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The motion of a particle in a Coulomb field is analyzed with the help of the conserved Hamilton vector. This affords a simple way of
obtaining both the orbit in configuration space and the hodograph in velocity space. We show how to obtain the Hamilton vector, then,
with its help, we get the equations of both trajectories. We next show that the trajectories of the Coulomb problem in velocity space are all
circular. We also exhibit a geometric method for calculating the deflection angle in the case of scattering trajectories and then we derive the
Rutherford scattering formula. We also discuss an approximate method which takes advantage of the Hamilton vector for studying scattering
in a centrally perturbed Coulomb field. As an example of the use of this approach the case of an inverse cubic perturbation is discussed in
some detail.
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El movimiento de una particula en un campo coulombiano se analiza con la ayuda del vector constante de Hamilton. Ello nos permite
obtener en forma sencilla tanto la érbita en el espacio de las configuraciones como la hoddgrafa en el de las velocidades. Demostramos como
obtener el vector de Hamilton y, a continuacion y con su ayuda, obtenemos la ecuacion de las trayectorias mencionadas exhibiendo durante
el proceso la circularidad de su hoddgrafa. Desarrollamos un método geométrico que nos permite obtener el dngulo de dispersién y a partir
de él, la formula de Rutherford para la seccion eficaz de dispersion. Introducimos también una técnica aproximada para calcular la funcién
de deflexion para interacciones coulombianas perturbadas por un término central. Para ilustrar el método estudiamos con algin detalle el

caso de una perturbacién inversamente proporcional al cubo de la distancia.

Descriptores: Campo central, vector de Hamilton, férmula de Rutherford

PACS: 03.20.+1

1. Introduction

The scattering of a charged particle in a Coulomb field
have been discussed in many ways; for example, using the
Laplace-Runge-Lenz vector, A [1-4]. This approach has
been used even for discussing perturbed Coulomb problems,
with the help of A many results of classical scattering theory
can be rederived in a different and elegant way. In this con-
tribution we want to exhibit that many of such results can be
calculated by using the Hamilton vector, h a very interesting
but little known “extra” constant of motion of the Coulomb
problem [5, 6]. To make clear our point, we need to discuss
first a rather simple way of solving the classical Coulomb
problem passing through velocity space. The method, basi-
cally due to Hamilton, takes advantage ol the properties of h
and calculates first the hodograph in order to solve the prob-
lem [6-8].

The Hamilton vector is a little known constant of motion
of the classical Coulomb problem which is surprisingly easy

to obtain. As is the case of A, the Hamilton vector is related
to the hidden symmetries of the problem and can be consid-
ered as a manifestation of its superintegrability. That is, its
existence can be regarded as a manifestation of the fact that in
the Coulomb problem there are constants of motion in excess
to the minimum number (three in the Coulomb case) assuring
its integrability. Or, to express the idea in yet another way, h
can be related to the existence of a Hamilton-Jacobi equation
separable in more than one system of coordinates [4, 7, 9].

A beautiful but, nowadays, little known feature of the
Coulomb problem is that all the trajectories of the problem
are circular in velocity space. This makes velocity space geo-
metrically simpler than configuration space [6, 10, 11]. Thus,
as was realized by Fano and Fano [12] and by Feynman [13]
a long time ago, it can be regarded as a natural arena for
discussing scattering and certain geometric features on the
problem. The advantages of using h for describing scattering
come basically from its close relationship with the hodograph
of the Coulomb problem, i.e. with its trajectory in velocity



184 A. GONZALEZ-VILLANUEVA, H.N. NUNEZ-YEPEZ. AND A.L. SALAS-BRITO

FIGURE 1. The coordinate systems used to describe the problem
are illustrated. The z-axis points outside of the plane of the paper
and the r-axis goes through both the center of force at the origin
(marked Q) and the pericentre of the orbit. A hyperbolic scattering
trajectory is shown together with their asymptotes (the thin straight
lines), —fq and +#8g are, respectively, the angles that the incoming
and the outgoing asymptotes make with the x-axis; £ is the deflec-
tion angle and it is clear that £/2 4 0y = 7.

space.  This happens since a classical scattering process,
when there exist asymptotic states as in Coulomb’s case, has
mainly to do with the relationship between the asymptotic
incoming and the asymptotic outgoing velocities [3].

2. The Hamilton vector and the Coulomb
problem

In this section we derive the vector constant known as the
Hamilton vector, h. We will discuss how to use it to obtain
the equation of the orbit and to show that the problem’s hodo-
eraph is a circle or a circular arc.

To begin with, let us consider the equation of motion of a
particle in an inverse squared field fixed at the origin

d*r o
-m“r? =g, (1)

72
where m is the mass, &, the unit vector in the radial direc-
tion, r the position vector of the particle and « is a constant
characterizing the intensity of the interaction—for Coulomb
interaction we should have o = ¢¢'/4mey. The angular mo-
mentum, L = mr x v = mr?6é, = Lé, and the energy £
are constants of motion as in every central field problem. We
have selected the x-y plane as the orbital plane, # is the par-
ticle’s angular velocity and we use a cylindrical coordinate
system in which the polar axis coincides with the r-axis and
passes through both the center of force and the point on the
orbit closer to it, as Fig. 1 illustrates. ‘ )

Using the elementary results &g = —#@é,, 8§ = L/mr*
and angular momentum conservation in Eq. (1), where &g is

FIGURE 2. The Coulomb problem hodograph is always a circle
centered at h and with radius |a|/L. In the case shown here the
origin of coordinates in velocity space (v-origin) is inside the hodo-
graph, ie. we have h < |ev|/L and then E. < E < (. We have
chosen h and hence the velocity at pericentre v,,. pointing in the
y-direction. This corresponds to an elliptic orbit in configuration
space oriented with its major axis along the z-axis as shown. The
particular case in which the v-origin coincides with the hodograph
centre (i.e. whenh = 0. E = E. = —ma®/2L*) corresponds to
a circular orbit in configuration space.

the unit vector orthogonal to é,. in the direction of increasing
d, we get
dv m dég

_— = s, 2
e L 2)

it is now very easy o derive a new constant of motion for the
Coulomb problem [6, 14, 15], the so-called Hamilton vector

ll:V‘Fié”. (.1']
L
It is worth noting that h - L. = 0 and that, in configuration
space, h points along the semilatus rectum of the orbit i.e. 11
is necessarily parallel to the velocity at pericentre [see Eq. (6)
below] [6]. In the coordinate system illustrated in Fig. 1, the
Hamilton vector points along the y axis: h = hé,. We can
now express the velocity as the sum of the constant vector h
plus a rotating vector with constant magnitude:

¥

V:ll == E’,’)I"'; (4)

the rotating component of the velocity is always perpendic-
ular to r. This equation means that any L # 0 trajectory in
velocity space is a circle of radius |a|/ L centered at h. This
is illustrated in Figs. 2, 3, and 4. Curiously, as expressed
in a recent book [11], “this startling fact—the circularity of
the hodograph—is unknown to most physicist” despite its
many implications in both the physics and the geometry of
the Coulomb problem [10, 11, 16].

The Hamilton vector h contains most of the dynamic in-
formation on the motion [5, 16], for example, it is elementary
to obtain the polar components of the velocity and their de-
pendence on #,

v.(f) =v-@&, = hsinf,

; 5 8l
vg(f) =v-&y = hcost — A (5)
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Wy

v,

FIGURE 3. If the v-origin sits on the hodograph, ie. if h = |a|/L,
E = 0and ¢ = 1, the configuration space orbit is the parabola
shown. In this case the v-origin represents the asymptotic veloci-
ties at infinity: Vioo = Voo = 0.

(a) (b)

FIGURE 4. If the v-origin is outside the hodograph, te. il h >
|ov]/ L, E > 0 and the whole hodograph is just the dark circular arc
hounded between the angles —fo and +8g. where cosfly = 1/e.
Notice that the whole circle corresponds to the two branches of the
hyperbola. The two possible cases are shown: (a) The attractive
case a < 0, where the hodograph is concave towards the origin.
The asymptotic velocity vector v_., makes an angle —#o (or. as
shown and equivalently, an angle m — #lg) with the r-axis. In this
case the centre of force sits at the internal focus of the configu-
ration space hyperbola. The light dashed curve shown in Fig. 4a
(and in 4b) corresponds to the branch of the hyperbola not actually
traversed. (b) The repulsive case e > 0. where the hodograph is
convex towards the origin. The asymptotic velocity vector v
makes an angle +6q (or. equivalently, an angle 8y — ) with the z-
axis, as shown. The center of force is located at the external focus
of the hyperbola. This figure is sort of the reverse of Fig. 4a.

where v, and vy are, respectively, the radial and azimuthal
components of the velocity and /i is the magnitude of h.
These are the parametric equations of a circle in velocity
space: so, as we claimed before, the hodograph is a circle
or circular arc—depending on the range allowed for ¢.

From Eq. (5) and the expression vy = ré, the equation of

the orbit follows immediately:

p= 4[)—— (6)

ecost —sgna

where sgn stands for the signum function (sgnx = 1ifx >0
orsgnz = — il < 0), we have defined p = L*/m|a| and
Lh/|e|. Equation (6) is obviously the polar equation of
a conic section with eccentricity € and semilatus rectum p;
to completely characterize the conic section we have to take
into account the algebraic sign of a. It is worth pointing out
the simplicity of the process for getting the general form of
the orbit with the help of h.

Notice that expression (5) implies that the velocity at peri-
centre, like h, points in the y-direction. Although it is im-
plicit in the definition of ¢, it can be useful to emphasize that
the magnitude of h can be written as

h=¢ |f—lE (7)
L
On the other hand, notice that the energy of the motion can
be expressed in terms of /i in the alternative forms

=" (h'-’ e i) L % ] (8)

€

2\ E) T

Furthermore, the famous Laplace-Runge-Lenz vector [3] can
be easily obtained as

A =hxL=vxL+aé,; (9)

the constancy of A follows as a simple consequence of the
constancy of h and of L.

We can now show using Egs. (4), (6) and (8), that the
type of motion changes according to where the origin of co-
ordinates in velocity space is located in relation to the hodo-
araph [G. 10]:

a) Il the hodograph centre coincides with the origin of
coordinates in velocity space, i.e. il h = 0, the configuration
space orbit is also circular and the hodograph is the whole cir-
cle. In this case, as follows from (8), E = E, = —ma? /2L
If the origin of coordinates is inside the hodograph but docs
not sit on its center, ie. il h < |a|/L, we must have
E. < FE < 0. the hodograph is also the whole circle and
the configuration space orbit is an ellipse. The former case is
a particular instance of the later. See Fig. 2.

b) If the origin of coordinates in velocity space sits on the
hodograph, i.e. if h = |a|/L, there is a point with asymptot-
ically vanishing velocity, we have E = 0, and the hodograph
is again the whole circle. In this case the orbit in configura-
tion space is a parabola. This is illustrated in Fig. 3.

¢) If the origin of coordinates in velocity space is outside
the hodograph, i.e. if i > |o|/L, we have E > 0, the hodo-
eraph is not the whole circle but just a circular arc—the arc’s
limiting angles are found solving the equation cos#ty = 1/¢;
fly is the incident angle (Fig. 1). The configuration space or-
bit is hyperbolic in this case. Another fact worth ol men-
tioning here is the compactification achieved by introducing
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the hodograph: the whole infinity trajectory in configuration
space is mapped to the finite circular arc of the hodograph.
Fig. 4a illustrates the case o < 0 whereas Fig. 4b illustrates
the case a > 0.

In the rest of the article we assume that the configura-
tion space orbit is a hyperbola as corresponds to a scattering
trajectory. We also assume that the scattering occurs in a re-
pulsive (o > 0) Coulomb field—according to (6), only hy-
perbolas are allowed as solutions in such a case. Notice also
that, as the denominator in (6) must be non-negative, if ¢ > 1
the only orbits allowed are necesarily confined between the
non-null angles —#, and +6,. These angles are the direc-
tions of the asymptotes of the hyperbola, or, respectively, of
the incoming, v_ ., and outgoing, v ., velocities. In these
conditions, the external focus of the hyperbola coincides with
the center of force as shown in Fig, 4b.

We have illustrated how the unperturbed Coulomb prob-
lem can be solved with the help of h. To conclude the section,
let us point out that although we have found that the number
ol constants in the problem is 7 (or even 10, in we include the
components of A) namely, the energy, plus the three compo-
nents of L. plus the three components of h, only 5 constants
out of the original 7 can be independent [9]. otherwise the
system would be overdetermined [4]. The existence of 5 in-
dependent constants of motion is described by saying that the
problem is superintegrable [7, 16].

3. Scattering in a Coulomb field and the
Rutherford formula

In this section we show how to use h and the hodograph to
derive the Rutherford scattering formula. Therefore, in this
section and in the rest of the article, we assume £ > 0 and,
hence. that all orbits are hyperbolic. For convenience we also
assume that > 0, although this is not strictly necessary
since the discussion is also applicable, with minor changes,
to the case o < 0.

In Fig. 5 (which is basically the hodograph shown in
Fig. 4b) the quantities pertaining to scattering are clearly
depicted. We thus infer that, using h and the hodograph,
it should be very easy to compute the deflection angle &,
and hence that the Rutherford formula for scatlering in a
Coulomb field must also follow using the standard methods.
In the diagram (see also Fig. 1) it is clear that fy and £ are
related by 8y + &/2 = = /2. For obtaining the appropri-
ate relations between such quantities, let us note that, as the
Hamilton vector suffers no changes during the motion, for the
whole scattering trajectory (as for any part of it) we ought to
have

Ah:f_\v%+%Aé9:0, (10)

where the change A&y is evaluated by substracting the in-
coming from the outgoing angular unit vector, as illustrated

FIGURE 5. The Coulomb problem hodograph in the repulsive case
(compare with Fig. 4b). It is easy to see that the incident and de-
flection angles are related by #o + £/2 = w/2. It is also easy to
see from simple geometry that Av. = 2v. sin(€£/2)é, and that
(/L) Aéyp = —(2a/L)sin by &,.

in Fig. 5. As aresult of the scattering, the velocity changes in
c

; s
AV = Vugs — Ny = Dy SN 5€x (e
and the unit angular vector changes in
Aéy = ég(+00) — &p(—00) = —251n60p&,, (12)

during the whole process. Equations (11) and (12) fol-
low. using simple geometry, from Fig. 5. Moreover, since
£/2 + 6y = 7/2 we have cos ({/2) = sinfy and, by plug-
ging results (11)and (12) into Eq. (10), we get

A =9 (o sin _ Feas S )a. =
;\h-Z(t.wbmij(or,E €, =:. (13)

Thence, we see that L and the incoming speed, v, are re-
lated by the so-called Rutherford relation

0 & )
L= cot =. (14)
U 2
o3 2
From this expression, it is immediate to get, in the standard
way, the differential scattering cross section in a Coulomb
field [3]

el 1

L dL

sin€ d¢

2
fad il
() i s
2mus, ) sin® £/2

This is Rutherford’s differential scattering cross section,
which happens to be independent of the sign of «a, that is,
in (15) it does not matter whether the interaction is repulsive
or attractive.

dQ el

4. Scattering in a perturbed Coulomb field.

In this section we illustrate the value of the Hamilton vector
for describing scattering even in a perturbed but still central
Coulomb problem.
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If the perturbing term has the form f(r) = f(r)é,, the
equation of motion becomes
d*r o .
m—— = —eé. + f(r)é,. (16)
o
Despite the fact that in this case is no longer conserved, the
Hamilton vector is still useful for doing certain scattering cal-
culations. In this section we discuss the problem following
the ideas presented in Ref. 1, but using h instead of A.

When a perturbation is present the equation of motion of
the Hamilton vector [13] follows from (3) and (16)

dh  f(r)

dt m

-

&;. (17

It is useful to transform (17) to a differential equation in &,
first, it is obvious that

EH & My (18)
dt do
next, using the conservation of L, from this follows that
dh  rif(r).
— = - 19
- L © e

Although in principle Eq. (17) can be integrated along the
scattering trajectory to get the change in h, this is of no use
(unless we do it numerically) since we do not know the tra-
jectory from the start. However, Eq. (19) can be used to get
a first order approximation to the trajectory valid when the

perturbation f(r) might be regarded as small [2,14], i.e. if

|f(r)] < a/r? in the range of r-values important for the
scattering process. An explicit illustration of the use of the
criterion is given in the next section.

Let us assume the above criterion is met; so, let us inte-
erate Eq. (19) along the unperturbed scattering trajectory, to
gel

S 0

fr

~ B ~ «fp
dh = e—'—/ r? f(r) cos Adf + ﬂ/ r? f(r) sin 0df
L J_g, 40—y
&, [ .
= T’/ r2 f(r) cos @d6. (20)
< S —ty

Since h = h &, then h-dh = 0; in this way, we have ex-
plicitly got that the change in h is orthogonal to itself. As
follows from vZ, = h* — a*/L?, this result also implies that
Voo - 0V = 0. That is, in this approximation, although the
asymptotic velocity changes, it only rotates but never mod-
ifies its length. Thus we can say that the perturbation pro-
duces a rotation of h in the scattering plane by an angle given
by tan 6 = dh/h, but, in the approximation we are working
with, tan §¢ ~ &£, since we assume 8¢ < 1. Thatis, as a first
approximation, we may regard h as just undergoing a clock-
wise rotation—counterclockwise, in the case of an attractive
perturbation—by an angle 61 /h. But this can be easily inter-
preted as a rotation of the incoming and outgoing asymptotes
by this angle. Thus the whole proces may be described as a

(a)

(b)

FIGURE 6. Rotation of a scattering trajectory under a conservative
central perturbation. The perturbing force is assumed repulsive.
For the sake of clarity, the results of the perturbation have been
exagerated. (a) Schematic representation of the effect of a central
repulsive (/7 > () perturbation on the hodograph. The two, one in-
coming and the other outgoing, auxiliary Coulomb like hodographs
are shown as light dashed circles shifted to each other by dh. The
actual hodograph of the perturbed problem is the dark curve shown
interpolating between the auxiliary hodographs. (b) The config-
uration space orbits corresponding to the hodographs illustrated in
Fig. 4a. The auxiliary trajectories are shown as dashed light curves.
A and B mark, respectively, the auxiliary incoming and the auxil-
iary outgoing trajectories. The solid dark curve corresponds to the
actual perturbed orbit. The straight lines shown are the asymptotes
of the auxiliary trajectories.

combination of two auxiliary trajectories: an incoming
auxiliary Coulomb-like trajectory plus another auxiliary
Coulomb-like outgoing trajectory which have to appropri-
ately “interpolated™ in the middle to construct the approxi-
mate trajectory of the perturbed problem. All of this is il-
lustrated in Fig. 6 with both configuration space orbits and
hodographs.
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All the results mentioned above are just an approxima-
tion to the process if the perturbing force f(r) is reasonably
small. It is interesting 1o note that the approximation treated
here can even deal with the strong but short range nuclear
forces, we only need to guarantee a distant collision process
for, in such a case, even the nuclear interaction may be con-
sidered as a perturbation to the Coulomb force [2]. Under
such conditions and if the perturbation is repulsive, ie. if
f(r) = 0, we have argued that the deflection angle increases
by 4£ and so it becomes

£ =

S Ll:r+(5E

; Lss 1 B
= Zarccot S r=f(r) cos8df;  (21)
8 Lh [_g
0
where £, refers to the deflection angle in the unperturbed
Coulomb case. which can be obtained from Eq. (14). This
expression can be used as the starting point for deriving
first-order approximations to the differential cross section for
some scattering problems. To illustrate the method, in the
next section we discuss scattering in a Coulomb field per-
turbed by a 1/r* interaction.

5. An example: scattering in a 7 3-perturbed
Coulomb field.

To illustrate what we have been discussing, let us select the
explicit form f(r) = 8/r®, where 3 is a constant, for the
perturbation. This term makes the perturbed problem exactly
solvable [17], but even this is not really a complete advantage
because there is no way of inverting the solution for getting
explicit expressions for L as function of § and thus neither for
calculating exactly the differential scattering cross section.
This kind of trouble with a solvable example just contributes
to illustrate the usefulness of the approximate method. On the
other hand, the perturbation selected allows the direct com-

parison of the approximate expression for &, calculated with

the method of the previous section, with the exact result cal-
culated in the Appendix.

With the explicit expression for the perturbation and, em-
ploying Eq. (6) as the Coulomb solution r(#), we get for the
rotation angle

% B
b= P b cosf df
hlp f T
i
= =—— (ecosfl — 1) costdf, (22)
hLp J_g,

or, effecting the clementary integration, we obtain

B

— ‘hlp—L(Fo(] = Sllllg(])‘ (23)

I3
this result shows that the deflection angle increases when
4 > 0 and that the outgoing angle #y diminishes by
8y = —0&£/2. The change in the deflection angle (23) can be

g

Deflection angle

T
I
|
!
e Y
L
P~
i
]
1
\
\

FIGURE 7. Absolute value of the deflection angle in a 1/r°-
perturbed Coulomb field calculated exactly (continuous dark line)
and in the first-order approximation discussed in the text (dashed
dark line). The absolute value of the deflection angle in the un-
perturbed Coulomb case (continuous light curve) is also shown for
comparison. The angles are in degrees. The values used for the
parameters of the problem were £ = 2, a« = 1, m = 1, and
3 = 0.025 in arbitrary units, L is also in arbitrary units.

also expressed as

- m/3 " e
0§ 572 (m — & —sinée)
— ‘1, (J'T - Er‘ =5 Hi]l Er)
= E— TR (24)
o cottE, /2

where we are assuming that L and £ take the same values
as in the unperturbed Coulomb case—as it is casy to realize,
this is always possible without losing any generality. Thence,
according to Eq. (20), the deflection angle in the perturbed
case can be approximated as

8 (m—§& —siné,)
a2 cot?£./2

A comparison of this approximation against the exact result
is shown in Fig. 7, where we plot, as it is usually done since
an experiment just detects this, the absolute values of the ap-
proximate deflection angle Eq. (25), the absolute value ot
the exact deflection angle [calculated in the Appendix, see
Eq. (A3)] and, for purpeses of comparison, the deflection an-
gle for the unperturbed Coulomb case [2]. As you can see in
the figure, the approximation is fairly good save at low val-
ues of L (say, for L < (.35), that is, only if the trajectory
comes close to the center of force, but even so, it reproduces
the trend in the behavior of £.

Now, to compute the changes in the Rutherford differ-
ential scattering cross section produced by the presence of
the perturbation we only need to apply the standard formula
given in (15). However, as expression (25) is rather diffi-
cult to invert for getting L as a function of {&—since &, also
depends on L—we use another approach which takes advan-
tage of the smallness of 4¢. To this end, lel us write for the
perturbed differential cross section

i"i=( “_) CH— (26)
A 2mud, ) sin*(& + 6€)/2
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the effect of the perturbation can be estimated by just power
expanding (26) and taking the absolute value of the result [2]

2
dor _ ( @ ) : 11 11— 266 coté/2] (27
dQ 2mvZ, ) sin® £/2

where, at it is no longer important, we have removed the sub-
script ¢ and, as before, we assumed that there is no change
in the angular momentum. This expression, which may be
assumed correct to first order in 4€, can be regarded as the
differential scattering cross section in a Coulomb field per-
turbed by a r~* field. Notice that, as it was to be expected,
the perturbation losses effectivity on increasing the projec-
tile’s angular momentum [compare with the first of Eqs. (24)
and take a look at Fig. 7]. That is, the approximation is better
the farther from the field travels the projectile.
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Appendix

The only purpose of the appendix is to derive the exact for-
mula for the deflection angle in the Coulomb problem per-
turbed by an inverse cubic term. The effective potential en-
ergy for the perturbed problem reads

B L*

Uepp(r) = =+ == +
-

= —_— (Al)
2r2 - 2mr?

therefore, according to Eq. (18.2) in Ref. 2, the deflection
angle can be calculated as

E=m

: (A2)

/"x" Lir%dr

-2

Loy 2B~ Ugps(r))
where r, = ol + V1+2E(L? + m)/ma?)/2E is the

distance to pericentre in the perturbed problem. Effecting the
integral in (A2) we get

5y
mao”

— 2 arcsin i
{maz + 2E(L? 4+ mB) + /ma2(ma? + 2E(L% + /)

where E = muv?, /2. This is the exact expression for the de-
flection angle in the perturbed Coulomb problem. In the case
3 = 0, Eq. (A3) can be shown to reduce to the Coulomb ex-
pression. In Fig. 7 we compare the exact formula (A3) with

ma? +2E(L2 +mj) |’

the first order expression for £ given in Eq. (25), we also plot
there the deflection angle for the unperturbed Coulomb prob-
lem.

+. On sabbatical leave from Departamento de Fisica, UAM-Izta-
palapa

#. On sabbatical leave from Departamento de Ciencias Basicas,

UAM-Azcapotzalco

L. Basano and A. Bianchi, Am.J. Phys. 48 (1980) 400.

C.E. Aguiar and M.F. Barroso, Am.J/. Phys. 64 (1996) 10042,

L. Landau and E.M. Lifshitz, Mechanics, (Pergamon, Oxford,

1976), Chap. IV.

R.P. Martinez-y-Romero. H.N. Nifiez-Yépez and A L. Salas-

Brito. EurJ. Phys. 13 (1992) 26.

5. H. Goldstein, Am.J. Phys. 44 (1976) 1123.

6. A. Gonzilez-Villanueva, H.N. Nufez-Yépez, and A.L. Salas-
Brito, Eur. J. Phys. 17 (1996) 168.

. R.P. Martinez-y-Romero, H.N. Nifiez-Y¢pez, and A. L. Salas-

Brito, Eur. /. Phys. 14 (1993) 71.

0. Campuzano-Cardona. H.N. Ninez-Yépez, A.L. Salas- Brito,

and G.1. Sanchez-Ortiz, Eur: J. Phys. 16 (1995) 220.

S

:’)TJ

9. N.W. Evans. Phys. Rev. A 41 (1990) 5666.
10. 1. Milnor, Am. Math. Monthly 90 (1983) 353.

11. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics,
(Springer, New York, 1990), p. 180.

12. U. Fano and L. Fano, Basic Physics of Atoms and Molecules,
(Wiley. New York, 1958) Appendix [11.

13. D.L. Goodstein and J.R. Goodstein, Fevaman's lost lecture, the
motion of planets around the sun, (Norton, New York, 1996).

14. ). Sivardiere, Eur J. Phys. 13 (1992) 64.

15. D. Moreno. Gravitacion Newtoniana, (FCUNAM. México
City. 1990).

16. A.L. Salas-Brito, H.N. Naifiez-Yépez, and R.P. Martinez-y-
Romero. Inil. J. Mod. Phyvs. A 12 (1997) 271.

17. E.T. Whittaker. A rreatise on the analytical dynamics of par-
ticles and rigid bodies. 4th edition, (Cambridge Univ. Press.
Cambridge. 1989). £46. p. 83.

Rev. Mex. Fis. 44 (2) (1998) 183-189



