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1. Introduction

We outline examples of fluid-fluid mixing and solid-solid
mixing highlighting kinematical issues. The fluid mixing
case corresponds to the mixing of a fluid with itself; the flow
is driven by boundary motions and 2D and 3D examples are
considered. The solids case—mixing of granular matter—
focuses on non-cohesive particles, possibly differing in den-
sity, mixed by rotation. Two subcases are considered: slow
flow, where distinct avalanches occur, and continuous flow,
where flow is restricted to a thin continuously avalanching
layer, the rest of the granular material rotating as a single
solid body. Open areas are identified throughout.

2. Mixing of fluids

Let us start by asserting that knowing where fluid particles
are advected by a prescribed velocity field is the solution to a
mixing problem. The solution of

dx

T =3 |

with

Vv

0, (1)

where v(x, t) is the Eulerian velocity field, gives the “flow”
or “motion”,

x = &, (xg),
X = Pi=0(x0), (2)

that is, the particle with position xg at time ¢ = ( is mapped
to the position x after a time ¢ via a (nonlinear) flow ®, ().
The basic question is under what conditions is v(x,t) able
to produce mixing? A geometrical view helps. The classical
view is that streamlines confine flows. This is certainly true
in 2D systems but not true in unsteady, and particularly, time
periodic flows 2D flows or steady 3D flows. A time periodic
flow, v(x,f) = v(x,t + T'), can be represented by a map

Xn+1 = F(Xn)
or

xn = F"(Xo), (3)

where n successive applications of the (nonlinear) point
transformation F gives the position of the fluid particle ini-
tially located at xq after n periods of the flow. A periodic
point, p, of the (nonlinear) mapping, F, is a point such that
a particle initially located at p returns to p after n periods,
that is p = F"(p), where the periodicity n is the small-
est value satisfying the equality. Similar maps can be con-
structed by means of surfaces of section (Poincaré sections)
in 3D flows. Let us restrict our discussion to 2D maps. Peri-
odic points of 2D maps can be classified as hyperbolic, ellip-
tic, or parabolic, according to the nature of deformation of the
fluid in the neighbsrhood of the periodic point. A small circle
surrounding an elliptic point returns to its original position
and undergoes a net rotation. Elliptic points are surrounded
by islands, or regular regions, where there is no chaos. Typi-
cally, the lowest period points are associated with the largest
islands. In 3D systems islands represent the cross section of
invariant tori.

These points are nicely illustrated by experiments [1].
Dye structures in time-periodic flows evolve in an iterative
fashion: an entire structure is mapped into a new structure
with persistent large-scale features, and with finer and finer
scale features revealed at each period of the flow. Thin stria-
tions are produced at the expense of thicker ones, and length
scales (characterized by a striation thickness) decrease ex-
ponentially in time. Islands translate, stretch, and contract
periodically. Although islands undergo a net rotation, they
preserve their identity, and represent the primary obstacle to
efficient mixing. On the other hand, particle trajectories in
chaotic regions separate exponentially fast, and material fil-
aments are continuously stretched and folded by means of
horseshoes. This area is reasonably well understood [2] (see
Fig. 1).

As opposed to 2D case the number of theoretical studies
addressing chaos and mixing in 3D flows is small [3] this can
be attributed to the fact, that until now, there has not been an
experimentally tractable bounded 3D system that allows for
detailed computational investigation. Let us consider here a
system inspired by the “chaotic droplet” model of Bajer and
Moffat [4] and Stone er al. [5].

The apparatus consists of a cylindrical tank of diameter T’
with a flat disk impeller with diameter D, the liquid level is
denoted as /1. Both the impeller and the tank can be rotated
at angular speeds €2;,, and ., respectively, and the angle
of the impeller with respect to the vertical, a, can be changed
(see Fig. 2). The impeller’s rotation creates a secondary flow,
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FIGURE 1. Chaotic mixing in time-periodic cavity flows. Exper-
iments and computations reported in Ref. 2. The top and bottom
walls move in counter-rotating directions. Top figures (a, b, ¢) are
computed Poincaré sections, bottom figures (d, e, ), experiments
with passive tracers. The displacement of the walls, the numbers of
widths units the walls move in one period are (a) 4.62. (b) 6.93, and
(¢)9.24

towards the impeller and then radially outwards; at the same
tfime rolation creates a twist. The combination generates
nested nested tori above and below the impeller. Denote as
o the angle between the impinging vortical flow and the axis
of rotation. When the flow is axisymmetric (a = O), the un-
stable manifold of the lower fixed point joins smoothly with
the stable manifold of the upper fixed point, and both coin-
cide with the axis of symmetry. In this case all the remain-
ing trajectorics lie on nested invariant tori. Perturbation of
the geometry (a 0) results in chaos from two sources:
the manifolds of the fixed points intersect resulting in homo-
clinic tangles near the axis, and some of the I-tori break into
higher order tori surrounded by homoclinic tangles. In

the Poincaré section the 1-tori appear as closed curves and the
higher order tori as a chain of islands. The tor1 with the most
irrational winding numbers survive the greatest magnitude of
perturbations.

KAM tori (islands of regularity in 2D cuts) are revealed
clearly in 3D experiments. Higher period islands have not
been experimentally captured in 2D experiments (islands in
2D experiments are. in general, only indirectly visualized:
a blob placed in the chaotic region stretches to fill the entire
chaaotic region, the remaining area being the regular island: in
fact, it normally takes thousands ol periods to define the con-
tour of an island in numerical Poincaré sections). The finite
thickness of the experimental streaklines, which results in the
streaklines being stretched into sheets or ribbons, facilitates
visualization. Islands in the Poincaré section resull from the

FIGURE 2. Chaotic 3D advection in the “fundamental mixing
tank”". Top figure. experiment: bottom figure, Poincaré section. The
Reynolds number of the flow is about 7.0 (G. Fountain er al.. in

progress ).

the intersection of tori with the laser-illuminated surface. The
robustness of these analog (experimental) simulations lies
in their ability to produce connected structures, versus the
“peppered-like™ appearance of computational results involv-
ing tracking of single particles. There is a need for experi-
mental and theoretical studies of mixing in 3D flows.

What happens if the {Tuids are changed? There are no ex-
periments we know of addressing this issue in 3D and only
a handful in 2D. Niederkorn and Ottino [6] studied exper-
imentally and computational mixing of Boger fluids—a vis-
coelastic fluid with a constant shear viscosity—in the 2D flow
hetween (wo concentric cylinders, In the limit of slow flow,
a Boger fluid behaves as Newtonian; faster flows lead to vis-
coclastic effects quantified in terms of Weissenberg number
(IWe), the ratio of the relaxation time of the fluid to a time
scale of the flow; e.¢. (ke inverse of the shear rate. Spectacu-
lar effects occur at moderate W e Figure 3 shows the contrast

between the Newtonian (We =2 0) and the non-Newtonian
case (We = 0.06). We know of only one paper addressing

the explanation of these effects [7].
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FIGURE 3. Chaotic advection of viscoelastic (Boger) fluid in a time
period flow. The top row corresponds to experiments, the bottom
row to computations. The left column corresponds to the Newto-
nian limit (We =2 0); the right column to We = 0.06.

3. Mixing of solids

A general initial caveat is necessary: In mixing of solids
mixing and unmixing (segregation) come together. Granular
mixtures of dissimilar (and not-too-dissimilar) materials of-
ten segregate when shaken or tumbled. Thus, for example,
differences in size result in percolation of smaller particles
in flowing layer 8], differences in size [9] or density [10]
result in radial segregation (formation of a segregated core
ol smaller or more dense particles) in the flow in rotating
cvlinders, and differences in the angle of repose resull in
the formation of axial bands in the flow in rotating cylin-
ders [11.12]. Radial segregation becomes evident after 5-10
revolutions, axial segregation taking at least an order of mag-
nitude longer.

Consider first the case of flows of identical particles
Granular flow in a horizontal rotating cylinder and can be
classified into different regimes [13], at low rotational speeds
the flow consists of discrete avalanches: one stops before the
next one begins (the avalanching or slumping regime). At
higher speeds a steady now is obtained with a thin cascad-
ing layer at the free surface of the rotating bed (contivous
flow, rolling or cascading regime; see Fig. 3a). At still higher
speeds particle inertial effects become important and particles
may become airborne (cataracting regime). Evidence for ra-
dial segregation has been presented in a number of previous
works [14-16] it has however, been the primary subject of
study of only a few recent papers [17, 18].

Consider mixing by tumbling in the prototypical tum-
bling system: a rotating 2D drum partially filled with identi-

wedge
intersections

FIGURE 4. Avalanches for various degrees of filling, denoted f.
The figure for f = 0.25 shows that a wedge, after avalanching and
undergoing solid body rotation, becomes part of a new avalanch-
ing wedge. This is the primary mixing mechanism. At f = 0.5
the wedges have no intersections and the mixing vanishes; for
f = 0.5 + =, where ¢ is a boundary layer thickness, a core forms.
The last frame shows the core for f = (0.75.

cal (except for color) granular particles. If the rotation speed
is sufficiently slow the angle of the free surface (#) grows
until a discrete avalanche occurs, and # relaxes from its pre-
avalanche angle, #;, to a new angle, €/;. These two angles
define two wedges, the before and after positions. As the
avalanche occurs, material in the uphill wedge flows to fill
the downhill wedge.

There are two types of maps in this case: a coarse map
defining the gross motion of material during an avalanche—a
wedge goes into a new wedge—and a finer map describing
the detailed motion within the wedge. Thus the motion can

be decomposed into two components: a gecometrical compo-
nent, consisting only of the transport of the wedges, and a dy-
namical component, consisting of a complex rearrangement
of material within the wedge as a result of this transport.

However well or poorly dynamical mixing occurs within
a wedge, malteria: cannot be transported outside of the
wedges during an avalanche. Thus global mixing from ma-
terial in one wedge into a different wedge can only occur
within quadrilateral intersections between wedges. Second,
at a fill level ol 50%;, the quadrilateral intersections vanish.
Consequently we expect global mixing to vanish for a half-
filled drum. Third, the quadrilaterals expand as the fill level
diminishes, so we expect global mixing to improve for lower
fill levels. Fourth, (ill levels greater than 50% produce a core
in the center of the granular mass. No wedges penetrate the
core, so no mixing should occur there. All of these predic-
tions are validated by experiments [19].

Quantitative predictions require a description of the mix-
ing within the wedge. The simplest assumption is that par-
ticles are completely randomized following each avalanche
(this is accomplished by interchanging every particle within
the final wedge with another particle, also within the final
wedge, chosen at random). This is what was done to gener-
ate the simulations shown at the bottom of Fig. 5a. Figure 5h
shows mixing rates calculated for this problem. As predicted,
the mixing rate goes to zero for half full drums, and increases
as the fill level is reduced. Some mixing occurs for fill levels

Rev. Mex. Fis. 44 (3) (1998) 215-22]
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FIGURE 5a. Predictions of avalanche model. Top row shows the model predictions the bottom row, experimental results. The fill levels,
f. from left to right are 0.8, 0.6, 0.4, and 0.2. The material was initially segregated with a verti~al interface dividing two equal parts, as

can be seen in the largest unmixed core in the left column.
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FIGURE 5b. The graph shows a quantitative prediction of the mix-
ing rate as function of the fill level and a comparison with the exper-
imental results (the “mixing rate” is the constant in the exponential
measured as the approach between the approach of the cen-

ter of masses of the two materials).

els over 50%, although the mixing is substantially impeded
by the core (even taking into account the fact that the mixing
rate in the figure excludes the core).

The geometric viewpoint survives even if particles are
changed, provided that they are not so cohesive that distinct
angles of repose become ill defined. In this respect, the ge-
ometric view is more robust for solids than for fluids, where
a change in rheology can have drastic effects on the structure
of the resulting flow (cf. Fig. 3).

In both examples, mixing of fluids and mixing of solids,
there are features that do not mix. In fluids, these are islands
or tori, in solids, these are cores. In both problems, outside
of these regions, mixing can be good, and an understanding
of the causes of these impediments to mixing can be used
to avoid them. To see this in the solids case, we note that
the cause of the core is that mixing avalanches do not pen-
ctrate into this region. By including baffles, we can delib-
erately cause avalanches to penetrate the core, and thereby
involve it in mixing. The mechanism at work is subtle. In
Fig. 6, we show a sequence of sketches depicting what oc-
curs as a tumbler with protruding baffles is slowly rotated.
Initially, avalanches penetrate part way into the baffle, but
the granular flow is eventually impeded by the upper corner
of the baffle. Because granular flows can support a load. the
cavity within the baffle remains for some period as the drum
continues to rotate. After a certain point, however, the angle
made by the batfle becomes sufficiently steep that the grains
near the cavity collapse, and the supported material likewise
settles. As this happens, the core shifts downward, and this
shifting permits material on the outer edges of the core to
enter the mixing zone. In this way, the core can be steadily
eroded.

This brings us to a second similarity between fluids and
solids, namely that symmetries interfere with mixing in both
problems. As an example of this we may mention the case
of two different baffle designs. It might be thought that two
baffles would accomplish twice the erosion of the core shown
in Fig. 6. In fact the symmetric placement of baffles results
in the core shifting in one direction during one half of the ro-
tation cycle and in the opposite direction during the second
half cycle. Consequently the core undergoes no net transla-

tion, and steady erosion does not occur.
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FIGURE 6. Mixing by avalanches in circle with a protruding cavity.
As the material yields and invades the cavity the core is displaced
and eroded.

Another example is the case of 3D cylinders, where one
may want to enhance axial mixing as well as radial mixing.
In the slow rotation regime, radial mixing (possibly excepting
the core for mixers filled beyond 50%) may be accomplished
by avalanching. Under such conditions the axial mixing is
very slow since it is essentially diffusive. Substantially faster
overall mixing can be achieved by a combination of rotation
and “wobbling™ of the axis of the cylinder. Wobbling creates
avalanches along the axial direction [20], the interplay be-
tween avalanches enhances the mixing.

Other lessons from fluid analysis carry over to the solids
case as well. Steady flows in fluids are poor mixers. For
the solids case, a similar message holds. Consider the drum
mixer spun at a faster rate than before, so that the surface
layer flows continuously; one can break the problem in two:
a bulk region, which rotates as a solid body with the drum,
and a surface layer, where mixing can occur. Here the flow is
steady, and we expect that ar equal number of rotations, that
the mixing will be less than in the time-periodic avalanching
regime.

Consider first a few details of the continuous flow in a
cylinder of radius L rotating at speed w. In the continuous
flow regime the surface flow of direction x and normal y is
confined to a thin layer of lenticular-like shape along a free
surtace along — L < x < L which is nearly flat. The overall
flow is comprised of two parts: nearly unidirectional flow in
the cascading layer and solid body rotatiowin the bed. For fill
levels close to 50%, the volume flux in the layer, assuming
the total particle volume friction (¢;) to be nearly the same in
the fixed bed and the cascading layer, is given by

. L2 z?
(I".r.‘>() = 9 (1 - E) S (t)a (4)

where v, is the velocity along the layer, §(x) is the layer
thickness, and () = (}(2) is the volume flux per unit width
in the layer at position . The pointed brackets denote an av-
erage across the laver. This result is obtained solely on kine-
matical grounds and assumes only that the region of flow is
thin. The velocity field can be obtained by assuming a nearly
unidirectional flow [21]. Rescaling all distances with L, so
that ¢ = 2/L, n = y/L and time with 1/w, implies that ve-
locities are scaled with wl, and the flow rate with wL?. The
velocity field, flow rate, and the thickness of the layer are

(5)
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where the overbar denotes dimensionless quantities; ) =
Q/(wL?) and 69 = 1/(2u). The only parameter of the flow
is the maximum flowing layer thickness, 8, which can be
directly measured.

Thus, a general model describing simultaneous mixing
and segregation can be written as

&an Aoy Aoy J af
P gy L g i o o o, B
t Y o ety dy A e dx

af _of
+ = (D(ﬁfay == sz) 3 (7)

where J, = (Jy,, Js,) is the segregation flux of the more
dense particles, denoted ¢, .

The driving force for segregation can be described in
terms of an effective “buoyancy.” Denote by Jg, the seg-
regation flux of the more dense particles and ¢ the angle of
the surface flow with the z-axis. The segregation flux is

Joz = =Coy (p1 — (p)) g cos (8)
where the average density is given by

Mmoo+ paa

Q
G)i -+ (,)3 ())

(»
and C' is an unknown function which is a measure of the re-
sistance to local motion this model has to be tested by par-
ticle dynamics and Monte Carlo simulations; all indications
arc that this model works reasonably well [22]. A challenge
is to develop a companion model for the case of particle size
segregation.

A Lagrangian approach can be used to obtain the dynamic
evolution of the concentration distribution; particles are ini-
tially distributed randomly in the bed and advected by the
flow, taking into account the segregation and diffusion fluxes.

Consider one example of the application of the the-
ory’s ability to reproduce experimental results. The ob-
jective is to homogenize an initially segregated mixture.
In this case the dynamics of mixing and segregation in-
teracl to give a complex evolution of the mixed state.
Figure 7 shows an example of such a process, in which an
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Fiaure 7a. Mixing and segregation in the continuous flow regime. The top row shows the experimental results: the materials are glass

beads and steel balls of nearly equal sizes but differing in density by about 3.8. The numbers in the bottom row. computational results,

indicate the number of revolutions. After three revolutions the denser material has migrated towards the center and the mixing becomes

worse that after just one revolution.
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F1GURE 7b. The graph shows the evolution of the intensity of seg-
regation, /. for different fill conditions and net segregation fluxes,

[t1s apparent that, depending on parameter values, the intensity
ol scgregation, may go through a minimum before reaching steady

state

initially segregated state evolves to an equilibrium distribu-
tion (the continuum particles have been made the “same size™
as the experiments to facilitate comparison). The agreement
is quite satisfactory. Time evolution computations show that
the model captures interesting trends: often the system is
better mixed at intermediate times; after partial mixing the
system unmixes. This becomes clearer if the mixed state at

any time is quantified in terms of the intensity of segregation

defined as
I i — (10)

where { fi;} are the number fractions at a set of N points
uniformly distributed in the bed, calculated from the parti-
cles in a square box of a specified size centered on each point
and f7 is the average lor the entire bed. Figure 7b shows ex-
perimental and computational results for various degrees of
filling and. in the case of computations, different net segrega-
tion fluxes (7). Extensions of the theory and companion ex-
periments need to be developed to investigate optimal mixing
conditions in systems of practical interest.

A final comment, outlining a potentially fruitful arca,
may be in order. We stated earlier that steady flows are
poor mixers. The low in the cylinder in the continuous flow
regime is steady, whercus the avalanching flow is time peri-
odic. We therefore expect that at equal number of rotations,
that the mixing in the time-periodic avalanching regime will
be more effective. One may wonder however, if there are
ways to improve the mixing in the continuous flow regime.,
The answer to this question is yes, but the potential implica-
tions remain to be explored. One possibility is to run the flow
in an ellipse. Figure 8§ shows two cases, for different degrees
of filling, in term of Poincaré sections. It is apparent that they
flow of granular materials can be chaotic.
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