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In this work we analyze the diffraction of two interfered beams of light by a straight edge opaque screen in the Fresnel approximation. Closed
analytical solutions of the considered problem are constructed. A detailed analysis, based on these solutions, has demonstrated interesting
and unusual effects that show a considerable interaction between interference and diffraction. The possibility of controlling diffraction by
means of interference is explored. The results of diffraction experiments are in a good agreement with those of the theoretical analysis.
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En este tabajo analizamos la difraccién de dos haces de luz interferidos producida por una pantalla opaca con un filo recto en la aproximacién
de Fresnel. Se construyen soluciones analiticas cerradas de este problema. Un andlisis detallado basado en estas soluciones revela efectos
interesantes y poco usuales que muestran una considerable interaccién entre estos dos efectos fundamentales. Se explora la posiblidad de
controlar la difraccion por medio de interferencia. Los resultados experimentales concuerdan con el andlisis tedrico en buena medida.

Descriptores: Difraccion, interferencia, efectos de borde y de frontera

PACS: 42.25.Fx; 42.25. Hz; 42.25.Gy

1. Introduction

When light propagates through a homogeneous, linear, and
isotropic medium, the two effects which influence most the
light intensity distribution in a particular region of space are
diffraction and interference. [1-4]. The problem of control-
ling these two effects, and their mutual influence is of con-
siderable theoretical and practical interest for they underlie
a lot of technological developments. Well known examples
are Fourier optics, holography, holographic interferometry.
Diffraction is traditionally considered as an undesired effect
for it causes spatial spreading and fringing of the useful radi-
ant energy in optical instrumentation. These two artifacts are
known to constrain ultimately the resolving power of optical
instruments setting a fundamental limit to their performance.

On the other hand, the study of interference of waves has
given rise to the field of interferometry whose importance in
modern science is very well established [2].

In this report, we consider the basic experiment and the-
oretical analysis of diffraction by an opaque screen with a
straight edge. Instead of the usual single wave illumination,
we assume that the field is in the form of two plane wave-
fronts mutually coherent. The interfered incident field has
cosinusoidal variations of amplitude whose period depends
on the angle between the wave vectors of the primary beams,
and the wavelength of the light employed. The diffracting
screen is so positioned that the edge is parallel to the inter-
section line between the two plane wavefronts.

Closely related to this problem is the simpler situation
posed by the diffraction by a straight edge of a single Gaus-
sian or convergent beam which has been treated in the litera-
ture [5-10].

Our analysis is based on the theory of Rayleigh and Som-
merfeld (see, for example, Refs. 3 and 1). The medium of
propagation is considered homogeneous, isotropic and lin-
car. The incident field was assumed to have s-polarized plane
infinite wavefronts with unit amplitude in one case and with
a Gaussian amplitude profile in the other. The observation
screen is located at a distance = from the edge such that the
Fresnel approximation is valid. We derive a closed form ana-
Iytical solution, which allow us to perform a detailed analysis
of the considered problem in a wide range of parameters and
find out interesting effects produced by mutual influence of
diffraction and interference.

The organization of the paper is as follows. In Sect. 2 we
pose the problems and solve them in closed analytical forms
followed by a graphical analysis of diffraction patterns. We
consider the case of plane wavefronts in two cases: In Sub-
sect. 2.2 with uniform amplitude distributions, and in Sub-
sect. 2.3 the case with Gaussian amplitude profiles. In Sect. 3
we present the results of the experiment for the case of Gaus-
sian beams. The main results of the paper are summarized in
Sect. 4.

2. Theoretical consideration of diffraction
2.1. Mathematical preliminaries

A Cartesian coordinate system (g, yo, 2) 1s attached to the
observation plane with the axes parallel to those of the
(1,11, 2) system on the diffracting screen. We use the
Rayleigh-Sommerfeld formulation of diffraction by a plane
screen (see, for example Refs. 1, 3 and 4). Thus, the observed
complex field is given by the well known Fresnel formula
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where A is the wavelength of the incident monochromatic
field, and & = 27/ is the wave number. The integral in
Eq. (1) has been written with infinite limits, taking into ac-
count that E(xy. ) is identically zero outside the aperture
in accordance with the Kirchhoff boundary conditions. This
integral representation is used here as the basis for our study.
Elsewhere in this work we consider the diffracting screen to
be posed in the &y, plane in such a way that the edge coin-
cides with the g axis.

2.2. Fresnel diffraction of interfering uniform waves

2.2.1. Diffraction of a plane wave at an arbitrary angle of
incidence

If a plane monochromatic wave is incident at an angle ¢
with respect to the = axis on the screen, its wave vector
k = (k,,0,%.) has only two nonzero components /, =
ksing and k. = kcosf. The incident field, in the semi-
space z < 0, is given by

E(r) exp (—iwt) = exp (ikya1) exp (ik-2)
x exp (ta) exp (—iwt), (2)

where exp (—iwt) is a time dependent harmonic factor, a is ®
an initial phase and r = (x,,y1, z). In accordance with the
Kirchhoff boundary conditions the amplitude distribution of
the light field immediately behind the aperture, at = = +0 ,
may be written as follows:

E(x1) = O(2) exp (ik,x1) exp (ia) (3)

where ©(x) is the step function. The amplitude function
E(r) being substituted for E(x1,y1) in Eq.(1) leads to the
following expression for the Fresnel diffraction pattern:
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where C'(£) and S(&) are the Fresnel functions, and the phase
factor A and the variable &; are given by the following expres-
sions:
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The intensity distribution of the diffracted ficld

I(zo | 2.60) = iE(.t'{-. \ ;.H)‘—is given by
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The well known result follows from Eq. (7). that is, in the
case of f#-incident wave the [ringe pattern at a distance z is
equal to the pattern of normally incident wave, but displaced
at the distance = sin# along the 2 axis.
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Solution of the diffraction problem for two interfered
plane waves

We consider the diffraction of two interfering plane waves,
one of which is normally incident and the other is incident at
an angle #. The amplitude distribution of the two interfered
waves is the following one:

2

E(r) =2cos {

Ak + Bz + kxysinf + a
X exp [rk = ) S s H} . (8)
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The amplitude and intensity distributions of the interfered
field in the plane of the screen are as follows:
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The intensity distribution Eq. (10) has the well known
cos’-modulation. Varying the initial phase a allows us to po-
sition any region of the cos?-wave at the edge of the screen.
The fringes are separated by the distance d, = \/sinf >~
A/f. We used the condition # << 1. This is because as @ in-
creases, the fringe spacing decreases making the positioning
of the edge with respect to the fringe position more critical
and making the experiment more vulnerable to equipment
imperfections. Thus, the fringe density was kept comfortably
low so that the available positioning equipment permitted us
to place the elements with reliable reproducibility both lin-
early or angularly. This necessarily means that we have to
work with small angles of interference 6.
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In principle, the solution of the considered diftraction problem is formally obtained by integrating Eq. (1) with the Kirchhoff
boundary condition for the incident field, [Eq. (9)]. but we can invoke the principle of linear superposition for diffracted fields
and use Eqs. (4), (5), and (6). Thus, the amplitude dittraction pattern of the two interfering plane waves is as follows:
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where the factor A is given by Eq. (5). the variable & =& lp= \/!.-/ (mz)ro and the variable &, is given by Eq. (6). The

intensity ficld follows from Eq. (11):

h
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where intensities of interfering plane waves are correspondingly given by the following expressions
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The structural representation of the diffracted field,
[Egs. (12)—(15)], provides an insight of the mutual interac-
tion between diffraction and interference. To see it in more
details we made graphical simulation of these formulas.

2.2.3. Diffraction pattern as a function of interference angle
at different positions of the diffracting edge

Two important parameters in the considered problem are the
fringe separation 8, = A/sin# ~ A/#, before diffraction
takes place, and the position of the geometrical shadow in the
observation plane for the #-incident wave, d, = zsinf >~ zf.
We expect, with regard to angle 6, that the diffraction pat-
tern will behave in a different manner for # such that the
pure interference fringe separation, d,, be greater, compa-
rable or smaller than the first diffraction peak of a normally
incident single plane wave. Accordingly, the following val-
ues # = 10771077, 2 x 107", 107* rad were considered
to be representative. Nevertheless, a large number of curves
were drawn Lo verify the selection of the above angle values.

The two sets of intensity distribution of diffracted fields
along the rg-axis, [Egs. (12)-(15)], which correspond to two
dilferent positions of the diffracting edge with respect to the
[ringe pattern, are graphically analyzed.

The diffraction patterns, [Egs. (12)-(15)], are shown in
Fig. | with the thick solid line for the case @ = 0 (ie,
the center of a bright fringe coincides with the edge), and
z = 4 m. The sequence of four thick solid line plots (see
Figs. la—1d) for# = 107, 1074, 2 x 107, 10~ rad contain
diffraction effects, whereas the corresponding pure interfer-
ence patterns, obtained in the absence of the screen, are given
in the thin solid line. The undiffracted interference patterns in
the observation plane are used as reference of changes caused
by diffraction. They are shifted along the zy — axis by the dis-
tance 19 = = (1 — cos#) /sinf ~ z6/2 with respect to that
in the plane of the screen in accordance with Eq. (8). The
wavelength used for the calculations and the one used in our
experiments is A = 594 nm, which corresponds to a ycllow
line of a He Ne laser.

Two principal observations can be made on the basis of
graphical analysis.

1. If angle ¢ is large enough, such that the relation
i /0, = 262/\ > 1 is valid, then three qualita-
tively different zones can be distinguished in the pat-
terns given by Eq. (12) (see, for example, Fig. 1d). In
the first zone from —1 to 2.5 mm we observe a diffrac-
tion pattern of a single normally incident wave slightly
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FIGURE 1. Diffraction pattern of two uniform interfered plane waves I. The thick curve is the diffracted field intensity and the thin one is
the field intensity in the absence of the diffracting screen. The initial phase is o = 0. meaning a peak of intensity is made to coincide with
the edge at = = 0, i.e. on the (x1,y1) plane. The plots (a) through (d) in this figure (and in Figs. 2 to 4), correspond to the values of the
interference angle (a): # = 107°, (b): # = 1074, (e): 8 = 2 x 107, (d): # = 107 rad, respectively. The parameters 4, = A/# and
d, = =6 take on correspondingly the values 0, = 5.94 x (1077, 107 0.5 %1072, 107" mand de = 4 x (107,107, 2 % 107%,

107%) m.
7 > 2 p
: : : :
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FIGURE 2. Diffraction pattern of two uniform interfered plane waves 11 The same conditions as [ except for the initial phase is o = 7.

meaning a zero intensity fringe is located at the edge.

deformed by the presence of the wing of the #-incident
wave. This zone is followed by a region (from 2.5
to 6 mm in the 2¢ axis) of a strong interaction be-
tween diffraction and interference. Finally, there is
a region where interference dominates diffraction (for
o > 6 mm), where the [ringe intensity is near Lo that
obtained if only interference were considered.

2. For angles near # = 10" rad the diffraction pattern
exhibits a unique smooth peak from —1 to 2 mm (see
the first peak in Figs. b and Ic). An interesting fea-
ture is that the fringe does not exhibits the ripple of
diffraction-like fringes shown in the next interval from
2 to 10 mm. We think that the latter is a consequence of
a comparable mutual influence of the two phenomena.
Figures 1b and ¢ show how diffraction-like fringes
modulate the peaks of the interference-like fringes.

Figure la, shows that at small values of the interference

angle #. when the width of an interference fringe is large
enough, the diffraction pattern of interfered waves almost co-
incides with that of a single plane wave of double amplitude.
An increase of @ causes, at the beginning, small deformation
of the diffraction pattern and then the evolution of the diffrac-
tion pattern becomes more complicated, leading to the effects
described above.

Figure 2 presents the calculated fields for the case o =
(i.c., the center of a zero intensity fringe coincides with the
edge of the screen). The rest of the parameters and the distri-
bution of plots are kept equal to those of Fig. 1.

Analyzing the diffraction of interfered waves with a phase
difference @ = 7, we find it to be similar to that for the case
a = (. For the angle # = 10~ rad, the diffraction pattern,
presented by the thick solid line Fig. 2d, is not identical to
that of Fig. 1d, but has the same general structure. In both sit-
uations we can distinguish three regions: in the region of ge-
ometrical shadow of the #-incident wave there is a predomi-
nant diffraction of single plane wave, then follows a transition
zone followed by the region, where the interference pattern is
subject to a marginal diffraction effect.

The differences between the two cases (a = 0 and
« = ) become apparent for small values of #. In the case
a = 7 and the rather small & < 2 x 10~ rad (see thick
solid line in Figs. 2a-2¢), a diffraction pattern closely fol-
lows the corresponding interference pattern, thin solid line in
Figs. 2a—2c. As a matter of fact, Fig. 2a includes both curves
superimposed, appearing as a single plot. This does not take
place when o = 0. A further increment of ¢ reduces the
fringe spacing, and in turn causes considerable penetration

Rev. Mex. Fis. 44 (2) (1998) 136-146



140 M.A. CERVANTES AND E.V. KURMYSHEV

of the diffracted field in the region ol geometrical shadow,
Figs. 2b-2d.If # >> 10~ rad, then the diffraction patterns for
« = 0 and ev = 7 have similar structures, as it was described
above. Thus, we can conclude that there always exists a crit-
ical interference angle € (in our case , ~ 10~* rad) such
that, in the vicinity of this value, a diffraction pattern of in-
terfered waves is subject to qualitative changes when 6 varies.

- wo

E,(r)exp (—twt) = A-

Here A is the amplitude considered constant, and w/(z') is the
-'-dependent semi-width of the beam defined as

_ _ Az 2 _ P
w?(z') = mé 1+ ( e ) =wl |1+ (—) o G173
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where wy 1s the minimum spot size, which is the beam spot
size at the plane 2’ = 0. The phase n (z') = arctan (z'/zg) .
The center of the beam is located at the point (zq, %) in the
(. y) plane. We take here the semi-width of the beam to be
the same in the = and y direction.

Besides the Gaussian amplitude profile such beams of
light are characterized by wavefronts with finite radius of
curvature, except at the waist where it becomes infinite. The
radius of curvature R (z') of the very nearly spherical wave-
front at =’ is

2 ‘
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We estimate here the radius of curvature R (z') for a quite
typical laboratory situation when the parameters are sup-
posed to have the following values: A = 594 nm, wg = 1072
m, and the diffracting screen is distant from the waist plane
by z' = 1 m. Then we readily find that k& = 27/\ ~
1.057 x 10'm~%, z5 = 528.6 m. Accordingly, w?(1) =
wi(l + (1/20)%] = wi(1 + 3.5 x 107%) ~ w and R(1) =
[1+ (20)°] ~ 2.79 x 10° m. Moreover, the phase 5 (1) =
arctan (1/z9) =~ 1.89 x 1072 rad.

Keeping in mind that we are going to use the above
expression of the laser beam in the diffraction Rayleigh-
Sommerfeld integral we also find the value of the term
ikr? /2R (1) ~ i18.9r> < i10~2. Here we took the radius
of the area of a beam spot to be of the order r < 2w =
2x 107* m.

In addition, we note that the minimum of the radius
of curvature of the fundamental Gaussian beam is equal to
Runin = R (z0) = 22zp and is located at the distance zy from

exp {ﬁ [ = 20)? + (v - 7] {{ -

2.3. Diffraction of interfering Gaussian beams

A more realistic illumination than that represented by ideal
infinite plane wavefronts is that provided by beams of light
produced by lasers. Particularly convenient are those which
are characterized by a field with an intensity profile of
Gaussian type. This can be better described as the TEMy,
laser mode. Following the accepted theory of optical res-
onators, [12, 13, 15-17], we presume that the normally inci-
dent beam possess a field amplitude distribution of Gaussian
type.

1 " vl s {i 2" 4 (o T e [—dait). {1k
SR () exp 7 [kz" 4+ 1 (2")]} exp (—iwt) . (16)

the beam waist. This distance is very large for typical labora-
tory experiment. Thus, the estimates show that for the diffrac-
tion interference experiments under a typical laboratory situ-
ation we can salely neglect both the term which contains the
radius of curvature and the phase 1 (z'). Thus, for the sake of
simplicity, we will consider that the beams possess negligible
curvature and the phase-fronts are treated as planar [18,17].

This conditions meet the experiment in the case in which
the waists of the incident beams are made to coincide with the
plane of the diffracting screen or are subject to collimation,
as was the case in our experiments. Under these conditions,
the interference pattern of the incident fields is largely deter-
mined by the tilt angle of the phase-fronts and not to their
curvature, as is the case of interferometers that rely on wave-
front shearing to produce a fringe pattern.

Under the conditions described above, the #-incident
Gaussian beam, [Eq. (16)], is reduced to the Gaussian beam
with the plane wavefront and, in the plane of the diffracting
screen, is given by the following formula:

(2 cosfl —xq cosf)? + >
o

E(I‘) I::ﬂ =CXp | —

12
x exp (thkxsinf + 1) | (19)

where we omitted the time dependent term exp (—iwt),
added an initial phase o term and used the new notation
2w? = w} =const. The beam has the amplitude 4 = 1,

and is centered at yy; = 0.
2.3.1. Diffraction of a single Gaussian beam

The diffraction by a semi-infinite plane with a straight edge of
a single normally incident Gaussian beam, described by Eq.
(16), was reported in Refs. 5 and 10. If the beam, [Eq. (19)]),
is incident at a small angle # on a semi-infinite screen, the
diffracted beam at the point (xg, yo, z) is accordingly given
by the closed form analytical solution
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where the integrals [,,, and I, are given by (see Ref. 11)
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Nk kw 12
3 1 | = arct, = [ = ; 21
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I (20 | B@y00,8) = /T [ ("f\/—)} exp l—ﬁ (1 + W) (70 — 21 — 3siz19)2:|
k Bt T "
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The parameter 3 and the variable + are defined by the following expressions
z (zeos20 N\ ikzg . xy cos?
b= o (W——?) 4 5= ~'f].751119—T. (23)
Using Eqs. (20)—(23), the intensity distribution of the diffracted Gaussian beam is readily obtained:
= = 2
L{zo, 4o | 2,21, w,0) = }E(:zfg,yg \ z,:vl,'w,t’))‘
1 JF R =L 3 el iy, R
= (14— 14+ ——
4 ( - kz'uﬁ) ( et )
Xp 4 — 1= (/] ~ " (vv/B)]
. exp{ w1+ 22/ (k2wt)) } [ : ﬁﬂ [1 ( f\/:)
0s” 0 22cost O\ i sk
X exp [ Coq,., (1 + ’,(.,?54 ) (g — 21 — zsin H)ﬂ ; (24)
w= W

where &~ (v \/_) is the complex conjugate of the error function ® ( f) This distribution is separable in variables @y and
to. The particular case of a normally incident Gaussian beam is obtained from Eqs. (23)-(24) for / = 0:

_ 1 2\ Yo
I(xo,y0 | 2,21, w,0) = 1 (l -+ T ) exp [*wg(l _}_:2/;;2.”,4)}

x [1 ~ 3 («/\/B)] [1 9 (w\f)] ()xp!i (1 " m>_l (zo —:1:1)'3] . (25)

From Egs. (24) and (25) it can be seen that, in addition

from the diffraction screen, at the point xy = 2y + zsin#

to the well known spreading of a Gaussian beam with the
distance =z, the center of the Gaussian envelope (crossing the
plane of diffracting screen at the point & = ;) will propagate
along the geometrical ray x = 1 + z sin #. This ray crosses
the observation plane zgyg, which is located at a distance =z

Rev. Mex. Fis. 44 (2) (1

but not at the point #;, = #; + 2z tan# as it were in the case
if the beam was freely propagating without diffraction. Since
|sinfl| < |[tan#]|, the value zy < xy for positive angles 6,
and rp > i, for negative angles. Thus, the diffracting screen
deviates the Gaussian beam in such a way that the Gaussian
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envelope moves along a geometrical ray which is closer to and the other to be normally incident beam, Eq. (19) at# = 0

the = axis than that of the free beam propagation. and o = (). The beams have equal semi-width w, the ampli-
The shape and position of the diffraction fringes are also  tudes equal to A = 1. The centers of beams are considered to

influenced by the parameter .y in combination with the width  coincide with each other in the plane of the diffracting screen.

w through the variable . When w tends to oc the combina- The interference pattern produced by the beams in the plane

tion @y /w tends to 0, that is, the influence of the parame- of the diffraction screen is as follows:

ter r; 1s diminished. To be more precise, let us give an es- . )

llm.lllL‘ of the parameters for the _expenmem wlhlc.h we de- E (r) [.—o = 2exp (_u_) s (1 — _,.-1) (26)

scribe below when one has A = 594 nm, the distance from 2w? 2uw?

the diffracting screen to the observation plane is z = 4 m,

w=05%x10"2m,x; <0.5%1072m, 8 < 1073 rad. The X exp [
wave number is k& =~ 1.057 - 10" m~!. Then, the combination

22/ (kw?)” ~ 2 x 107", which defines the spreading of a
Gaussian beam, is very small. The ratio k/z ~ 0.266 x 107
m 7, in the variable 7, [Eq. (23)], is very large. This makes
the influence of the combination x; /w? relatively small in
the variable ~. Thus, the parameters 2y and w manifest them-
selves in a diffraction pattern of a single Gaussian beam
mainly through the Gaussian envelope.

2 9

& 4

i (hasind + (r}J [(L‘.z‘. sin 6 + n-)}
cos .

In Eq. (26) we took into account a small value of the interfer-
ence angle ¢, the last expression is valid within (2(#?). The
intensity distribution of interfering Gaussian beams exhibits
commonly known cos”-fringes modified by the Gaussian en-
velope as follows:

vy Cr

2 Y- (x—m1)
- S : . _ _ L{wy) = |Bix))_s =dexp (——_,)Pxp ——
2.3.2. Diffraction pattern of two interfering Gaussian w- w*
beams: explicit analytical solution and graphical

(”1”[\‘_\';"\' X f'ﬂﬁg [( !\I Sil] 8 + (1) /2} 5 (27)

With the above given results we can study the diffraction pat- In the Fresnel approximation the amplitude diffraction pat-
tern of a light field produced by the interference of two Gaus- tern of the two interfered Gaussian beams by a semi-infinite
sian beams. We take one beam to be f-incident, [ Eq. (19) ], screen positioned in the ry-plane with the straight edge along

| the y-axis is as follows:

U

xp(ikz) [ y? ok .,
Elfo. 0o | 2,81.W, 0 = EM / exp (_;IT) exp [.'.—(yﬂ - _:,')“} dy

EAR ess ) 2z
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)% J, eXp | =5 | exp 5 cos 5 exp iz (zo — )| da
exp(ikz) , .

~ ———T(yo | z,w)[exp (ia) L (xg | z, 01,0, 0) + I (wg | 2,00, w,0)], (28)

Az

where the integral I (yo | z,w) is given by Eq. (21), and the integral / (x| =, 2, w0, #)is given by Egs. (22)-(23). Then, the
intensity distribution of the diffraction pattern is calculated as follows:

I(xo,yo | z,21,w,0,a) = |E(zo,y0 | :.;1.‘1.?1'.9.(1”2

= i(.l"().yg | 2,21, w.8) + I(xo.50 | =.01,w,0) + CT (20, Yo | 22y w8, 8). (29)

The intensity distribution of the diffraction pattern of a single Gaussian beam I (.. yo | z. 01, w, ) is given by Eq. (24), and
the cross term CT (2. yo | =, x1,w, 8, a) is given by the following expression:

P —-1/2 B
2y 050, 8) :1 1+ - eXpis — 2
o 2 k2w ’ w? [1+ 22/ (k2w?))

cos? 6 ( 22 cos? @

CT (x0.y0

X exp | ——— :
7 2w? k2w

|
) (rg — a7 — :sinH)g
1

o =]
—— (l + —) (o — 2 Y| (Re [P]cose —Im [P]sing) . (30)
2w? k

P
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FIGURE 3. Diffraction pattern of two interfered Gaussian beams 1. The initial phase o = 0. The center of the Gaussian envelope at 1 = 0.
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FIGURE 4. Diffraction pattern of two interfered Gaussian beams 1. Same conditions as Fig. 3, except the initial phase v = 7.

The function ¥ is given by the expression

zcos®d

\I' (.’L'(),’y{) ‘ z,x-i,w,ﬁ) = (—AHT— o=

and the angle ¢ is defined by the following expression:

et

o) + kxgsinf . kzsin® @ + i 1+ _A:QIM h ( i sin #)” i 1+
h = v S s i n — g — %1 — 28 == ;
p=a s 2 - 2z z2cost O ‘ I 21 2

The variables vg. (g are defined by Eqs. (23) respectively,
and notations vy, 3o correspond to the angle # = 0.

In order to see the variation of the diffraction pattern of
two interfered Gaussian beams we have made a computer
simulation of the solution presented by Eq. (29) for the cross-
section yp = 11 = 0. We kept constant the following param-
eters: the semi-width of the beams w = 0.5 x 1072 m, the
distance from the diffracting screen to the observation plane
2 = 4 m, the wavelength of light A = 594 nm. The center of
the interfered Gaussian beam is located at the point 27 = 0
(for Figs. 3 and 4). Note that the initial phase value o = 0
corresponds to the case when the center of a bright fringe co-
incides with the straight edge of the diffracting screen, and
the value o = 7 corresponds to the case when the center of a
dark fringe (zero intensity) of interfered wave coincides with
the edge.

Curves were obtained for a variety of values of . How-
ever, the same set of values of previous Section are used
(@ =10%,10"%, 2 x 10~*, 10~* rad) for the sake of com-
parison, and the curves are shown in Fig. 3 fora = 0.

() e v [ 9 (V)]

(31)

k2wt

-1
) (zo — 1), (32)

The four plots for @ = m are presented in Fig. 4.

Examination of the diffraction patterns of two interfered
Gaussian beams (Figs. 3—4) and that of the constant ampli-
tude plane waves leads to the conclusion that diffraction pat-
terns of two interfered Gaussian beams vary similarly to that
for the constant amplitude plane waves. They differ solely
by the Gaussian envelope modulation. This conclusion, al-
though expected, [5] is not obvious, because the correspond-
ing analytical solutions have quite different form and, in ad-
dition, in the Gaussian case we have two more parameters (o
consider, which are the center of the Gaussian envelope
and its semi-width w.

In order to see the dependence of the diffraction pattern
on these parameters, we obtained the intensity distribution of
the diffracted light as a function of the position of the screen
edge with respect to a stationary interference pattern for the
given semi-width w = 0.5 x 1072 m. For this purpose the
pair of parameters (2, @) were changed simultaneously, and
the following values were given for 2y = 0,6 x 107,10,
14%107%, 1.8 x 1073, 2x 1073, 24 x 1073, 3 x 1073,
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FIGURE 5. Diffraction pattern as a function of the edge position with respeet to the interfered Gaussian beam. The pairs of varied parameters

are (zy,a) = (107°,7/2), (2 x 1072,0), (3 x 10~3,
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FIGURE 6. Diffraction pattern as a function of the envelope position. The values of the varied parameter are 21 = 0.4 x 107%, 6 = 10~ 7,

8 x 107" m. The interference angle # = 1.5 x 10™* rad.

3.6x 10 %, 4x 10~* m and correspondingly for o = 7, 0.77,
0.57, 0.37, 0.1, 0, =0.27, —0.57, —0.87, —= rad. Four
typical diffraction patterns are presented in thick curves in
Figs. 5a-5d. The thin curves shown in Figs. 5a-5d represent
the corresponding cross-sections, defined by y = y; = 0,
of the incident interfered wave as it is just before the diffrac-
tion screen at = = —0. An analysis of the curves (see, also
Fig. 4) leads to the conclusion that the changes of the diffrac-
tion pattern are mainly determined by a position of the in-
terference pattern with respect to the diffraction edge. But,
we note that for the pair of parameters x; = 3 x 107 m
and @ = —7 /2, an appreciable increase of the intensity of
the first bright fringe (nearest to the region of geometrical
shadow) occurs ( thick curve in Fig. 5¢).

In the previous analysis the response of the diffraction
pattern for the position of the screen edge with respect to
a stationary interference pattern was obtained. We also an-
alyzed the diffracted field when only the envelope of the in-
cident beam was shifted, while the fringe spacing remained
unchanged for the particular case in which a maximum of
the bright fringe was positioned at the edge of the diffrac-
tion screen. This means that we maintained constant w =
05x 107" m, # = 1.5 x 107%, @ = 0 and varied only
£1=0,2%1073,4%x1073,8 x 1072, 810 % m.

The results are presented in thick curves in Figs. 6a—6d.
The thin curves in Figs. 6a—6d give the undiffracted incident
interfered beam fory = y; = 0.

Analyzing of these results we can conclude that the shape
of the envelope influences the light pattern mainly as a scal-
ing factor.

4 [; i 1t -z B Z 4
To.orp (mm) To,r1(mm)

(c) (d)

3. Experimental

To confirm these results, we set up a two beam interferom-
eter based on the principle of division of amplitude, like a
Michelson type, which produces two plane wavefronts that,
after interference, are diffracted by a knife edge (see Fig.7).
The mirrors are so adjusted that few fringes are displayed
across the transverse size of the beam. If the interferometer

FIGURE 7. Schematic of two interfering plane waves diffracted by
a straight edge screen.
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(d)

(e)

FIGURE 8. Experimentally obtained interference-diffraction patterns. (a) Fresnel diffraction of a single beam with Gaussian profile. In the

sel-up shown in Fig. 7. this is obtained with one mirror defeated. (b) Young fringes obtained with Gaussian profile beams propagating [reely

(no screen). The case corresponds to the thin trace shown in Figs. 5a-5d. (c¢) Edge at the maximum intensity. The case corresponds to Fig. 5b

(d) Edge at an intermediate value near one half-maximum. The case corresponds to Fig. 5c. (e) Edge at the minimum intensity. The case

corresponds to Figs, 4b and 5d.

is illuminated by a spatially and temporally coherent source
(at least to the degree obtainable with currently available gas
lasers), non-localized fringes can be obtained which fill a cer-
tain volume of space. The interferometer was set up so as to
have the contrast of the fringes approximately equal o one.
Thus, the light intensity vanishes at the minima. An opaque
straight edge diffracting screen is moved across the fringe
pattern perpendicularly to the fringes and the field is observed
at a point of coordinates (xg, Yo, z). This produces the same
effect as if the edge is maintained stationary and the initial
phase «v is varied from O to 27.

In our experiment we collimated and expanded to 2 cin
diameter the output beam of an unpolarized He-Ne laser
operating at the fundamental Gaussian mode (TEMgpq) and

A =594 nm. The interference angle is of the order of

2% 10~ "rad. The observation plane was at a distance of 4 me-
ters from the diffracting edge.

We should say a few words about the procedure for ad-
justing the elements. The experiment was performed on top
of a holographic table providing vibration insulation to a cer-
tain degree. The optical equipment facilitated the needed po-
sitioning to micrometer accuracy in the linear dimensions. Il
also allowed us to fix the angular positions of the various ele-
ments employed in a reliable way (o less than a degree accu-
racy. In determining the position for a minimum intensity we
employed a computer aided CCD camera detection system
which allowed us to monitor the diffraction patterns in real

time. Nevertheless, for this presentation we employed photo-
graphic film to record the patterns because it offered graini-
ness to a smaller extent. In practice the manual placement of
the edge was performed while observing the diffracted ligh
pattern. A symmetric pattern is associated with the edge be
ing parallel to the fringes and vice-versa. Also the observa-
tion of the light scattered from the surface of the knife near
the edge was used as an indicator of the proximity of the edge
to the minimum intensity in the dark fringe.

Figure 8 shows the resulting intensity patterns for differ-
ent positions of the edge. Figure 8a shows a normal Fresnel
diffraction pattern of a normally incident Gaussian beam by
a straight edge, for reference. Figure 8b corresponds to an
undiffracted two beam interference pattern.

In Figs.8c—8e the pattern of Fig. 8b is diffracted by a
straight edge whose position is varied according to:

Figure 8c edge at the peak of intensity (bright fringe).
Figure 8d edge at an intermediate intensity near one half max
imum. Figure 8e edge at nearly zero intensity (dark fringe)

Examination of Figs. 8¢ and 8d shows that a patiern is
formed which contains interference and diffraction fringes.
This is because both effects take place simultaneously.

In Fig. 8e the interference fringes remain and the diffrac-
tion fringes disappear. This pattern is equal to a truncated ver-
sion of the undiffracted interference pattern shown in Fig. 8b.
This is only for the case 8d and this conforms with theoretical
results, see Fig. 5d.
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4. Summary

In accordance with the Rayleigh-Sommerfeld formulation, a
diffraction pattern is determined by the amplitude distribu-
tion of a field in the plane of diffracting screen. Thus, a rather
different behavior of diffraction pattern is found for the cases
when a maximum or a minimum of an interfered field is in-
cident on the edge of the diffracting screen.

The diffraction by a straight edge opaque screen has been
analyzed in the Fresnel region for an incident field com-
posed by two coherent plane wavefronts for both constant
and Gaussian amplitude profiles. From the above analysis, it
is apparent that the diffraction pattern of two interfered waves
is mainly determined by the interference angle # and the po-
sition of the interference pattern with respect to the edge of
the diffraction screen. Furthermore, there is an angle # such
that, in the case when a maximum of an interfered wave coin-
cides with the edge of a diffraction screen, the corresponding
diffraction pattern has a well separated prominent (compara-
ble with that of an interference pattern) peak nearest to the
shadow region (thick curves in Figs. 1b, 3b, 5c, and 8c).

The difference between diffraction patterns in the two
cases, when a bright fringe (o« = 0) and a zero amplitude
[ringe (a = =) of an interfered incident wave are located on
the edge of the diffraction screen, has significantly appeared
for small values of interference angle 6. In the case & = 7
and rather small # < 2 x 107" rad (see, for example, thick
curves in Figs. 2a-2¢, and Fig. 8d), a diffraction pattern is al-
most a replica of the corresponding interference pattern (thin

curves in Figs. 2a-2c, and Fig. 8b), but the former has rela-
tively small diffraction distortions. Increasing of # decreases
the separation between interference peaks, and in turn causes
considerable penetration of the diffracted field in the region
of geometrical shadow, plots 2b-2d.

The situation with the diffraction of interfered Gaussian
beams is similar to that given above. The additional param-
eters, the width w and the position x, of the envelope of an
interfered incident beam, mainly manifest through the enve-
lope of a diffraction pattern. Although, a quite interesting re-
distribution of energy in the interference fringes caused by
diffraction can be noticed in thick curve 5Sc.

One of the appealing situations is that posed by the fact
that diffraction effects may be diminished or precluded, as
shown in Fig. 8d and Figs. 2a—2c, and 4a—4c, under the con-
dition that zero intensity fringe coincides with the diffracting
edge.

In general terms, simultaneous consideration of interfer-
ence and diffraction effects, even in a quite simple optical
system, produces a diffraction-interference intensity pattern
which features added degrees of freedom, among them the
adjustable beam balance. The latter can be practically use-
ful for purposes of controlling and correcting of diffraction
effects in more complex situations than the one considered
here (for example, by means of interference with some probe
beams). Coupling of the two fundamental effects might find
application in fringe enhancement or suppression - fringe ma-
nipulation, in general.
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