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Modeling one-dimensional laminar, reacting flows with an operator-splitting
algorithm
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The purpose of the present work is to investigate an operator splitting algorithm called PISO [2,5, 6] with respect to its suitability for
transient simulations of one-dimensional, laminar combustion problems that involve multireaction chemical kinetics. To this end. in the
present research the equations governing one-dimensional, laminar chemically reacting flow are formulated and relevant nondimensional
parameters are determined. The governing equations are discretized using a finite-volume approach, and the PISO algorithm is implemented.
Numerical solutions obtained with this algorithm are presented for a burner-stabilized. premixed ozone flame.
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El propésito del presente trabajo es investigar un algoritmo de operador separado denominado PISO [2. 5. 6] con respecto a su aplicabilidad
para la simulacién de problemas de combustion unidimensionales laminares que involucran cinética quimica de multireacciones. Para
este propésito, en la presente investigacion, las ecuaciones que gobiernan ¢l lujo quimicamente reactante, laminar, unidimensional son
formuladas y los pardmetros relevantes adimensionales son determinados. Las ecuaciones gobernantes son discretizadas usando el método
de los voliimenes finitos y el algoritmo PISO es formulado. Se presentan soluciones numéricas con este algoritmo para una flama premezclada

de ozono estabilizada al quemador.

Descriptores: Simulacién, flujos reactantes, algoritmo no interactivo, aproximacion de volumen finito

PACS: 47.70.Fw

1. Introduction

While the numerical solution of steady, one-dimensional,
laminar combustion problems has become a computational
task, there is a considerable lack of numerical methods that
are able to accurately and efficiently solve unsteady prob-
lems. In fact, because nature is multi-dimensional and insta-
tionary, transient problems appear to be of greater relevance
than their steady-state counterparts. Examples of important
transient combustion problems yet awaiting numerical solu-
tion include the variety of stability problems found in nearly
all engineering applications.

Different algorithms have been developed to solve the
inherent complexity of the equations governing fluids flow.
Explicit schemes like the FCT algorithm was specifically in-
vented to handle problems with shock waves and it has been
particularly used in high-speed reactive flow calculations [3].
In the Godunov method, a Rieman problem is solved cell by
cell or region by region in the flow and integration is per-
formed analytically extrapolating the flow forward in time.
This method has been employed for shock-wave problems.
Implicit finite-difference schemes are becoming favored in
relation to their explicit counterparts. This is because the un-
conditional stability of the former as contrasted with the sta-
bility of the explicit methods which is restricted on the size
of the time-step that can be taken. Existing implicit meth-
ods like SIMPLE and SIMPLER [4] methods, overcome the
problem of the linkage between pressure and density for low

Mach number flows by treating the pressure as a main vari-
able. In order to determine the pressure, a joint manipulation
of the momentum and continuity equation provides an equa-
tion for the pressure. The resulting equation replaces the con-
tinuity relation while the momentum equations retain their
role of determining the velocity field. The equations are dis-
cretised fully implicitly, with the pressure-velocity coupling
being handled through the use of iteration. The advantage
gained by implicit differencing of the equations can be di-
minished by the use of the iteration at each time-step which
makes time-dependent calculations rather expensive. The al-
gorithm called PISO [2] is a non-iterative method for han-
dling the pressure-velocity coupling of the discretised mo-
mentum and pressure equations such that the fields obtained
at cach time-step Af are close approximations of the exact so-
lution of the difference equations with a formal order of accu-
racy of the order ol powers of At depending on the number
of operation-splittings used. This algorithm has been tested
by Issa er al. [G] for flames where mechanisms of reaction
have been linearized.

The objetive in this paper is similar to that of Heimerl er
al. [1] and Issa er al. [G]; however here we make use of a
laminar flame model which includes both multispecies with
multircaction chemical kinetics and the momentum equation.
This approach offers the advantage of complete information
about the system, particularly with the highly nonlinear cou-
pling of the energy and species equations with the fluid dy-
namics of the system.
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2. Gasphase model
2.1. The governing equations in dimensional form

The physical problem to be analyzed is the following. A fuel-
oxidizer premixture discharges from a cooled porous plug
flameholder and reacts at a flame region located at a finite
distance downstream of the burner exit. The burner is ide-
alized such that the flowfield is one-dimensional, while the
flame. which constitutes the reaction region, is planar and

parallel to the burner exit. Assuming high activation energy of

this oxidation reaction, the reaction zone is thin compared to
the diffusion length of the flow. The space outside the burner
is assumed to be adiabatic so that the flame loses heat only
on the burner surface. In contrast to the common combus-
tion assumption of uniform pressure, the present analysis re-
tains the full momentum equation. The equations governing
a planar, one-dimensional, laminar reactive pipe flow of an
idcal-gas mixture are derived from the general conservation
equations for multicomponent, reacting {lows. In terms of the
accumulative-convective operator L defined by
L(®) = Q('—} + 'H.@ .
ot dx
for any dependent variable ¢.* the flow field is described by
the overall-continuity equation

(1)

du
L = —p—, (2
(p) i )
and the momentum equation
dp 4 0 ou
7, = 4 —— — ] . 3
pLiv) dx B 30z (“0.}‘) )

Temperature and mass fractions obey the energy and species
conservation equations, respectively, viz.,

N
sy
eopL(T) = 2= (A5=) + L(p) = Y_ haw;, (4)
dx " Ox L
BELY; Y= —_;—)(p}"}l’,)+urf. i=1,...,N. (5)
axr

We refer o e.g. Williams [8] for the derivation of these equa-
tions, which rely on classical assumptions such as Fourier
law, Fick’'s law, Arrhenius law, the law of mass action and
the perfect gas equation of state, and where the external
forces are neglected. In Egs. (1) to (5), and below, t de-
notes the time, = the spatial coordinate, and u the velocity
component in the x direction; p is the density, p is the pres-
sure, 7" the temperature and Y; the mass fraction of species 4,

ture, A its thermal conductivity and ¢, its specific heat ca-

pacity at constant pressure; fi; is the specific enthalpy of

species i, i = 1,..., N, Vj its diffusion velocity and w; its
mass rate production. The system of Egs. (2) to (5) is closed
by the ideal-gas equation of state:

P =1,

where

v
Y
— () ‘: : i

i=1

Here /7Y denotes the universal gas constant and W, the
molecular weight ol species i, i = 1.... . N,

2.2. Initial and Boundary conditions

The governing equations, Egs. (2) to (5) form a hybrid
parabolic-hyperbolic system of partial differential equations.
In only a few special cases the mathematical formulation of
the boundary conditions, which are to be imposed to ensure
existence and uniqueness of the solution, are known. There-
fore, it is necessary that proper boundary conditions are cho-
sen in a heuristic way by taking into account the physical
meaning of the combustion problem under consideration and
the mathematical nature of the governing equations.

With the burner exit as the origin, the boundary condi-
tions are given hyf

=0 T=T,. Yi=%.
i = lyean o N aEnd o= Uy (7)
or  adY;
v —=—5—=10,
i A
; . u )
4= L v gt N and — =0, p=p. (8)
dx

The subscript « identifies properties in the unburnt gas.
These conditions 1mply that the flow temperature and dis-
charge rate are fixed at the burner exit, that there is no
species penetration into the burner, and that all properties are
bounded far downstream of the flame where the fuel concen-
tration vanishes because ol a complete oxidation reaction. For
the fluid dynamics system, at » = (), the velocity is prescribed
(discharge rate lixed). while the pressure there is computed
from the momentum equation. At the postflame boundary,
the pressure is fixed to be p,., while the velocity there is up-
dated by setting zero gradient to the velocity. The model was
started from a standard initial profile (see Fig. 1) and ended
the exercise at a time to ensure that steady state had been
achieved.

2.3. Model for thermodynamics and molecular transport

Following [3], it is assumed that the diffusion velocity can be
written as

Vi= VP + VT + 1. 9)

In Eq. (9) V.2 is the ordinary-diftusion velocity, V," is the
thermal diffusion velocity and V. is the correction velocity.
The dynamic viscosity and the thermal conductivity of
the mixture are calculated from the respective properties of
the pure species according to the widely accepted approxima-

Rev. Mex. Fis. 44 (2) (1998) 161-166



MODELING ONE-DIMENSIONAL LAMINAR. REACTING FLOWS WITH AN OPERATOR-SPLITTING ALGORITHM 163
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FIGURE 1. Schematic diagram of boundary conditions. Also, the
initial profiles to be specified to start from scratch the computation
ol a burner-stabilized premixed flame, R and P are the rectants and
products. respectively.

tions
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Here X; denotes the mole fraction of species i. For the ther-
modynamic properties polynomial curve fits of the NASA
type are used. Thus, the molar specific heat capacity at con-
stant pressure is given by

Chi 2

—ﬁfrr, 3T + as T2 T T, (12)

the molar specific enthalpy by

1 as 3
0= =as+ a1 T + - T+%}T+ T4+‘T
(13)
and the molar specific entropy by
S 5
l_?% =ar+aInT + aT + G?BF + %Fg-l— %T‘. (14)

2.4. Model for combustion chemistry

When detailed mechanisms of elementary reactions are em-
ployed in the numerical simulation of laminar flames, the

rates of production of the chemical species may be written as

M

a Ej
w; = W; Z{rq_; — vk )(AT ) exp ( - R()I-‘T)
k=1
- f)}’- v
¥4 i h 5
XH(W) =1, .. .N %

where it is understood that forward and backward chemical
reactions are treated separately. Besides the quantities already

defined above, in Eq. (15) M denotes the number of elemen-
tary reactions contained in the mechanism, and V;.k and y;"k
are the stoichiometric coefficients ol species ¢ in reaction k,
k=1, ond \1, representing there reactants and products, re-
spectively; (A7) y Ey are the pre-exponential factor in the
specilic reaction-rate constant and the activation energy of re-
action k, respectively.

2.4.1. The ozone kinetic mechanism

We have studied the ozone flame because its kinetic mecha-
nism is the simplest existing detailed mechanism of elemen-
tary reactions. It involves three species, O, O» and O3 which
react according to the mechanism shown below

O3 +M= 0+ ()_J + I\I,
O+ 03 = 20,, (16)
204M=024+M,

where M represents a third body, which can be either O, O,
or O3.

3. Numerical method
3.1. The governing equations in nondimensional form

Nondimensional numbers that can be formed by introduc-
ing or selecting, respectively, reference quantities are the
Strouhal number Sr, the Reynolds number Re, the Euler
number Fu. the Prandtl number Pr, and the Mach number
Ma. In terms of the quantities defined above, the nondimen-
sional governing equations can be written as
g *

L") = ~p' g (7
ap* 4 3 r o, Oud

b B By
‘8z*  3ReO0zx* x>

P (u) = —Eu (18)

* * * Tk . 1 0 * (l):{“
o L7(I7) = RePr dz~ (\ r').r*)
+ (K — )Urr Eul*( Zh wl, (19)
=1
prLe (Y = — __;1* (YTV) 4wl 8=1:0: N (20)
or
where the nondimensional operator L* is given by
do* E)@
[J e g 0 2]
(%) = 51 g + ¥ g0 @)

Here, « is the ratio of reference specific heat capacities. The
nondimensional equation of state is

p* = Ma®Eu(p*

& 0y
where
N

* e : Y, g
= {F ; (1fv’,:/!--1fﬂ.rﬂ ' e
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3.2. Discretization

For convenience of notation subsequently the superscript in-
dicating nondimensional quantities (x) will be omitied. For
the derivation of difference equations it is convenient (o write
cach of the governing equations in a standard form consisting
of an accumulative term , a convective term, a diffusive term
and a source term, viz.,

A pucd) B 0 O
at s “8r | O (F!ﬁ B + ¢ - (23)

A po
Sy ()

Here ¢ is unity for the continuity equation, u for the momen-
tum equation, T" for the energy equation, and Y; for the ¢-th
species-mass conservation equation, 7 = 1,... ., N. The gen-
cral procedure to cast a partial differential equation into the
above standard form is to manipulate the equation until all
coefficients and terms appearing in it are in a form suitable to
be absorbed into the “‘generalized diffusion coelficient” T'y
and the source term Sy.

The method selected herein to derive difference equations
from the governing partial differential equations, Eqs. (17)-
(20), is the finite-volume method (FVM). The essence of the
FVM consists of defining for each point P of the compu-
tational domain a suitable control volume surrounding that
point, and to integrate the governing equation of the respec-
tive dependent variable over the control volume, see Fig. 2.
The control volumes are selected such that, firstly, cach vol-
ume surrounds one and only one grid point, secondly, that
the control volumes do not overlap, and thirdly, that their
collection covers the total volume under consideration. The
result of the integration over a control volume surrounding
grid point P is a difference equation, the unknowns in which
are the values of the dependent variables at point P and at the
western and eastern neighbors of P.

Upon integration of Eq. (23) over a computational grid
point P, illustrated in Fig. 2, and after some algebraic manip-

£ &y

ulations, the discretised equation may be written as
r:")jj(,')‘p — 4)1:) = II|)((,5) -+ ?d,‘p <+ In’jp({)(j))i& s (24)

where S, p denotes the volume integral over the source term
Ss. InEq. (24) and below the superscript n is used to identify
variables or expressions taken at time level ¢ = t™ at which a
solution to the governing equations is assumed to be known.
Variables or expressions not identified by the superscript n
are to be taken at time ¢+ = " + At and are unknown; so-
lutions to the governing equations at time ¢ = " + At are
sought. The individual terms of Eq. (24) are given by

Sf'rs.i'p
Bp = ——— 25
P Al (23)
—Ap = (”"1'4)(' =+ (Q'J“’)m =My ; (20)
Hp (o) = (aM )i + (aM ) yow, (27

w €
L 0 @
w P E
e |

FIGURE 2. Labeling of grid points and boundary points of a con-
trol volume surrounding point P. The width of the control volume
is dop; both its height dyp and its depth dzp are one. Point P is
located in a cuboid control volume dVp: its neighboring grid points
are W and E. The boundaries of the control volume surrounding P
are labeled w and ¢

where M = pu is the mass flux and the parameter «y; is de-
fined as

|
=(1+ 2/ Pe;) for | Pe;| < 2,

=11 forPe; > 2, (28)
1 forPe; < —2.

Here central and upwind formulations are represented. The
values zero ore one for «; denote those cases where diffu-
sive transport is neglected compared to convection. Pe is the
Peclet number (Pe = puda/Ly).

3.2.1. Staggered grid for the momentum equation

Shown in Fig. 3 is a control volume in the staggered grid of
the velocity u, which is assumed to be governed by the mo-
mentum Eq. (18). It is seemed from Figs. 2 and 3 that the
staggered grid for u can be obtained from the basic grid by
shifting the center of mass of each basic-grid control volume
Vp adistance L (i —xp) to the right. Thus, for the staggered
w grid, the mo;ﬂcnlum equation becomes

dp(Bp— A)e =H(0) — Ei(pg— pp)

+ Sy.e + Belpd)l, (29)

where 3., A., H,,
Egs. (25)-(28).

and a, are defined in a similar way as in

3.3. The PISO algorithm

Now we briefly describe the revised PISO algorithm [6] and
its numerical implementation. The algorithm consists of a se-
ries of steps, one predictor and two correctors, that are to be
carried out during cach time-step. For convenience of pre-
sentation, the equations are written in the general form

Bo = Cp(¢) + Sp(¢) + Gop . (30)
where B3 denotes the sum of all coetficients of the variable

¢ at point P; C'p is a function of terms coupling ¢p to the
neighbours o and dw; Sp is the sum of the source terms of
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FIGURE 3. Staggered grid for the velocity u.

op; and G denotes the coefficient of ¢fi, i.e., the value of the
variable ¢ at the previous time level #".

Predictor step. For all dependent variables, the values pre-
vailing at time level " are used in the solution of the mo-
mentum Eq. (29) and scalar (energy and mass fractions) Eqs.
(24). The coefficients in the operators A and H are evaluated
at time ™ so that, these operators are linear with respect to
. Also the source terms are evaluated at t". Thus, at cach
interior grid location P, the linear problems

Biyp = CB(Y*) + 5% + GUg, (31

are solved for the starred variable ¢*. Note that in general the
starred velocity field does not satisfy the continuity equation.

First corrector step. Here, the coefficients A and H are still
evaluated at the old time level. Continuity, momentum and
state equations are used to derive the pressure equation

Bppp = ) 7 ]_ om g Gpp (32)
and is solved for p*. The new pressure p*
used in solving the density field

is subsequently

= EuMa*(p* + q)7* . (33)

The double-starred velocity field is obtained by solving the
correspondingly Eq. (29). The velocity field «** and the den-
sity field p* which now satisfy the continuity equation are
used to update the coefficients A,p and Hgp in Eqg. (24).
Thus, the scalar equations
Bpop = Cp(o™) + ";‘[, + Gop (34)

are explicitly solved for ¢**

Second corrector step. Firstly, the continuity-based pressure
cquation

Bppst = CR(p™) + S, + Gpp (35)

is solved. Then, the new double-starred pressure is subse-
quently used in solving the density field
** = EuMa?(p*™ + @)y (T*). (36)

The triple-starred velocity field is obtained by solving the cor-
respondingly Eq. (29). The velocity field »*** and the density

field p** which now satisfy the continuity equation are used
to update the coefficients Aup and Hyp in Eq. (24). Thus,
the scalar equations

Bhop™ = Ch(o™") + 5!’,,”1 + Gop, (37)

ek e

are explicitly solved for ¢

4. Results and discussions
4.1. Computational procedure

To perform the simulation of a steady, laminar, burner-
stabilized ozone flame, the PISO algorithm was implemented
into the Universal Laminar Flame and Flamelet Code RUN-
IDL [7], which provides the facilities required for the sim-
ulation of reacting and non-reacting quasi-one-dimensional
flows with detailed models of chemistry, thermodynamics
and molecular transport, Adaptive griding can be employed
with this code.

To start the simulation of the flame, guessed initial pro-
files of the dependent variables are required (Fig. 1). The ini-
tial guess calculated internally by RUN-1DL [7] is taken by
the PISO algorithm, which then is used for as many time-
steps as are required to reach a steady solution.t One of
the main problems during this simulation was the occasional
movement of the flame out of the computational domain.
This problem was eliminated by using adaptive griding im-
plemented in RUN-1DL. A time-step size of 107
was used.

seconds

4.2. Interpretation of profiles

For the burner-stabilized premixed flame calculated herein, a
temperature of 300 K was adopted at cold boundary where
the species were assumed to contain fixed mass fractions of
O (60 %) and Oy (40 %). The specified burning velocity at
the cold boundary was 1.5 m/s, while the pressure in the hot
boundary is fixed to be | bar.

Shown in Fig. 4 are the results of the steady solution
of the burner-stabilized ozone flame. In the left-hand part
ol the picture the temperature, velocity and pressure profiles
through the flame are shown, while in the right-hand part the
mass fraction of the species are plotted. Tt can be seen from
the figures that due to the large activation energy reaction the
ozone flame structure consists of a thin chemically-reacting
region (0.2 mm in physical space)*™ separating two broad,
upstream unburnt and downstream burnt regions in which
fuel oxidation effectively does not occur. In this thin region
convection is unimportant such that the controlling processes
are diffusion, oxidation, dissociation and recombination. On
the postflame region, the temperature, velocity and mass frac-
tion profiles generated by the model tend to constant values
(zero gradients), correspondingly to the boundary conditions,

The temperature graph displays a steep slope near the
cold boundary, while in the postflame region there is a slow
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FIGURE 4. Profiles through a laminar burner-stabilized ozone
fTame.

temperature rise with a maximum temperature of 1900 K.
The mass fractions profiles depicted herein show that the
structure for the ozone flame occurs in the hot reaction zone
and the O atoms produced there diffuse into the preheat zone,
where the exotermic step occurs, converting the preheat zone

nto an exothermic zone. The gas velocity profile shows how
the unburned gases move at the specified burning velocity of
1.5 m/s through the Hame region where the velocity increases
sharply, while in the postflame region the velocity tends to a
constant value. As it is to be expected on physical grounds,
anegligible pressure drop occurs in the flame. Therefore, the
common assumption of constant pressure across a {lame used
in other steady-state calculations is satisfied. It can be seen
from this figure that an almost perpendicular gradient devel-
ops over the flame region, while in the postflame region the
slope gradually decreases to approach the specified pressure
of | bar.

5. Concluding remarks

The present work investigates the PISQ algorithm with re-
spect to its suitability for simulations of one-dimensional
laminar premixed flames with detailed chemistry model
for the flame. To this end. the equations governing one-
dimensional, laminar chemically reacting flows are nondi-
mensionalized and discretised using a finite volume ap-
proach, and the PISO algorithm is implemented into a com-
putational code. A burner-stabilized ozone flame with de-
tailed chemistry was used Lo test the capability of the code
for handling the nonlinear coupling of the energy and species
equations with the fluid dvnamics of the system. It was
shown that this model predicts pressure drops that are in res-
onable agreement to the physical problem.

+. The quantity L(¢) is the total derivative of ¢.

1. A schematic diagram of the initial and boundary conditions on
a burner is shown in Fig. 1.

. Only the final steady solutions resulting from this exercise are
) Y g
presented for clarity.

**+. As a consequence, the adaptive gridding is necessary.
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