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First principles calculation of the lattice specific heat of magnesium and beryllium
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We have used a local, first principles pscudopotential to calculate the interionic potential and, from it, the phonon dispersion curves, the
phonon spectra and the lattice specific heat of beryllium and magnesium. This kind of pseudopotential has been used successfully for the
prediction of properties of other materials. Our results are in good agreement with experiment. The pseudopotential is constructed from the
clectronic density induced around a nucleus in the metal electron gas. This electron density is previously calculated using density functional
theory.

Keywords: Lattice specific heat

Utilizando un pseudopotencial local, obtenido a partir de primeros principios. calculamos el potencial interiGnico v a partir de éste, las
curvas de dispersion fonénicas, los espectros fonénicos y finalmente. los calores especificos de la red cristalina para berilio y magnesio como
funciones de la temperatura. Esle tipo de pseudopotencial ha sido utilizado anteriormente. con éxito, para la prediccion de propiedades de
otros materiales. Nuestros resultados estdn en buena concordancia con los resultados experimentales. El pscudopotencial se construye a partir
de la densidad electrénica inducida alrededor de un nicleo en el gas de clectrones del metal. Esta densidad electrénica se calcula previamente
por medio de la teoria de funcionales de la densidad.

Descriptores: Calor especifico de la red cristalina

PACS: 62.20; 63.20

1. Introduction In this report we apply the method 10 predict the lattice
specific heat of two materials with hexagonal symmetry: Be
and Mg.

The starting pointis the calculation of the displaced clec-
tronic densities around a nucleus in an electron gas with an
equilibrium density corresponding to cach metal (Be and Mg

One of the main contributions to the specific of metals comes
[rom the ion lattice. The first step in our present ab-initio
calculation is to obtain the interionic potential. For simple
metals this can be constructed using pseudopotential theory.

Pscudopotentials may be phenomenological or may be ob-
tained from first principles. It is clear at present that a pseu-
dopotential determined in an empirical way can not be con-
sidered as weak always [1]. In this way its use in the calcu-

lation of the interionic potential, and from this, properties of

the metal is not justified.

In this work we construct an ab-initio, local pseudopo-
tential following the method proposed by Manninen er al. [2]
who followed the work of Rasolt and Taylor [3]. From the
pscudopotential we calculate the interionic potential. Then,
using the harmonic approximation, we obtain the phonon dis-
persion curves and the phonon spectra and from these, the
corresponding curves for the specific heat for each material.

In previous work we used this approach successfully to
predict some properties of simple metals mainly with cu-
bic symmetry. Among these properties are the lattice spe-
cific heat, elastic constants, phonon limited resistivity [4-9].
the prediction of the critical temperature of superconducting
metallic hydrogen and also the volume dependence of the
critical temperature of superconducting aluminum [10, 11].
Recently it was applied to predict elastic constants of magne-
sium (which has hexagonal symmetry), successfully too [12].

respectively). This is done using the density functional for-
malism [13. 14] and the model of the nucleus embedded into
a jellium vacancy [2]. Taking into account that in the pseu-
dopotential formulation the pseudodensity must not contain
wiggles near the ion, these wiggles in the calculated density
had to be removed.

From this pscudodensity we define a local pseudopoten-
tial, as we explain below.

We have used atomic units (Le., magnitude ol the elec-
tron charge = clectron mass = /i = 1). The energy is given in
double Rydbergs.

2. Interionic potential

The interionic interaction is given from pseudopotential the-
ory and linear response theory [2] by
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where r is the separation between the two ions, Z is the
charge of the metal ion, £(g) is the dielectric response func-
tion of the electron gas, and dn(q) is the Fourier transform of
the induced charge pseudodensity.

For the model of the nucleus embedded in a jellium va-
cancy, the induced electronic density is calculated by taking
the difference [2]

Sn(r) = n(r) —n,(r) — 2 Z |f¢')b(1‘}|2 . (2)
b

where n(r) is calculated with the total charge density corre-
sponding to a nucleus located at the center of a vacancy in
jellium, and dn(r) is the electron density around a jellium
vacancy alone.

The bound states are given by v, (r). Charge neutrality
of the metal is a necessary condition. We calculated dn(q),
the Fourier transform of the displaced electron pseudoden-
sity, taking the Fourier transform of the density given by
Eq. (2), after smoothing. In this smoothing, the conditions
that the electronic charge is conserved and that dn(r), and
(dn(r)/dr) are continuous, are imposed [2]. It is conve-
nient to mention that in the pseudopotential formulation, the
pseudodensity must not contain wiggles near the ion, and
the induced density calculated from density functional theory
contains those wiggles in that region due to the orthogonal-
ization of conduction states to core orbitals. The unscreened
pseudopotential form factor, v(g), is related to én(q) by

_ 4mdn(q)(q) )
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Equation (3) is used to obtain an effective local pseudopoten-
tial, which in linear response will give the exact induced dis-
placed electronic density outside the region of smoothing. In
this way some of the non linear screening effects are included
into the pair potential calculated from this pseudopotential.
The dielectric function we used satisfies by construction, the
compressibility theorem which is important in connection
with the interionic potential [15, 16]. It is given by [15, 16]

e(q) =1+ (%) G(q) (4)
where
Glq) = - Gol@) (5)
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and G,(q) is the usual Lindhard polarizability, ks is the
Fermi-Thomas screening constant, and L is the ratio
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where yu is the chemical potential, Er is the Fermi energy and
1(rs) = Ep(rs) + pze(rs). Here, pzc(rs) is the exchange-
correlation contribution to the chemical potential. Using the

expression of Gunnarson and Lundquist [17], for exchange-
correlation (which we used in the calculation of the induced
electronic density) the value of L is:

4\
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With the induced charge pseudodensity and the dielectric
function already given, we used Eq. (1) to calculate the inte-
rionic potential.
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3. Phonons and specific heat

From the interionic potential we calculated the phonons and
associated force constants, using the harmonic approxima-
tion. Magnesium and Beryllium have an hexagonal close
packed structure (HCP). For this structure, we had a good
convergence with four neighbor shells. From the interionic
potentials we can find the force constants and, from these.
the corresponding phonon dispersion curves. To calculate the
phonon frequency distribution, /'(¢), from the force con-
stants obtained in the phonon dispersion curve, we followed
the method of Gilat and Raubenheimer [18].

From F'(1), the specific heat is calculated numerically by
the integral

A{E) /I ;‘ﬁw) F(v)
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where (F) is the average of the internal energy, 7' is the tem-
perature and v, is the maximum phonon frequency.

The resulting phonon dispersion curve for beryllium is
in Fig. 1, where we compare with experimental values . Al-
though pseudopotential nonlocality can be especially impor-
tant for Be, our calculated phonon frequencies are in good
agreement (10%) with experiment. This agreement is also
satisfactory for Mg (20%), Fig. 2. In Figs. 3 and 4 we show
our calculated lattice specific heats and compare with ex-
perimental results. We can see a good agreement. This is
specially true for temperatures where the harmonic approx-
imation applies [it is well known that the harmonic approx-
imation is valid for temperatures below ©p /50, with Op
the Debye temperature (for Be, © = 1000K and for Mg,
©p = 400K). See, for example, Ref. 19. For larger tem-
peratures a deviation starts to occur. For high temperatures
the anharmonic effects become more important, as it happens
with the specific heat [20-22]. Finally, it is important to no-
tice that even when this method was applied very successtully
to metals with cubic symmetry, its extension to metals with
hexagonal symmeltry had to be explored. This extension is not
obvious. This is because in the calculation of the electronic
pesudodensity, by solving the density functional formalism
equations, a spherical symmetry is taken. However, results
are satisfactory for the specific heat for these two hexagonal
symmetry materials too.
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FIGURE 1. Phonon dispersion curve for beryllium. Experimental
results: Il A ¢ ¥ (Ref. 23). We are using rs = 1.87 a,, where a, is

the
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FIGURE 2. Phonon dispersion curve for magnesium. Experimental
results: Il A ¢ " (Ref. 24). We are using r; = 2.66 a,, where a, is

the
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FIGURE 3. Lattice specific heat for beryllium. Results from this

work”
Op = 1000K.

. experimental results: M (Ref. 25). For this material,
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FIGURE 4. Lattice specific heat for magnesium. Results from this

work:

. experimental results: W (Ref. 26). We are using r.=

2.66 a,,. For this material, @ p = 318K.
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