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A derivation of Anderson’s equation for the phase slip in superfluids
from Kelvin’s theorem
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An experimental arrangement has been considered in which a superfluid is forced to pass through a hole where the net force that compels it
to flow is the force of the field of gravity. From Kelvin's theorem, it is possible to derive Anderson’s equation for the phase slip, where, it
regards the phase of the wave function of the state superfluid as a dynamic variable that may be macroscopically identified.
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Ha sido considerado un arreglo experimental en el cual un superfluido es forzado a pasar a través de un agujero donde la fuerza neta que
lo obliga a fluir es la fuerza del campo de gravedad. A partir del Teorema de Kelvin es posible deducir la ecuacién de Anderson para el
deslizamiento de la fase, donde la fase de la funcién de onda del estado superfluido es evaluada como una variable dinimica que puede ser

macroscépicamente identificada.
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1. Introduction

One of the most fascinating properties of He-II is superfiuid-
ity and not less surprising are the theories that try to explain
this, which is a consequence of the macroscopic manifesta-
tion of quantum mechanical effects. Concretely, for the case
of the operator associated with the particle density, according
to Landau [1], its mathematical structure formally coincides
with the density of mass in the point of interest. If p repre-
sents this latter density and p is the reduced density matrix
associated with the particle density, then

p=md(r —r')=p(r,r')=(T*(r)¥(r') =m|¥(r)*, (1)

where ¥ is the wave function associated with the state of the
system, m is the mass of He? and () an average taken over
an appropriate ensemble of the system. Strictly speaking this
ensemble may be either an equilibrium or a quasi-equilibrium
one [2].

From this observation, the commutation properties of the
operators associated with the dynamic variables, and assum-
ing that the flow of superfluid is irrotational, Landau derives
his quantum hydrodynamic model for the two fluids [1, 3].

In relation to the one particle reduced density matrix p
obtained from the density matrix for a system of N particles,
Penrose [4] and Penrose and Onsager [5] postulated that the
superfluidity is a state in which the reduced density matrix p
may be factorized as

1
|r = ']

Alr,r') = (B (r))(¥(r')) + O( ), (2)

and that, furthermore, the property of off-diagonal long-range

order for the density matrix (ODLRO) is fulfilled [6]. There-
fore,
lim  p(r,r") = %M = cte. #0. 3)
|[r—r'|—=00
In other words, the superfluid is a state which exhibits the
Bose-Einstein condensation, and therefore a finite macro-
scopic fraction of He* atoms lies in the ground state.
Anderson [5] re-interpreted Egs. (2) and (3), by postulat-
ing that the average of the field operator (¥) associated to
the wave functions { ¥} that characterize the superfluid state,
may be interpreted as a macroscopic dynamic variable, such
that:

(B(r,t)) = fr, )™, (4)

In words, the average associated with this dynamic variable
is considered as being composed of two dynamical variables,
namely, an amplitude f(r,t) and the phase ¢. Moreover, this
phase, is interpreted as a dynamical variable conjugated to
the number of particles N [7, 8].

From Egs. (2), (3) and (4), Anderson proceeded in anal-
ogy with Josephson’s effect in superconductivity, and carry-
ing out his calculations within the frame of the quantum me-
chanics [7, 8], he derived an equation to evaluate the phase
slip, that explains the tunneling effect between two superfluid
systems connected by a hole in a membrane. His result reads

Ryd. .
E<ﬁ;\_o> = <T}l>. (5)

where (dV¢/dt) is the average of the change in time of the
gradient of the wave function’s phase and (V) is the aver-
age of the gradient of the chemical potential. Equation (5)
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has been experimentally verified in the late eighties [9-11].
Notice should be made that in the derivation of this equation
the contributions of the fluctuations in energy have been ne-
gleted, a problem which we shall not consider here [12, 13].

On the other hand, it is well known that Onsager and
Feynman [14] independently postulated, the quantization of
the superfluid circulation, namely,

st -dl = 2mn, (6)
where the superfluid velocity V, is defined as
v, = Lyg, ™
m

and ¢ is the phase of the wave function that characterizes the
superfluid state. It is also well known that this result has been
experimentally verified [15].

It is important to remark that Egs. (6) and (7) are consis-
tent with the irrotationality of the superfluid, on considering
that the superfluid is irrotational in multiply connected do-
mains. This implies that the singularities of these domains
are the regions where the nuclei of the vortices reside. Fur-
thermore, in Eq. (7) it is clearly seen that the wave function’s
phase associated with the superfluid state is being taken as a
macroscopic dynamic variable.

2. A derivation of Anderson’s equation

However, to the author’s knowledge, the relationship of clas-
sical hydrodynamics and the standard properties exhibiting
the quantum mechanical behavior of He-II, [3,15-19] has
been little investigated. If one regards that the superfluid he-
lium behaves like an ideal fluid and macroscopically exhibits
quantum mechanical effects such as the Bose-Einstein con-
densation, one could think that some of these macroscopic
manifestations should be derived starting from some well-
known theorems of classical hydrodynamic adequately inter-
pret.

Concretely the objetive of this work is to show how, start-
ing from Kelvin’s theorem for the conservation of the cir-
culation , it is possible to derive an equation of Anderson’s
type for the phase slip. For that purpose one starts consid-
ering that the superfluid phase behaves as a macroscopic dy-
namic variable, and introduces into the description the con-
straints imposed by the experimental arrangement (see Fig. |
of Ref. 18).

Kelvin's theorem stating the conservation of the circula-
tion establishes [3] that for an ideal fluid (incompressible and
inviscid),

d
Efv,.dz_o, (8)
where
d 8
it

Exchanging the integral and the total time deriva-
tive [3, 20], and using the Stokes’ theorem, we have

o d
V- adli= 7 7 =
f Al dl /SV xdtts ds (9)

A necessary condition for the surface integral to be zero
is that dV; /dt be irrotational, therefore

d
—Vex'V F,
7 s ox Vi + (10)

with F' = —V . Here ¢ as we shall see below, is the poten-
tial energy of the gravitational field.

The suftficient conditions that justify Eq. 10 are obtained
from the experimental arrangement—see Fig. 1 of Ref. 18.
Indeed the superfluid is being forced to flow through a hole
due to the force of gravity, and there is a change in the num-
ber of particles and the energy density, in both sections of the
hole.

The change in energy is fixed through the energy neces-
sary to build up or destroy at least one vortex and it is given
by [20]

AE— psrmRQ, (11)

where « is the circulation, and R is the radius of the vortex.
Strictly, in accordance with some models [12, 13], a potential
barrier exists which has to be overcome in order to form such
a vortex, but for our purposes it is not necessary to consider
this refinement.

Specifically, the thermodynamic variable use to measure
the change in energy due to a change in the number of parti-
cles is the chemical potential 1 , and in fact, a gradient of this
variable exists through the hole. Thus we have that

d
F=-Vyp=mgAz= ma'l/s + V. (12)

In other words, the net force acting on the superfluid that
forces it to flow across the hole, the force of gravity, is equal
to the change in time of the wave function’s phase plus the
force due to the change of the number of particles given by a
gradient of the chemical potential.
Comparing Egs. (10) and (12), we have that
iiV@‘J: -Vu -V, (13)
m dt
which is an equation of the Anderson type. Strictly speaking,
it is equivalent to a generalization of Euler’s equation for an
ideal fluid, represented in this case by a superfluid [3, 16].
However the question arises of how to interpret this equa-
tion from the standpoint of Kelvin's theorem. The answer is
that the requirement of conservation of circulation across the
hole due to the flow of the superfluid implies that vortices
destruyed on one side are created an the opposite one and
viceversa. This conservation implies a change in the phase of
the wave function, which is equal to a breaking of the gauge
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symmetry of the ensemble with respect to which averages are
being taken to describe the states of the system. This mech-
anism is equivalent to a change in the energy of the system
in both sides of the hole per unit change in the number of
particles, but the total energy is conserved in the whole sys-
tem. An interesting work in relation with this point is given
in Ref. 22, where the numerical solutions of the non-linear
Schridinger equation for the motion in a Bose condensate
are studied (Gross- Ginzburg-Pitaevskii equation). There it
is shown how such solutions are consistent with Kelvin’s the-
orem.

Evidently, Eq. (12), describes only the average behavior
of the superfluid flowing across the hole ignoring the detailed
mechanism responsible for the destruction and creation of the
vortices around and in the interior of the hole. This question
has been dealt in other works [12,13, 23], using stochastic
models by considering the interaction of the system with the

walls of the hole in the presence of a potential barrier which
has to be overcome in order to form the vortices.

The difference between the derivation of Eq. (13) pre-
sented here and other derivations is that we have directly used
Euler’s equation for a perfect fluid, and explicitly Kelvin’s
theorem, starting from the validity of Egs. (6) and (7), as well
as the irrotational property of the flow, V x dV, /dt , which
has been physically interpreted from the experimental setup
given in the literarure.
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