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Interacting boson models provide an elegant and powerful method to describe collective excitations of complex systems by introducing a set

of effective degrees of freedom. We review the interacting boson model of nuclear structure and discuss a recent extension to the nucleon

and its excited states.
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mediante la introduccion de grados de libertad efectivos. Primero revisamos el modelo de bosones interactuantes de la estructura nuclear y
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1. Introduction

Atomic nuclei are complex systems consisting of large num-
bers of strongly interacting protons and neutrons and involv-
ing many degrees of freedom. In addition, the nucleons them-
selves are composite particles, each including three valence
quarks. In principle, the structure and interactions of nucle-

ons are described by quantum chromodynamics (QCD) of

quarks and gluons which has emerged as the fundamental the-
ory ol strong interactions. However, the energy domain of nu-
clear physics, several MeV (= 105 eV) for nuclear structure
and several GeV (= 10 eV) for excitations of the nucleon,
belongs to the nonpertubative regime of QCD for which, ex-
cept for latlice calculations of ground state properties, no rea-
sonable solution exists.

Nevertheless, the low-lying spectrum of many nuclei ex-
hibits a surprisingly simple structure. In the absence of an
exactly solvable theory and reliable approximation methods,
one has to rely on models of nuclear structure and symme-
tries to “understand” these regular features. In models one at-
tempts to isolate the most important degrees ol freedom and
deal with them explicitly. Examples of nuclear models are
the shell model in which the complicated motion of nucleons
inside a nucleus is replaced by the motion of independent nu-
cleons in a static spherical potential well [1], the collective or
geometric model in which collective nuclei are described in
terms of geometric variables that characterize the shape and
deformation of the nuclear surface [2], and the interacting bo-
son model in which collective quadrupole states in nuclei are

described in terms of a system of interacting monopole and
quadrupole bosons [3].

Whereas in low energy nuclear physics it is a good ap-
proximation to neglect the internal structure of the nucleon,
this is no longer the case for excitations of the nucleon it-
self (baryon resonances). Nowadays the nucleon is viewed as
a confined system of quarks interacting via gluon exchange.
Effective models of the nucleon are all based on three con-
stituent parts that carry the internal degrees of freedom of
spin, (Tavor and color [4], but differ in their treatment of radial
(or orbital) excitations. At the same time, the baryon mass
spectrum shows some remarkable regularities, such as linear
Regge trajectories and parity doublets, which indicates that a
collective type of dynamics may play an important role in the
structure of baryons.

In this contribution we show that interacting boson mod-
els provide an elegant and, at the same time, powerful method
to describe collective excitations of complex systems by in-
troducing a set of elfective degrees of freedom. We first re-
view the main features of the interacting boson model of nu-
clear structure, and next discuss a recent extension to the nu-
cleon and its excited states.

2. Nuclear structure
The nuclear shell model has been very successful in describ-

ing and correlating a vast amount of experimental data. In this
model it is assumed that each nucleon (proton or neutron)
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FIGURE 1. Single nucleon shell-model orbits and magic numbers
in nuclei.

moves independently in a static spherical potential that rep-
resents the average interaction with other nucleons in the
nucleus. The ordering of single nucleon levels (or orbits)
is shown schematically in Fig. 1. The single nucleon orbits
which, due to the Pauli exclusion principle, can only be oc-
cupied by a restricted number of identical nucleons are clus-
tered into major shells. The number of protons or neutrons
in a completely filled major shell is called a magic number.
Doubly-magic nuclei with completely filled proton and neu-
tron major shells are particularly stable. The shell model cor-
rectly reproduces all observed magic numbers.

The lowest excited states of a nucleus with one nucleon
outside a closed shell are obtained by the extra (or valence)
nucleon occupying the various orbits in the next major shell.
As an example we show in Fig. 2 the observed energy levels
of the nucleus 35Pb; - together with their shell model inter-
pretation as a valence neutron occupying the single-particle
orbits 2gg /2, 1i11 /2, Lj15/2, 3ds 2, 45172, 297/2 and 3dy s, of
the 126-184 major shell.

The size of the model space increases rapidly if there
are both protons and neutrons outside closed shells. As an
example, we consider the nucleus }3'Smg,, which has 12
valence protons occupying the single-particle orbits 1g7 /.,
2dy5 /2, 2d3)2, 35172 and 1Ny /2 of the 50-82 major shell and
10 valence neutrons occupying the orbits 1/ 2, 2 f7 /2, 2 f5 /2,
3p3 /2. 3p1 2 and 1iyz 5 of the 82-126 major shell. Even with
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FIGURE 2. Single nucleon levels of 337 Pbyar.

the assumption that the lowest excited states of this nucleus
can be described by taking into account only the valence nu-
cleons, the shell model space is enormous [1], as can be seen
from the first column of Table 1. Despite the enormous size of
the model space, the low-lying spectrum of 1>*Sm shows a re-
markably regular pattern. This suggests the existence of “ef-
fective™ degrees of freedom, which would truncate the large
shell model space to a manageable size, but without losing
the simple features of the energy spectrum.

Such an alternative is provided by the interacting boson
model of nuclei. Its microscopic basis is the observation that
the interaction between identical nucleons favors the forma-
tion of monopole and quadrupole pairs of nucleons. The in-
teracting boson model can be viewed as a truncated shell
model, in which the large shell model space spanned by the
valence nucleons is truncated to the subspace spanned by
monopole and quadrupole pairs of identical nucleons, which
subsequently are treated as bosons.

2.1. The interacting boson model

In the original formulation of the interacting boson model
(IBM-1) no distinction is made between proton and neutron
degrees ol freedom. Low-lying collective states in even-even
nuclei are described in terms of a system of N interact-
ing bosons with angular momentum and parity o = g
(monopole) and L” = 2% (quadrupole). Since the five com-
ponents of the quadrupole boson and the monopole boson
span a six-dimensional space with group structure [/(6). all
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states belong to the symmetric irreducible representation [ V]
of U7(6G), where N is the total number of bosons. In the
IBM the Hamiltonian is expressed in second quantization.
Hereto we introduce creation operators, s' and d} , and an-
nihilation operators, s and d,,, for the bosons, which alto-
gether can be denoted by brtm and by, with ! = 0,2 and
m==l-1+1,...,1

b']:,[_) = st .’)Em = 4, (1
The operators h;m and by, satisfy standard boson commuta-
tion relations

3 ~
[hf]m] ) h;__,m:] = 5.'1('!?"1'::,1712-
[bfrl my? h;‘:”r:J = [hh’”l J bizmzl = 0. (2)
In second quantized form, the most general one- and two-
body rotational invariant Hamiltonian that conserves the
number of bosons is given by

H=Hy+ Zf.‘ Z IJL”b;m
{ il
+2
I

with by,,, = (=1)""™b; _,.. The dots indicate scalar prod-
ucts and the crosses tensor products. Since the monopole and
quadrupole bosons are identified with correlated pairs of va-
lence nucleons, the number of bosons /V is determined by the
total number of active proton and neutron pairs, counted from
the nearest closed shell.

As an example, the nucleus }3*Smga, where the 12 va-
lence protons occupy the 50-82 proton shell and the 10 va-
lence neutrons occupy the 82-126 neutron shell, is treated
in the IBM as a system of N = 6 4+ 5 = 11 interacting
bosons. The number of states with angular momentum and
parity L¥ = 07, 2% and 47 is reduced from the shell model
values by a factor 10'°-10%* (see Table I). This reduction
makes it possible to study low-lying collective excitations
in nuclei by diagonalizing Hamiltonian matrices of relatively
small dimensions. In the last column of Table I we show the
dimensions of the model space in the neutron-proton inter-
acting boson model (IBM-2) in which the neutron-proton de-
grees of freedom are taken into account eXpliciLly.

(L) L 3 I L
Z z-,],:,m(bjl xb}z)‘ Vo (b, x b)), (3)
lilalsly

2.2. Dynamical symmetries

In general, the Hamiltonian matrix can be diagonalized nu-
merically to obtain the energy eigenvalues, but there exist
also limiting situations in which the energy spectra can be
obtained in closed analytic form, that is to say, in terms of an
energy formula. These special cases correspond to dynami-
cal symmetries, and arise whenever the Hamiltonian can be
written in terms of Casimir invariants of a chain of subgroups
of U(G) only [3]. Since nuclear states have good angular
momentum, the rotation group SO(3) in three dimensions

m=3 (el S AR o

n=2 4+ o+ ot

g=yg =g

n=0 0+ U(s)
FIGURE 3. Schematic spectrum with U/(5) symmetry. The en-
ergy levels are calculated using Eq. (5) with e > 0. o > 0 and
(# = 7 = (), The number of bosons is N = 3.

should be included in all subgroup chains. Under this restric-
tion there are three possible chains [3]

UH(E) 0:80(5) O S0(3),

SU(3) o 50(3), (4)
S0(6) D SO(5) D SO(3).

U(6) o

The corresponding dynamical symmetries are usually re-
ferred to as the U(5), the SU(3) and the SO(6) limits, re-
spectively.

(i) In the U/(5) limit, the energy eigenvalues are given by

En,v,LY=Ey+en+an(n+4)
+Bv(v+3)+yL(L+1), (5

where n, v and L are quantum numbers that label the basis
states. Here n represents the number of quadrupole bosons, v
is the boson seniority, i.e. the number of quadrupole bosons
not coupled pairwise to angular momentum zero, and L de-
notes the angular momentum. The energy spectrum is char-
acterized by a series of multiplets labeled by n at almost con-
stant energy spacing (o, 3,7 < ¢), which is typical for a
vibrational nucleus. The ground state has n = v = L = 0
and energy Ey. In Fig. 3 we show the structure of a spectrum
in the {/(5) limit.

(i) The energy eigenvalues in the SU(3) limit are given
by
EMup, L) =Eyg— & [AMA+3) + pulp+3) + A\

—2N(2N +3)]+ &' L(L+1). (6)

Here A, ;o and L label the basis states. The spectrum is char-
acterized by a series of bands labeled by (A, p). in which the
energy spacing is proportional to L(L + 1), as in a rigid ro-
tor model. The ground state band has (A, ) = (2N,0) for
a prolate rotor or (A, ;1) = (0.2N) for an oblate rotor. In
both cases the ground state energy is Eq. In Fig. 4 we show a
typical spectrum in the SU(3) limit.

(iii) Finally, the energy formula in the SO(6) limit is
given hy

E(o,7,L) = E;s+ A(N —a)(N +0+4)
+Br(r+3)+CL(L +1), (7)

Rev. Mex. Fis. 44 (2) (1998) 110-119
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FIGURE 4. Schematic spectrum with SU(3) symmetry. The en-
ergy levels are calculated using Eq. (6) with £ > 0 and £" > 0.
The number of bosons is N = 3. The numbers in parenthesis de-
note the values of (A, ut).
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FIGURE 5. Schematic spectrum with SO(6) symmetry. The en-
ergy levels are calculated using Eq. (7) with A > 0, B > 0 and
(' = 0. The number of bosons is N = 3.

where o, 7 and L characterize the basis states. Here ¢ and
7 denote boson seniority labels: 7 has the same meaning as
v in the U7(5) limit, Le. the number of quadrupole bosons
not coupled pairwise to angular momentum zero, whereas o
is a generalized seniority that involves both monopole and
quadrupole bosons. The energy spectrum consists of a series
of vibrational multiplets labeled by o, in which the energy
spacing is proportional to the last two terms in Eq. (7). The
ground state has ¢ = N, 7 = L = 0 and energy Fy. InFig. 5
we show a typical spectrum in the SO(6) limit.

The three dynamical symmetries provide a set of closed
analytic expressions for energies, electromagnetic transition
rates and selection rules that can be tested easily by exper-
iment, and as such they play an important role in the qual-
itative interpretation of the data. However, only a few nu-
clei can be described by these limiting situations. We men-
tion the low-lying states of }1°Cdg., 13°Gdgs and 12°Pt) 5 as
good examples of nuclei with I7(5), SU(3) and SO(6) sym-
metry, respectively [3]. Most nuclei display properties inter-
mediate between the dynamical symmetries. In order to de-
scribe transitional regions between any of the three dynam-
ical symmetries, the more general form of the IBM Hamil-
tonian of Eq. (3) has to be used. Its eigenvalues and eigen-

vectors can be obtained by numerical diagonalization. As ex-
amples of transitional regions we mention the mass region
between the Pt isotopes and the well-deformed region of the
rare carth nuclei, which has been interpreted in terms of a
SO(6) « SU(3) transition, the Sm isotopes which show
a sharp transition between vibrational and rotational spectra
(7(5) «» SU7(3)) and the Ru isotopes which show a tran-
sition between vibrational and ~ unstable nuclel (I7(5) «
SO(6)).

2.3. Classical limit

In a geometric model of collective quadrupole excitations of
the nucleus, the nuclear surface is described by its radius

R=Ro(1+) a,Ys5,(8,4)], (8)

H

which is parametrized by five shape variables o, (@ =
=2,....2). Instead of o, it is more convenient to make a
transformation to the body-fixed system and to introduce the
Hill-Wheeler coordinates 3, v which determine the shape,
together with the three Euler angles which determine the ori-
entation in space [2].

The connection between the IBM and the geometric
model can be obtained by studying the classical limit of the
IBM by means of mean-field techniques [5]. For a system of
bosons the variational wave function has the form of a co-
herent state, which is a condensate of N deformed bosons.
For static rotationally invariant problems, the coherent state is
characterized by two geometric or classical variables, which
one can associale with /7 and ~. The coherent state is then
given by

1 N
N; By = — [1(8,7)] " |0Y, 9)
with
bi(B,7) = ——— |s! + Beosyd]
(8,9 \/l 5 [H 0

1 ;
+—=/38in ~ ((I.T, - (IT_.,)] : (10)
V2 - b

For a given IBM Hamiltonian we define an energy surface by
its expectation value in the coherent state

E(3,7) = (N;B,v| :H : | N;B,~). G171

Taking the normal ordered product of the Hamiltonian : H :
amounts to keeping, for each interaction term, only the lead-
ing order contribution in the total number of bosons N. For
the one- and two-body Hamiltonian of Eq. (3) the energy sur-
face is given by

N(N-1)

]S(d B ) =+ -

m {ff3;12+r!.;;,f_33 COs 3’}’+(14;'f4] i

where the coefficients a; depend on the number of bosons N
and the parameters in the Hamiltonian.

Rev. Mex. Fis. 44 (2) (1998) 110-119
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Axial rotor (4 > 0,3 = 0 or #/3)

~ unstable
rotor (3 > 0)

Anharmonic
vibrator (3 = 0)

FIGURE 6. Phase triangle of the IBM.

The classical limits of the three dynamical symmetries
have a simple geometric interpretation. For the (/(5) limit
the energy surface is given by
N(N —1)5*

: — + o : (13)
1+ 32 (1+3%)°

whereas for the ST (3) limit we find
N(N-1)
ey
and for the SO(6) limit

E(p.v)=Fo+h———— 17’ :F4\/—63C083’y+4} (14)

(N 1)
(14 732)?

The energy surfaces for the U(5) and SO(6) limits do not
depend on the asymmetry parameter . For physical values
of the parameters (¢ > 0 and 4 > 0) they have a minimum at
4 = () (spherical shape) and 3* = 1 (deformed shape with v
instability), respectively. For the SU(3) limit the energy sur-
lace depends on both /3 and -+, and has for £ > (0 a minimum
at 3 = V2 and v = 0 (axially deformed prolate shape) or
at 4 = /2 and ~+ = w/3 (axially deformed oblate shape),
depending on the sign of the 3% cos 37 term. This analysis
shows that the U/(5) limit corresponds to an anharmonic vi-
brator, the ST7(3) limit to an axial rotor with prolate or oblate
deformation, and the SO(6) limit to a 4 unstable rotor (or de-
formed oscillator).

These results are summarized in the phase triangle of
Fig. 6, in which the equilibrium shapes corresponding to each
one of the dynamical symmetries are located at the corners,
and the transitional regions between any two of them along
the three sides. Most nuclei correspond to either the edges
or the interior of the triangle, since they are intermediate be-
tween two or three limiting situations.

E(B,v) = Eo + 4 (1-— 32)2 : (15)

3. Nucleon structure

The nucleon itself is not an clementary particle, but a com-
posite ohject. Effective models of the nucleon and its excited
states (or baryon resonances) based on three constituents
share a common spin-flavor-color structure but differ in their

—

TapLa I1. Classification of ground state baryons according to

SU;(3) 2 SUsr(2) & Uy (1),
I i Q
JP = ._%+ octet Nucleon N 1/2 | 0.1
Sigma z 1 0 -1,0.1
Lambda A 0 0 0
Xi = 1/2 —1 -1.0
7" = 27 decuplet  Delta A 32 | —-1.0.1.2
Sigma ¥’ 1 0 —1;.051
Xi ET 1/72 -1 -1,0
Omega {2 0 =1 —~1

assumptions on the spatial dynamics. Stimulated by the suc-
cess of algebraic methods in nuclear [3] and molecular [6]
spectroscopy, we discuss here an interacting boson model for
the spatial degrees of freedom [7]. This model unifies various
exactly solvable models ol baryon structure, and hence pro-
vides a general framework to study the properties of baryon
resonances in a transparent and systematic way.

3.1. Algebraic model of the nucleon

Baryons are considered to be built of three constituent parts.
The internal degrees of freedom of these three parts are taken
to be: flavor-triplet u,d, s (we do not consider here heavy
quark flavors), spin-doublet S = 1/2. and color-triplet. The
internal algebraic structure of the constituent parts is the
usual
Gi=SUs;(6)@SU:(3) DSU(3)®SU,(2)®@S5U.(3). (16)
In Table II we present the classification of the baryon fla-
vor octet and decuplet in terms of the isospin [ and the
hypercharge Y according to the decomposition SU¢(3) O
SU;(2) @ Uy (1). The hypercharge is related to the electric
charge () and the third component of the isospin /3 through
the Gell-Mann and Nishijima relation
y
Q:]:’.**;- (17)

The strangeness S is the difference between the hypercharge
and the baryvon number B

5 =Y B, (18)

The nucleon and A are nonstrange S = 0, whereas the ¥, A,
= and Q hyperons carry strangeness S = —1, —1, —2 and
—3, respectively.

The relative motion of the three constituent parts is de-
scribed in terms ol Jacobi coordinates, g and X which in the

Rev. Mex. Fis. 44 (2) (1998) 110-119
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case of three identical objects are

. L oan

P —2(11 =

~ L ;. 2 s

A= —(F] + 72 — 273). (19)

Here 7, 7 and 73 are the coordinates of the three con-
stituents. Instead of a formulation in terms of coordinates
and momenta we use the method of bosonic quantization, in
which we introduce a dipole boson with L” = 1~ for each
independent relative coordinate, and an auxiliary scalar bo-
son with L7 = 0% [7]

Pl 5 Wl 5 8 (m=-1,0,1). (20)

The scalar boson does not represent an independent degree of
freedom, but is added under the restriction that the total num-
ber of bosons N = n,+n+mn, is conserved. This procedure
leads to a compact spectrum generating algebra for the radial
(or orbital) excitations

G, = U{T). (21)

For a system of interacting bosons the model space is spanned
by the symmetric irreducible representation [N] of U(7). The
value of NV determines the size of the model space.

The mass operator depends both on the spatial and the
internal degrees of freedom. We first discuss the contribution

um VO3

S0(7)  SO(6) D SU(

The corresponding dynamical symmetries are referred to as
the U(6) D SU(3) @ SU(2) limit, the U(6) > SO(6) limit
and the SO(7) limil, respectively. These chains have the di-
rect product group SO (3)©.S0O(2) in common, where SO(3)
is the angular momentum group and SO(2) is related to the
permutation symmetry [7-9].

(i) The first chain corresponds to the problem of three
particles in a common harmonic oscillator potential [9]. It
separates the behavior in three-dimensional coordinate space
determined by SU/(3) D SO(3), from that in the index space,
given by SU(2) D SO(2). In this limit the eigenvalues are
given by

M*n. L. F,Mp) = Jf("f +en+en(n+5)+aF(F+2)
4+ RL(L+ 1) + &' MZ. (23)

Figure 7 shows the structure of a spectrum with U/(6) sym-
metry. The levels are grouped into oscillator shells character-
ized by n. The ground state has n = 0 and LT = 0F. The
one-phonon multiplet n = 1 has two degenerate states with
L" = 1= which belong to the two-dimensional representa-

280(2) D SO(3) ¢

from the spatial part, which is obtained by expanding the
mass-squared operator M2 in terms of the generators of
U7(7) [7] similar to Eq. (3). but now the boson operators !Jm
and by, can be any one of bhuilding blocks of Eq. (20). Be-
cause of parity conservation only interaction terms with
an even number of dipole boson operators are permitted. For
nonstrange gqq baryons, the mass-squared operator M? has
to be invariant under the permutation group Ss, i.e. under the
interchange of any ol the three constituent parts. This poses
an additional constraint on the allowed interaction terms. The
wave functions have, by construction, good angular momen-
tum L, parity 7, and permutation symmetry f. The three
symmetry classes of the 53 permutation group are charac-
terized by the irreducible representations: ¢ = S for the one-
dimensional symmetric representation, ¢ = A4 for the one-
dimensional antisymmetric representation, and ¢ = M for
the two-dimensional mixed symmetry representation.

3.2. Dynamical symmetries

The Sy invariant {7(7) mass operator has a rich group struc-
ture. Just as in the case of the interacting boson model for
nuclei, it is of general interest to study limiting situations,
in which the mass spectrum can be obtained in closed form.
These special solutions correspond to dynamical symmetries
of the model. Under the restriction that the eigenstates have
good angular momentum, parity and permutation symmeltry,
there are several possibilities. Here we consider the chains

SU(3) & SU(2) D SO3) @ S0O(2),
SO(6) D SU(3)

' 50(2) D 8O(3) & S0(2), (22)
' SO(2).

[ : ;
tion M of the permutation group, and the two-phonon multi-

plet n = 2 consists of the states L{ = 2%, 2§, 1%, 0% and
01,. The splitting within an oscillator shell is determined by
the last three terms of Eq. (23).

(i1) Another classification scheme for the six-dimensional
oscillator is provided by the second group chain of Eq. (22).
The reduction U(6) 2 SO(6) D SU(3) @ SO(2) has been
studied in detail in [10]. Here it is embedded in UU(7). The
spectrum of the U7(6) D SO(6) limit is given by

M?*(n,o,L,Mp) = Mg + ein + ean(n + 5) + Bo(o +4)
+ KL(L+1) + &' Mj. (24)

Also in this case the levels are grouped into oscillator shells
according to Fig. 7. However, in this case the splitting within
an oscillator shell which is determined by the last three terms
of Eq. (24) is different from that in the U(6) D SU(3) ©
SU(2) limit,

(iii) The two group chains associated with the U(7) D
U7(6) reduction correspond a six-dimensional anharmonic os-

Rev. Mex. Fis. 44 (2) (1998) 110-119
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i T2 8 1008
n=1 =" ly
n=0 ——0f U(6)

FIGURE 7. Schematic spectrum with [J(6) symmetry. The masses
are calculated using Eq. (23) withe; > 0, €2 > 0and e = K =
' = (0. The number of bosons is N = 2.

a=2 v o ARG A G
o=0 — 0}
w=0
i Ml
F=g
w=2 50(7)

FIGURE 8. Schematic spectrum with SO(7) symmetry. The
masses are calculated using Eq. (25) with 4 > 0, # > 0 and
# = &’ = (). The number of bosons is N = 2.

cillator, for which the total number of oscillator quanta n is
a good quantum number. However, this is no longer the case
for the third dynamical symmetry of Eq. (22). In the SO(7)
limit the eigenvalues are

M?*(w,o,L, Mp) = Mj + A(N —w)(N +w+5)
+ fBo(o+4) + kL(L+ 1) +k'ME. (25)

Analogous to the SO(6) limit of the IBM, the SO(7) limit
corresponds to a deformed oscillator. In Fig. 8 we show a
typical spectrum with SO(7) symmetry. The states are now
ordered in bands characterized by w, rather than in harmonic
oscillator shells, as in the previous two examples.

3.3. Classical limit

A more intuitive geometric interpretation of algebraic U/ (7)
interactions can be obtained by studying its classical limit.
The procedure is similar to that discussed in Sect. 2.3 for
the interacting boson model of nuclei. The coherent state is a
condensate of V deformed bosons, which for static rotation-
ally invariant problems can be parametrized as

: - - T |
bi(r,x,0) = [-hf +rcosxp; ,

1
+rsiny (cosf y)f,,$ + sin Qp;,y)] . (26)

The geometry is chosen such that 5 and A span the xy plane
with the r-axis along A and the z-axis perpendicular to this

plane. The two vectors p and X\ are parametrized in terms
of the three Euler angles which are associated with the ori-
entation of the system, and three internal coordinates which
are laken as the two lengths of the vectors ry = rcos y and
r, = rsin y, and their relative angle 6. The hyperradius r is
ameasure of the dimension of the system, whereas the hyper-
angle y and the angle # determine its shape [11]. The surface
associated with one- and two-body S; invariant interactions
is given by

Uz( 8) . N(N-1)
M*(r,x,8) =ap + ————
ER.€ to (1 + r2)2

—br* sin®(2y) sin® H] .27

2
[a-_)r' + ay r

The coefficients a; and b depend on the number of bosons N
and the parameters in the mass-squared operator.

The classical limits of the three dynamical symmetries
have a simple geomelric interpretation. For the U(6) D
SU(3) @ SU(2) limit the surface is given by

ol TN A
M3(r, x,8) = Mg + e DY g Y L

1_*_,..'.3 l1+rl)_7
N(N - 1)rt - &
+ a—{(lJrT));[l — sin“(2y)sin” 4], (28)
whereas for the J(6) 2 SO(6) limit we find
; g Nr? N(N - 1)
M2(r,x,0) = M§ 4+ 9
(rx.0) = My + e T Hee TEESE (29)
and for the SO(7) limit
S " N(N -1) e :
M. 8)= Mg+ A —— (] — )" . 30
5 %) ! (1+r'3)2( & o

The surfaces for the U/(6) D SO(6) and SO(7) limits do not
depend on the angles \ and #. For physical values of the pa-
rameters (¢; > 0 and A > 0) they have a minimum at r = (
(spherical shape) and »? = 1 (deformed shape with y and
f instability), respectively. For the U7(6) O SU(3) @ SU(2)
limit the surface depends on all three geometric variables, the
radius r and the angles y and #. For realistic values of the pa-
rameters (e; > () the minimum is at = 0 (spherical shape),
justas for the U7(6) O SO(6) limit. This analysis shows that
the two U(6) limits correspond to an anharmonic vibrator,
and the SO(T) limit to a deformed oscillator (or y, ¢ unsta-
ble rotor).

It is interesting to note that the surface of Eq. (27) has an-
other equilibrium shape, that does not correspond to one of
the dynamical symmetries discussed above. We consider the

operator [7, 8]
M =g (R? stsh — ,u;[, . pj, - [lt\ - p.t\l
x (R*35 — Pp - DPp — Pr - Pr)

+& {(1»,*, pb =k L) (B By — Br - Ba)

+4 (pl - ph) (Br - Bp) | - 31)
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Uy Y2a vzs

FIGURE 9. Fundamental vibrations of X3 configuration.

For F* = 0, the mass-squared operator of Eq. (31) has
[7(7) D U(6) symmetry and corresponds to an anharmonic
vibrator, whereas for B? = 1 and & = 0 it has U(7) O
SO(7) symmetry and corresponds to a deformed oscillator.
The general case with % # 0 and &;, & > 0 corresponds Lo
an oblate symmetric top [7, 8]. This can be seen by studying
the classical limit and performing a normal mode analysis.

The corresponding surface

N(N —-1)

‘Uz("'- Y0 = & (1 % 7.2)2 (Hz - 7'2)2
NN — pd
+ & \‘—((1%%[1 —sin?(2x)sin? 0] , (32)
F2YE

has a stable nonlinear equilibrium shape characterized by
r =R,y =mx/4and § = 7/2, i.e. the two coordinates
have equal length and are perpendicular. These two condi-
tions are precisely those satisfied by the Jacobi coordinates
of Eq. (19) for an equilateral triangle. In a normal mode anal-
ysis, the mass-squared operator of Eq. (31) reduces to lead-
ing order in N to a harmonic form, and its spectrum is given
by [7, 8]

M’z(m ,U2) = K1 Uy + Ka Vs, (33)
with
ki = £ 4NR?,
ke = £24NR?/(1 4+ R?). (34)

Here ©; represents the number of quanta in a symmetric
stretching vibration, and vy = w2, + v2, denotes the total
number of quanta in a degenerate doublet which consists of
an antisymmetric stretching vibration (v2,) and a bending
vibration (vy;). This pattern is in agreement with the point-
group classification of the fundamental vibrations of a sym-
metric X3 configuration [12] (see Fig. 9). Therefore, the con-
densate boson of Eq. (26) withr = R, x = v /4and # = /2,
corresponds to the geometry of an oblate symmetric top with
the threefold symmetry axis along the z-axis.

In Fig. 10 we show a schematic spectrum of an oblate
symmetric top. In anticipation of the application to the mass
spectrum of nonstrange baryon resonances we have added a
term linear in the angular momentum L. The spectrum con-

2 T Lam 2 am
— oy — —
—pt
S L i
— i
(v1,v2) = (0,1)
Ty
— 03 (v1,v2) = (1,0)
(v1,v2) = (0,0)

FIGURE 10. Schematic spectrum of an oblate symmetric top. The
masses are calculated using Eq.(39) with k1 > 0, k2 > 0 and

a > 0.

Oblate top (r > 0, x = 7/4, 0 = n/2)

Deformed oscillator (r > 0)
(or x, @ unstable rotor)

Anharmonic

vibrator {r = 0)

FIGURE 1 1. Phase triangle of U(7) with S3 invariance.

sists of a series of vibrational excitations characterized by the
labels (v, v2), and a tower of rotational excitations built on
top of each vibration. ‘

The results of the analysis of the classical limit of Sy
invariant one- and two-body interactions in U/(7) are sum-
marized in the phase triangle of Fig. 11, in which the three
equilibrium shapes are located at the corners. This phase tri-
angle is very similar as the one for the nuclear case: there
is a spherical shape, a deformed shape that does not depend
on the angular variables, and one rigid deformed shape. An
important difference is that, whereas in the nuclear case there
exists a large amount of collective nuclei which either corre-
spond to one of the dynamical symmetries or to a transitional
region between them, in the nucleon case there is only one
single baryon spectrum. The question is now: if we assume
that the radial excitations of the nucleon can be described by
U(7), where does the nonstrange baryon mass spectrum fit in
this triangle?

3.4. Nonstrange baryons

Here we study the mass spectrum of the nonstrange baryon
resonances of the nucleon (isospin / = 1/2) and the delta
(isospin [ = 3/2) family. The radial excitations are described
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TaBLE 111. All calculated nucleon and delta resonances (in MceV) below 2 GeV. Tentative assignments of 1 and 2 star resonances [14] are

shown in brackets.

State (v1,v2) Meate Baryon
*8,[56,07] (0,0) 939 N(939) Py,
28,[70,17] (0,0) 1566 N(1535)S11, N(1520) D4
18,4[70,17] (0,0) 1680 N(1650) 8. N(1700) D14, N(1675) D5
284020, 11] (0,0) 1720
“8,[66,2%] (0,0) 1735 N(1720) P, N(1680) F5
28,4[70,27] (0,0) 1875
28,70, 2] (0,0) 1875 [N(1900) Pi3]. [N(2000) F15]
'8,4[70,27] (0,0) 1972
\;[rl 2F] (0,0) 1972 [N(1990) Fi7]
8.[56,0%] (1,0) 1440 N(1440) Py
-&,[,u 17] (1.0) 1909
*8,4[70,0%) (0.1) 1710 N(1710) P,
18,[70,07] (0,1) 1815
*8,[56,17] (0.1) 1866
*8,4[70,1%] (0.1 1997
28,[70,17] ©.1) 1997
'10.[56, 0] (0,0) 1232 A(1232)Ps3
*104[70,17] (0,0) 1649 A(1620)S31, A(1T00) D3z
110,[56, 2] (0.0) 1909 A(1910) Pyr, A(1920) Pas, A(1905) Fys, A(1950) F37
10,4 ([70,27] (0.0) 1945 [A(1940) D3], A(1930) D35
2104(70, 271 (0.0) 1945 [A(2000)F35]
110,56, 0] (1,0) 1646 A(1600) P54
*104(70,17] (1,0) 1977 A(1900)S5;
*104(70,07] 0,1) 1786 [A(1750)Ps1]

in terms of the [7(7) interacting boson model which was dis-
cussed in the previous sections. The full algebraic structure
is obtained by combining the radial part of Eq. (21) with the
internal spin-flavor-color part of Eq. (16)

§ =096 = UM®SUi4(6) 2 SU.3) . (35

The spatial part of the baryon wave function has to be com-
bined with the spin-flavor and color part, in such a way that
the total wave function is antisymmetric. Since the color part
of the wave function is antisymmetric (color singlet), the re-
maining part (spatial plus spin-flavor) has to be symmetric.
For nonstrange resonances which have three identical con-
stituent parts this means that the symmetry of the spatial wave
function under Sy is the same as that of the spin-flavor part.
Therefore, one can use the representations of either S3 or
SU¢(6) to label the states. The subsequent decomposition of
representations of SU,r(6) into those of SUz(3) @ SU4(2)
is the standard one

S « [56] > *8 @ 10,
M & [10]D°8 @84 %104 %1,
A& [200D %8 & L. (36)

Here the representations of the spin-flavor groups SU,(6),
SUz(3) and SU,(2) are denoted by their dimensions. The
total baryon wave function is expressed as

|y = | >t dim{SU[(3)}, [dim{SU,;(6)}, L"]) , (3T)

whele S and .J are the spin and total angular momentum J=
L 45, The ground state baryons of Table IT have LI = 0,
and are labeled by | *8, /5 [56,07%]) for the J” = 1/27 octet
and | #1045 [56,07]) for the J¥ = 3/2% decuplet.

We analyze the mass spectrum of nonstrange baryon res-
onances in terms of the mass formula

M? = M3 + M} gir + M (38)
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The radial excitations of the nucleon are interpreted as vibra-
tions and rotations of an oblate symmetric top [7]

M2 i = K101 + Kava +alL. (39)
The N(1440) and N(1710) resonances are associated with vi-
brational excitations with (v;,vs) = (1,0) and (0, 1), re-
spectively. The spin-flavor contribution to the mass-squared
operator is expressed in a Gursey-Radicati form [13]

M3y = a [{Casu,,e) —45] +b [{Casu,m) — 9]
3
+c [(C‘z.ﬂ.’_ﬂ(z)) = ﬂ . (40)

According to Eq. (36), the SU,;(6) term depends on the per-
mutation symmetry of the wave functions. The SUy(3) term
only depends on the flavor, and the SU,(2) term contains the
spin dependence. A simultaneous fit to 25 well-established
(3 and 4 star) nucleon and delta resonances gives a .m.s. de-
viation of 39 MeV [7]. In Table TIT we show all calculated
resonances below 2 GeV. Especially in the nucleon sector
there are many more states calculated than have been ob-
served so far. The lowest socalled ‘missing’ resonances cor-
respond to the unnatural parity states with LF = 1t 2
which are decoupled both in electromagnetic and strong de-
cays. and hence very difficult to observe. The resonances in
square brackets are not very well established experimentally
(1 and 2 star) and are tentatively assigned as candidates for
some of the missing states.

4. Summary and conclusions

In this contribution we have discussed interacting boson mod-
els of nuclear and nucleon structure. Although the energy
scales involved in the two applications differ by three orders

of magnitude (several MeV’s for nuclear excitations and sev-
eral GeV’s for excitations of the nucleon), in both cases such
algebraic models provide an elegant and, at the same time,
powerful method to describe collective excitations of com-
plex systems by introducing a set of effective degrees of free-
dom.

There are two advantages to these type of models that are
worth mentioning. First ol all, the use of algebraic techniques
makes it straightforward to obtain eigenvalues and eigenvec-
tors. This is done by means of matrix diagonalization, rather
than by solving a set of coupled differential equations. Sec-
ondly, the existence of dynamical symmetries makes it pos-
sible to derive closed analytic expressions for energies, elec-
tromagnetic transition rates, decay widths and selection rules
that can be tested easily by experiment, and as such they play
an important role in the qualitative interpretation of the data.

A geometric interpretation of algebraic interactions has
been obtained by studying its classical limit. This way it was
shown that interacting boson models unify various exactly
solvable models in a single framework. In the nuclear case,
we showed that the three dynamical symmetries correpond
to the anharmonic vibrator, the axially deformed rotor and
the v unstable rotor, respectively. For nonstrange baryon res-
onances, the U7(7) model contains the anharmonic oscillator,
the deformed oscillator and the oblate symmetric top as spe-
cial limiting cases.

In conclusion, interacting boson models provide a general
framework to study collective excitations of complex systems
in a transparent and systematic way.
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