxplains lhe lunncling effecl between two superfluid
systems connccted hy a holc in a mcmhrane. His resull reads

" ( d )- -vd> = (VI')'
111 di

where (dv'¡'¡dt) is Ihe average of lhe ehange in lime 01 Ihe
gradiel11of lhe wavc funclion's phase ano ('Vp..) is the aver-
age 01' lhe gradicnt 01"Ihe chemical pOlcntial. Equation (5)
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2. A derivation of Anderson's equation

has been experimenlally verified in lhe lale eighlies [9-11].
NOliee should be made thal in lhe derivalion of lhis equation
the contributions of the fluctuations in energy have beco nc-
gleled, a problem whieh we shall nol consider hore [12, 131.

On lhe olher hand, il is well known that Onsager and
Feynman [14J independently poslulaled, lhe quanlization of
the superfluid circulation, narnely,

and 1> is the phase of lhe wave funelion lhat eharaelerizes the
superfluid slale. It is also well known thal lhis resull has been
experimentally verified [15].

It is important lo remark that Eqs. (6) and (7) are eonsis-
tenl with the irrotationality of the supcrtluid, 00 considcring
that the superfluid is irrotational in multiply connectcd do-
rna¡os. This implies that the singularities of these dornaios
are the regioos where the nuc)ei of (he vortices reside. FUf-

thermore, in Eq. (7) il is elearly seen lhat lhe wave funelion's
phase assoeialed wilh the superlluid stale is being taken as a
macroscopic dynamic variable.

( 13)

(10)

(11 )

In other words. the net force acting on the superfluid lhat
forces it to flow across Ihe holeo Ihe force of gravilY, is equal
to the change in lime of the wave function's phase plus Ihe
force due lo lhe ehange of lhe number of parlieles given by a
gradienl of lhe ehemieal pOlential.

Comparing Eqs. (10) and (12), we have thal

h d
--'V1> = -'VII - v<{J,
m dt

whcre K is the circulalian. and R is the radius of Ihe vortex.
Strielly, in aeeordanee wilh some models [12, 13], a potential
harrier cxists which has to he overcome in order to form such
a vortcx. hut for our purposes it is nol necessary to consider
this refinemenl.

Speeifieally, the thermodynamie variable use lo measure
lhe ehange in energy due to a ehange in lhe number of parti-
eles is Ihe (hemical potenlial J1 • and in fact, a gradienl of Ihis
variable exisls lhrough lhe hole. Thus we have lhal

f ~V, . di = fs 'V x ~ V, . dS (9)

whieh is an equation of lhe Anderson lype. Slrielly speaking,
il is equivalent lo a generali7,alion of Euler's cquation for an
ideal lluid, represenled in this case by a superlluid [3, 16].

Howcvcr Ihe qucstion arises of how lo intcrpret Ihis equa-
tion from the standpoint of Kelvin's theorem. The answer is
thal the requirement of conscrvation 01' circulalion across the
hole due lo the ftow of lhe superfluid implies Ihat vortices
destruyed on one side are crcated an lhe opposite one and
viceversa. This conscrvation implics a changc in Ihe phase of
lhe wave funelion, whieh is equal to a breaking of lhe gauge

A neccssary condition for the surface integral lo be zero
is lhal dVs/dt he irrotational. Ihcrefore

~~ V, ex 'VJ1+ F,

witb F = -'V<{J. Here rp as we shall see below, is the pOlen-
lial energy of lhe gravitational field.

The sufflcienl condilions Ihal justify Eq. 10 are oblained
from the experimenlal arrangemenl-see Fig. I 01' Ref. 18.
lndeed lhe superlluid is being foreed lO llow through a hole
due lo Ihe force of gravity. and Ihere is a change in the num-
bcr of parliclcs and the cnergy dcnsily, in bolh sections of lhe
hole.

The ehange in energy is fixed through lhe energy neees-
sary lo build up or destroy at leasl one vortex and it is given
by [20]

Exchanging the integral and the total time deriva-
tive [3,20]. and using the Slokcs' theorem. wc have

(8)

(6)

(7)V, = !!.. 'V 1>,
rn

~f V, .dl = O,

d f)- = -+\.é .'V.
dt f)t '

where

f V, . di = 20m,

where lhe super/luid veloeily V, is defined as

However, to the aUlhor's knowledge, lhe relalionship of elas-
sieal hydrodynamies and !he slandard properties exhibiling
the quantum meehanieal behavior of He-H, [3,15-19] has
been liule investigated. If one regards lhallhe superlluid he-
lium behaves like an ideal fluid and maeroseopieally exhibils
quantum rncchanical cffccts 5uch as the Bose-Einstein coo-
densation. one could think that sorne of these macroscopic
manifestations should be derivcd starting from sorne well-
known lheorems of elassieal hydrodynamie adequalely inler-
pre!.

Concretely the objetive of this work is to show how, start-
ing from Kelvin's theorem for Ihe conservalion of the cir-
culalion , it is possible lo derive an cqualion of Anderson's
lype for lhe phase slip. For lhal purpose one slarls consid-
ering Ihat the superftuid phase behaves as a macroscopic dy-
namic variable, and introduces into the description Ihe con-
slraints imposed by lhe experimental arrangement (see Fig. I
of Ref. 18).

Kelvin'5 Iheorem slaling the conservation of Ihe circula-
tion eSlablishes [3] thal for an ideal lluid (ineompressible and
inviscid).
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symmelry of lhe ensemble wilh respecI lOwhich averages are
being taken to describe the slales of lhe syslem. This mecb.
anism is equivalenl lo a change in Ibe energy of Ibe syslem
in bolb sides of lbe bole per unil change in lbe number of
partides, bul lhe lotal energy is conserved in lhe whole sys-
tcm. An interesting work in relation with this poiot is given
in Ref. 22, wbere Ihe numerical solutions of the non-linear
Schrodinger equation for the mOlioo in a Base condcnsate
are sludied (Gross- Ginzburg-Pilaevskii equation). There il
is shown how 5uch so!utions are consistent with Kelvin's the-
orem.

Evidently, Eq. (12), describes only lhe average behavior
of the superfluid flowing across lhe hole ignoring lhe detailed
mcchanism responsible for the destruction and creation of the
vortices around and in the interior of the hole. This question
has been deall in olber works [12,13,23]. using stochastic
models by considering lhe inleraction of lhe system wilh the
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