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We study analytically the local slip planes in non cohesive granular media within a box subjected to uniform rectilinear acceleration. By
using the phenomenological Coulomb’s method of wedges we found that the angles of the slip planes and the resulting average forces at the
wall are strongly changed as a function of the acceleration’s magnitude of the system, even if it is so small such that the shape of the free

surface is maintained unchanged.
Keywords: Granular media, slip planes
Estudiamos analiticamente los planos locales de deslizamiento en medios granulados no cohesivos dentro de una caja sujeta a aceleracion

rectilinea uniforme. Usando ¢l método fenomenoldgico de cunas de Coulomb encontramos que los dngulos de los planos de deslizamiento y
las fuerzas promedio resultantes en la pared varian en funcién de la magnitud de la aceleracion del sistema. aun si ésta es tan pequeiia que la

forma de la superficie libre no cambia.

Descriptores: Medios granulados, planos de deslizamiento

PACS: 46.10.+z; 46.30.Nz

1. Introduction

Granular media commonly obey a very complex and unigue
behavior which only recently has been explored over a wide
range of geometrical and dynamical situations [1]. One ex-
ample concerned with this behavior is related to the stress
propagation within the material in the so called static (or
quasistatic) regime [2-6]. In fact, on a very small spatial
scale, complex stress chains have been observed in confined
and unconfined samples of granular material, which allow
the transmission of the weight of the grains along selected
paths. These chains produce fractal spatial patterns obeying
very strong force fluctuations [7]. On the other hand, (at
larger scales) in contrast to a liquid, the pressure within a
tall enough box filled with dry, non cohesive granular mate-
rial, does not increase linearly with depth, but saturates at a
certain value [8]. In both extreme cases, the theoretical de-
scriptions indeed show that the role of friction and material’s
inhomogeneity seems Lo be very important.

When dry granular material is confined in shallow con-
tainers, the evaluation of the average force at a wall is a
very important problem, which can be solved using the phe-
nomenological Coulomb’s method of wedges [2], Le., by an-
alyzing only a part of the material (wedge) formed by the

slip planes, the free surface and the retaining wall (see Fig. 1).
The concept of rigid-plastic failure assumes material to be di-
vided itsell into two rigid blocks separated by a narrow plas-
tic zone. The size of the plastic zone is more or less ten grain
diameters which is often very narrow compared with the typ-
ical dimensions of the system. It is, therefore, usually enough
to assume that the plastic zone is a plane of negligible width
and, being referred to as the yield, or slip, or failure plane.

In order to evaluate the local average force at the retain-
ing wall of a box and the possible failure planes within the
material, it was noted by Rankine [9] that two limiting cases
can be distinguished: In the first case the wall is pushed under
the effect of the granular material self weight. The granular
medium is then in the so called active state (Fig. 1b). In the
second case the wall can be pushed from outside, compress-
ing the medium. In this latter case, grains exerl a passive re-
sistance (Fig. l¢). Although this method is not exact [2], it
gives a good qualitative approach to evaluate the forces on
the walls. It also permits to obtain the geometry of the possi-
ble failures (slip planes) and to understand the dependence of
the elastic limit on the material and geometrical parameters.
The knowledge of the average forces at the walls of contain-
ers during the transportation of grains, may be very useful,
for example, for structural designers.
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FIGURE 1. Local failures of a retaining wall at the right edge of a box subjected to uniform rectilinear acceleration, a”. In (a) we show case
before the wall has broken. In (b) we show the active state after the wall has broken and in (¢) we show the passive state after the wall has
broken. The forces X, 7" and p*a” and the angles ¢ and « are defined in the text.

The objective of this paper is to develop an extended ver-
sion of the Coulomb’s method of wedges which takes into
account the effect of the acceleration on the slip planes (dy-
namical aspects). Here, we will assume dry granular systems
undergoing small accelerations (relative to the gravity accel-
eration), in a steady-state regime, such that the free surface
can not be deformed due to the motion [10]. This extension is
indeed necessary in order to evaluate how the average stresses
arce influenced by the acceleration process. This work is di-
vided into three parts. In Subsect. 2.1 we show an analysis
of the balance of forces, for the active state and for small ac-
celeration compared with gravity. In Subsect. 2.2 we discuss
the passive state, also under small accelerations, presenting
an analysis of the differences of the average forces and the
aneles of slip between the active and passive states in slightly
accelerated systems. Finally in Sect. 3, we discuss the limi-
tations of the model, presenting also the main conclusions of
this work.

2. Local slip planes in a box

In many cases, such as in soil mechanics [3, 4], the natural
state for the granular medium is purely static, where the com-
plete system can be assumed quiet or under constant velocity.
However, in order to understand the dynamic problem indi-
cated in Fig. I, we show the two possible idealized situations
where a fully rough vertical wall (so that ¢,, = @, where
O, 15 the angle of wall friction and ¢ is the angle of inter-
nal [riction) retains granular material with a horizontal free
surface subjected to a rectilinear acceleration, a*. The right-
hand side wall supports a local load produced by the mate-
rial under rigid body motion which can be calculated, as we
show later, using the Coulomb’s method of wedges. As in the
purely static case, the material in the accelerated case will be
also assumed to slip in wedges with certain angle of slip or
failure. In the following sections we show how this method
can be modified in order to take into account the accelera-
tion of the system for the active and passive states. As a first
approximation, we do not take into account the dilatancy phe-

nomenon, which induces a change in the volume and there-
fore a change in the bulk density of the material [3, 4].

2.1. Active state with small acceleration

We follow closely the local phenomenological analysis ol
Nedderman for the static problem of the retaining wall [2], in
order to study the active state due to small acceleration with
no free surface deformation. When a box, filled up to a height
H* with dry cohesionless granular material, is moved along
the horizontal dircction with an uniform acceleration, o™, the
initially flat free surface is not deformed if the acceleration is
less than ¢ i, where j = tan ¢ is the friction coefficient and
g* is the gravity acceleration [10]. In the active state (Fig.
Ib) there are four forces X*, P*, W* and p*a™ acting on the
wedge of height 1" and length L*, bulk density p*. and un-
known angle of tilt . The force X is the reaction force of
the major block due to the force applied by the wedge, P* is
the reaction force of the wall due to the wedge which forms
an angle ¢ respect to the horizontal, W* is the weight of the
wedge which is parallel to the gravity acceleration, and [i-
nally p*a* is the inertial force (per unit volume). Note that
the motion ol the container is from left to right and therefore
the inertial force is acting in the opposite direction. Here, ex-
plicitly it was supposed steady-state motion and also the ex-
istence of (average) slip planes. The force balance equations,
assuming a width b* of the wedge, are given by

prath e

P* cos o + cot v = X ™ sin(a — o), (1

g R0t
2

P sing + X" cos(a — ¢) = cot ar. (2)
for the horizontal and vertical directions, respectively.

Introducing the nondimensional variables @ — a* /g,
P P /p*g"b*®, X = X*/p*g*b*3, and h — h* /b*, the
above equations takes the nondimensional form

9

Pceoso = 'Ij—)-f(rl) (3)
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where the nondimensional function f () has the form

cota a cot o cot(a — @)

tan ¢ + cot(a — @) a

Flaj= 4

tan ¢ + cot{a — @)

This function determines the value of the angle v where the

In order 1o calculate the maximum value of the dimen-
sionless function. f(a), we introduce in Eq. (4) the variables
¢t = tana and ¢ = tan ¢. Rearranging terms Eq. (4) trans-
forms to

(1 —ap) = (a4 p)

force P cos ¢ has a maximum value and where shear or slip t(1— p?) + 282p (5)
must occur. The physical significance of the maximum of
f(c) will be examined in this Subsection. Therefore, the maximum value of f(1) = fmax(l™) 0¢-
| curs fora value of t = % given by
o8 +p  Japs+ pt(l+a®)+ 203 + p2(a® 4+ 1) + ap )
A = 5 8]
1 —ap V2l — ap)
and
f (t*)— (l+rt;1)2 7
e T (apd +3u2 + 3ap+ 1) + W2/ apd + (1 +a?) pt + 20p° + (a® + D2 +ap
The explicit dependence of fax on ¢, the angle of internal [riction, is given then by
, J (cos o + asin o)’
.fumx(@) = : " \ 5 (&)
(a sin® dsec ¢ + 2sin” ¢ 4+ 3asingcos ¢ + 1)k 224 Jasin ¢ (1 4+ asin¢) + sin” @
The limiting case of a = 0 can be obtained easily from =
Eqs. (7) and (8), producing the well known result [2]
1 flan)
fmax = 23 10.
(\/ 1+ p?+ -\/5;1,)
2 J
cos” o
= —. (9) '
(1+ V/2sin ¢) ‘
Finally, the normal stress, o, and the corresponding shear 0.1
stress, 7, are given by [
('I'Pma,x . 0.01 ‘
= = cos ¢ = I fmax, - (17 S SR 7 9214
a(rad.
T = agtan ¢ = I fimax- (10) ( )

These results can be applied when the aspect ra-
tio, deep/length, of the container is so small such that
deep/length< tan v, because in deep containers an exponen-
tial saturation for the pressure occurs which causes the nor-
mal and shear stresses not Lo be dependent on the dimen-
sionless height, h [8,11]. The condition h*/d* > 1 must
be maintained, making the finite size effects to be negligible.
Here d* is the typical grain’s diameter.

In order to show graphically the influence of the acceler-
ation on the averaged stresses and on the local angles of slip
planes, we have plotted f(«) in Fig. 2, for several values of
the dimensionless acceleration. Here, the active states corre-
spond to the convex curves (CONCave curves corresponding o
the passive state will be treated in next Subsection) and the

FIGURE 2. Semilog plot of the function f as a function of the
angle o for six values of the dimensionless acceleration, a, where
a < jp = 0.53, these six values are a = (), 0.1, 0.2, 0.3, 0.4
and 0.5. Both active (convex curves) and passive (concave curves)
states were plotted.  Upper curve, of the concave curves, corre-
sponds to the passive state with a = 0. Also, upper curve, of the
convex curves, corresponds to the active state in the limit o = 0.

purely static case (a = 0) is given by the upper curve of
this family of curves. We note that the physically significa-
tive values correspond to the pair (o, fmax) for each curve.
Therefore, in the active state, we have that a smaller accel-
eration corresponds 1o larger stresses, i.e., the normal stress
necessary to produce an active failure when the system 1s ac-
celerated is smaller than that in the case purely static. In
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FIGURE 3. (a) Semilog plot of the function, Sinax(min). as a function of the dimensionless acceleration. Curves (— —) corresponds to the
active slate. curves (— — —) corresponds to the passive state. Continuous line is the ratio Fmin/ fmax. In (b) we show. with similar curves as

in (a). the behavior of the angle of fracture. a”, also as a function of the dimensionless acceleration. The best fit was plotted for cach case.

Fig. 3a this behavior is clearly shown. Finally, in Fig. 3b we
show the behavior of a* also as function of a. This plot shows
that in the active state, the slip planes have larger inclina-
tion respect to the horizontal than that for the static case. All
cases here plotted were obtained assuming a material like Ot-
tawa sand which is a material commonly used in experimen-
tal tests. For this material ¢ = 0.33, ¢ = 28° and conse-

quently, in all graphics a < 0.53.
The significance of the maximum can be visualized by

plotting the function f(«a) for a = constant (which corre-
sponds to only one curve). In this case if the lateral force
at the wall, f;. is slowly reduced such that f; > fi,.y. then
the first rupture plane that can become active is the one at
J = fuax. inclined to the horizontal at the angle o*. The
lateral force cannot fall below this value. If the lateral force
could be reduced to a value f; < finay, there would be two
possible rupture planes, but any attempt to reduce the total
force will simply be matched by activity of the weakest slip
wedgeata = a”.

2.2. Passive state with small acceleration

We have already mentioned that the passive case (Fig. 1¢)
corresponds to the motion of the material near the wall, such
that the wall can be pushed from outside compressing the
medium. In this case. in accordance with Fig. Ic, we only
change the sign of ¢ by —¢ giving

cot o acotacot(a + o)

cot(a + o) — tan @

fla)= (1)

cot(ar + @) — tan o
Similarly, as in the previous Section, if we introduce

! = tana and pr = tan ¢. Eq. (11) transforms to

_ Hl+ap) — (a0 —p)
(1= p?) =22

S (12)

This function reaches a minimum value at t = ¢* given by

s B=pH V—ap® + (1 + a?) = 201 + 12 (a® + 1) — ap i)
T 1% aj \/5;1(1 + aj) ' -
which gives implicitly the value of the angle of slip, o, as a function of (a, j).
Therefore, f,.,;, (£*) is then given by
. 1 - ap)?
fmin“*j: ; . p ( !) = = = = (14)
(1= 3ap +3u* — ap®) + 2v2/(1 + a?) p + (0% + 1) — ap — 2au® — ap’
or
08 & — asind)®

Foi () = (cos ¢ — asino) (15)

(1+ 2sin” ¢ — 3asin ¢ cos ¢ — a sin® pseco) + 2v/2y/asin ¢ (asing — 1) + sin? O
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FIGURE 4. Local slip planes in the active state for Ottawa sand with (a) @ = 0 and (b) a = 0.3. In (¢) we show the slip planes in the passive
state for a = 0 and in (d) for a = 0.3. Due h” is arbitrary, in all cases we have a family of slip planes.

For @ = 0 we easily obtain the well known values of the
average slope ¢* and the slip angle a® as

" sec @
a = arctan \/3 —taneg | .

t* = —— — i,

ﬂ

(16)
and in this limit
1 cos? ¢

fimin = 5 = - (17

(\/1+,t1'3-\/§;r) (1 - v2sing)

The normal and shear stresses are, respectively.

dPin
0= cose = hfmin, T=0ctang = bipfasin:  (18)
an

In Fig. 2 we also have plotted f as a function ol a. Con-
cave curves correspond to cases with same range of the di-
mensionless acceleration, however the physically important
values correspond to the pair (", fimin). Here, similar ar-
guments than that given above for the physical significance
of the maximum are valid in order to understand the signifi-
cance of the minimum. In Fig. 3a and 3b we plotted Finin and
a* as a function of a, respectively. In the passive state the
stress decreases (as a nonlinear function of a) if the accelera-
tion increases. Thus, the maximum stress in the passive state
occurs when the system is in repose. The continuous line in
Fig. 3a shows that for the passive state, always the function
finin 0verpass the value of fmax Obtained for the active state.
In Fig. 3b we show that o*, conversely to the active state,
decreases when increases the acceleration. So, the slip planes
for systems under acceleration have a smaller slope than that
for the static system.

For comparison, in Figs. 4a and 4b we show the local slip
planes in the active state fora = 0 and a = 0.3, respectively.

In Figs. 4c and 4d we show the local slip planes in the pas-
sive state for similar values, respectively. The influence of
the acceleration on the slip planes is easily noted.

3. Remarks and conclusions

The rigid motion of non cohesive granular matter is a very
common situation in many technological areas. We have
shown that the acceleration induces a non linear change in
the slip angle and in the average stresses at the walls, even if
the shape of the free surface was maintained unchanged. This
state may be reached if the nondimensional acceleration has
values in the region 0 < a < . We also want to note that
the region between the values Friia and frax (Fig. 2), corre-
sponding to the elastic zone of the material (because between
hoth limiting values the material does not yield), clearly is
strongly dependent on the acceleration of the system. Other-
wise, il the nondimensional acceleration overpass the value
of the friction coefficient, jr, the shape of the free surface
changes [10], the study of the slip planes in this last case is
more complex than that corresponding to small acceleration
and it will be treated in a future work.

Finally, cohesive granular materials have, obviously, frac-
tures: the theoretical treatment from a phenomenological
point of view for these systems under several conditions of
motion has been recently proposed [12]. However, recent
studies [13] show that more work is necessary in order to
understand the very complex patterns of fracture in these sys-
tems because more than only one slip or failure plane should
actually occur.
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