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Meixner oscillators have a ground state and an ‘energy’ spectrum that is equally spaced; they are a two-parameter family of models that
satisfy a Hamiltonian equation with a difference operator. Meixner oscillators include as limits and particular cases the Charlier, Kravchuk
and Hermite (common quantum-mechanical) harmonic oscillators. By the Sommerfeld-Watson transformation they are also related with
a relativistic model of the linear harmonic oscillator, built in terms of the Meixner-Pollaczek polynomials, and their continuous weight
function. We construct explicitly the corresponding coherent states with the dynamical symmetry group Sp(2.R). The reproducing kernel for
the wavefunctions of these models is also found.
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El oscilador Meixner tiene un estado base y un espectro de energia uniformemente espaciado; son una familia de dos pardmetros de mode-
los que satisfacen una equacién hamiltoniana con un operador diferencia. Los osciladores Meixner incluyen a los osciladores arménicos
de Charlier, Kravchuk y Hermite (comunes de la mecdnica cudntica) como casos limite y particulares. Mediante la transformacién de
Sommerfeld-Watson se relacionan también con un modelo relativista del oscilador arménico lineal, construido en términos de los poli-
nomios de Meixner-Pollaczek y sus funciones continuas de peso. Construimos explicitamente los estados coherentes correspondientes al
erupo de simetrfa dindmica Sp(2,%). Se encuentra también el kernel de reproduccién para las funciones de onda de estos modelos.

Descriptores: Mecdnica cudntica; osciladores armoénicos; operadores en diferencias; polinomios de Meixner

PACS: 03.65.Bz, 03.65.Fd

1. Introduction

An oscillator is called harmonic when its oscillation period
is independent of its energy. In quantum theory, this state-
ment leads to its characterization by a Hamiltonian operator
whose energy spectrum is discrete, lower-bound, and equally
spaced [1],

Huy = Enibn,

E, ~n+constant, n=20,1,2,.... (1)

Within the framework of Lie theory, this further indicates that
only a few choices of operators and Hilbert spaces are avail-
able if the Hamiltonian operator is incorporated into some
Lie algebra of low dimension.

If we relax the strict Schrodinger quantization rule, we
find a family of harmonic oscillator models characterized by
Hamiltonians that are difference operators (rather than differ-
ential operators). Their spectrum is also (1), with n either
unbounded, or with an upper bound N. The wavefunctions

are still continuously defined on intervals either unbounded
or bounded, but the governing equation will relate their val-
ues only at discrete, equidistant points of space; the Hilbert
space of wavefunctions will then also have discrete measure.
Thus ‘space’ appears to be discrete rather than continuous.
The two-parameter family of Meixner oscillator models, to
be examined here, is harmonic. Limit and special cases of
Meixner oscillators will be shown to include the Charlier,
Kravchuk, and the ordinary Hermite quantum harmonic os-
cillator models.

We consider the two-parameter Meixner oscillator to be
of interest for intertwined physical and mathematical rea-
sons. Two physical systems, whose description leads to spe-
cial cases of Meixner functions, are the relativistic model of
the quantum oscillator developed in the framework of the
quasipotential approach of Logunov and Tavkhelidze, and
Kadyshevsky [2], and the finite optical waveguide model [3];
as well as the very well-known quantum-mechanical har-
monic oscillator [1], of course. The first two models suggest
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a certain discreteness of space because they are based on dif-
ference equations, rather than differential ones. This is not to
say, however, that space is reduced to points; but rather, that
the equations of motion always relate three separate points
of the continuous wavefunctions, which satisfy discrete or-
thogonality relations. Meixner oscillators seem to be a very
general family of models with these characteristics.

The Hermite, Charlier and Kravchuk oscillator models
are reviewed in Section 2, together with their limit relations.
Their common salient feature is to possess associated rais-
ing and lowering operators for the energy quantum num-
ber n in (1). In the first two, Hermite and Charlier, the

Hamiltonian operator further factorizes into the product of

these raising and lowering operators; the relevant Lie algebra
is the Heisenberg-Weyl one, which can be extended to the
two-dimensional dynamical symplectic algebra sp(2,R) =
(D, 1 k= mii( ] )-

The Meixner oscillator model is introduced in Sect. 3
using well-known properties of the Meixner polynomials
and its difference equation. The dynamical symmetry is also
sp(2. ). Tt is then natural to build the coherent states of
Meixner oscillators in Sect. 4. Section 5 establishes the ana-
logue for Meixner wavetfunctions of the well-known property
of the Hermite functions to self-reproduce under Fourier (and
fractional Fourier) transforms. This property applies in the
processing of signals by optical means [4]. Section 6 shows
that limits and special cases of the Meixner oscillator are the
Hermite, Charlier, and Kravchuk oscillators. In this section
we discuss also how the Meixner oscillator is related the ra-
dial part of the nonrelativistic Coulomb system in quantum
mechanics and a relativistic model of the linear harmonic os-
cillator, built in terms of the continuous Meixner-Pollaczek
polynomials.

2. Hermite, Charlier and Kravchuk oscillators

In this section we collect for the reader the basic facts
on the Hermite, Charlier and Kravchuk oscillators. We in-
troduce their Hamiltonian operator and wavefunctions, as
well as raising and lowering operators for each oscillator
model. Finally, we show the limit relations whereby Char-
lier and Kravchuk “discrete” oscillators converge both to the
quantum-mechanical (Hermite) harmonic oscillator.

2.1. Hermite (quantum-mechanical) oscillator

The linear harmonic oscillator in nonrelativistic quantum me-
chanics is governed by the well-known Hamiltonian

hw , . 1
HY(£) = 7“"(52 — 02) = Tuw [a+a. i 5] L@
where ¢ = y/mw/h 2 is adimensionless coordinate (1m. is the
mass and w is the angular frequency of a classical oscillator);
we indicate J¢ = d/d¢€, and the creation and annihilation op-

erators are defined as usual:

1 1 1
a” = —(&— ), a=—(£+ 0,
\/5((‘ ) \/E((‘ )
[u., a,ﬂ =l (3)
Eigenfunctions of the Hamiltonian (2) are expressed in
terms of the Hermite polynomials H, (), n = 0,1,2,... .

Their explicit form is

; I i
H,(€) =(26)" >FO(—:H ~(1-n); &)
2£)n—)k
(n—2k)!

-3 reg

where [n/2] is §n or 5(”’ — 1) according to whether n is
even or odd. Hermite polynomials are orthogonal and of
square norm ¢,, under integration over £ € R, with measure
pR(€) d€, where

p”(E) - Fii:‘ Cn = ﬁgun!. (5)

Therefore, the normalized wavefunctions

rh:: &) = /PP (€)/cn Ha(€) (6)

1 .
1

v /m2rn!
are orthonormal and complete in the Hilbert space £%(R),
commonly used in quantum mechanics, namely

(4)

=L@ o i

/ AU UEE) = S
S RO U(E) = 8(E—€). )
=0

Their corresponding eigenvalues under (2) define the energy
spectrum of the harmonic oscillator, and are (1) in the form

1
By = hw (n -+ E) (8)
2. Charlier oscillator

A difference (or discrete) analogue of the linear harmonic
oscillator (2), can be built on the half-line in terms of the
Charlier polynomials C, (2; u), for any fixed g > 0 and

n=0,1,2,... [5]. Charlier polynomials are defined as [6, 7]
Crlm; 1) = o Fi(—n, ~m; 1) =3 w (9)

]
= k! i

where (), =T(a+n)/T{a) =ala+1)---(a+n—1)is
the shifted factorial and ['(z) is the Gamma function.
The Hamiltonian for the Charlier oscillator model is a dif-
ference operator [5]
HE(€) = hw [2;1‘

1l /t(£r+l+ ef19

l‘?l
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where by definition
et f(z) = f(z £ y) (1)

is a shift operator by y with the step hy = 1/1/2p. Eigen-
functions of (10) have the same eigenvalues (8); they are or-
thogonal with respect to the weight function

g+ p*

Cf =X o
P @)= Ty 12
and have the form
(|((£):(71)n ﬂP((IfJFi)Cn(NJFiHU) (l})
' n! I ha

[tis clear from the definition (9) that the Charlier polynomials
are self-dual: ), (z; ) = C.(n;p); therefore the Charlier
functions (13) satisfy rwo discrete orthogonality relations

Z U"'gz(‘gk) L“,thk) = {sm.n 3

k

Il
o

3

1{-‘}}(:: (&m) YE (&) = Onm, (14)

>
Il
=]

where & = (k — pt)hy. These are the discrete analogues of
the continuous orthogonality and the completeness relations
in (7).

As in the nonrelativistic case (2), it is possible to factor-
ize [5] the Hamiltonian (10)

1
(e . 7 -
Hog) = Tw(b b+2). (15)

by means of the difference operators

£ ;
b:d,uﬂ-l-&-i—ir’h’df — 71,

Wt = ,u+§c_'”af - VB. (16)
1

These operators satisfy the Heisenberg commutation relation
B,67] =1, (17)
and their action on the wavefunctions (13) is
bUS(E) = VauS_,(€),
bt Pn(€) = Vi + 195,1(6) . (18)
2.3. Kravchuk oscillators

Another difference analogue of the harmonic oscillator [8]
can be built on the finite interval [(), N], where N is some
positive integer, in terms of the Kravchuk polynomials [6, 7]

K.(z:p,N) = oFy(=n,—z;—=N;p™1)

T

G
_Z;A:!(_N)kpk 3 (19)

This is a family of polynomials, parametrized by 0 < p < 1,
of degree n = 0,1,2. ... in the variable x.

The corresponding Kravchuk oscillator Hamiltonian is a
difference operator with step /1> = /ZNpq [8].

H"(£) = hw {2‘[)(] —p)N + % 24 (1 __p) Ll

2 hg
—v/p(1 = p) [o(€) "% + a(€ - hz)e’“z”i}} .
N v VAN
alE) = \/(;,;\ = F) (,L\ +1+4 E) . (20)

The energy spectrum is the same as in (8), except that in the
Kravchuk case there are only a finite number of energy levels
ne= 0,1, .. . V.

The Kravchuk polynomials are orthogonal with respect to
the binomial measure

pi(z) = Cyp® G,

C%L = NYI'(z+1)T(N =z +1). (21)

The eigenfunctions of the difference operator (20) are

n(§) = (-1)”%%‘:(1 f;; ]

=
) p<(pN + ,i)
: 12

x K, (pN + &/hs;p, N), (22)

where (7" is the binomial coefficient. The Kravchuk poly-
nomials (19) are also self-dual, and therefore the Kravchuk
functions (22) satisfy the discrete orthogonality and com-
pleteness relations over the points &; = (j — pN )ha:

N
D URE) PE(E) = b

J=0

N
Z L‘“I_lf\' (&u) Y Y_lf\‘ (ER) - ()—n.k ) (23)
3=0

forn, k=0,1, ... N.
Now, it has been shown in [8] that the difference opera-
lors

A(€) =(1 — p) a(€) e"2% — pe~h2P g(g)
+/p(1=p)[(2p— V)N +26/hs] . (24)

A(© =(1 - ple "% a(§) — pa(€) e
+vp(1=p)[(2p — )N +26/ha] ,  (25)

together with the operator

Ap(€) = L

T hw

H*(8) — %(N+ 41 (26)
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close under commutation as the algebra so(3) of the rotation
group,
[440. A] = '—A. [.4{]. A+} = A+,
[A*. A] = 24,. 27

The action of the operators (24-25) on the wavefunctions
(22) is given by

A(O) Y5 (E) = Vn(N —n+ 1) ¢n_1(£), (28)
AT () YR (E) = Vin+ DN =)y (§). @29

We note that the Kravchuk oscillator was applied recently in
finite (multimodal, shallow) waveguide optics [3].

2.4. Limiting cases

Among the previous models, the Kravchuk oscillator is the
most general; it limits to the Charlier oscillator; in turn, the
latter limits to the common Hermite harmonic oscillator [8]:
Kravchuk — Charlier. Because of the limit relation [7]

th Kp(x; p/N, N} = Cllxsgu) (30)

between the Kravchuk (19) and Charlier (9) polynomials,
when N — oc and p = u/N — 0, the operators H5(E),
A(€)/VN and A*(€)/V/'N reduce to the Charlier Hamil-
tonian (15). and the lowering and raising operators (16) for
the Charlier functions, respectively. The so(3) algebra (27)in
turn contracts to the Heisenberg-Weyl algebra (17).
Charlier —» Hermite. In the limit when the Charlier pa-
rameter ;1 tends to infinity, we have [7]

lim hy™Cn(p+E&/h1ip) = (=1)" Hn(§) - (31

ﬁl-‘*.’x,‘
Similarly, in the limit p — o0, the operators (16) become
b — a. bt — a*,and HS(€) — H"(£). The Charlier func-
tions (12) coincide then with the Hermite functions (6), i.e.
lim byt R(6) = vne). (32)

Kravchuk —— Hermite. From the limit relations [7, 8]

Jim (=1)"y/e} (p/a)" Kn(pN + &§/h2;p, N)

1
= \/WHR(E,), (33)

and

\iiny hy' p*(pN +&/h2) = et (34)

il
JT
it follows that

lim hy Y2 E(€) = ¥nlf). (35)

N—oo °~
Also, when N — oo, the operators H*(£), A(€)/V'N and
A*(E)/\/.\—' reduce to the Hermite Hamiltonian (2), annihi-
lation a(£), and creation a™ (£) operators (3) for the ordinary
quantum harmonic oscillator, respectively. The so(3) alge-
bra (27) of this finite oscillator contracts to the Heisenberg-
Weyl algebra of quantum mechanics.

3. Meixner oscillators

We now organize the properties of the Meixner polynomi-
als [6, 7] according to the scheme followed in the previ-
ous section. Known orthogonality relations for the Meixner
polynomials lead to orthonormal functions and a difference
Hamiltonian operator, whose spectrum is the set of energy
levels (1).

3.1. Meixner polynomials and functions

The Meixner polynomials [6, 7] are Gauss hypergeometric
polynomials

Q‘l[n(‘f;d\”‘r') gF](—H,*E;;';l].# 1/";')

Me(n; 3,7) - (36)
They form a two-parameter family of polynomials, for 3 > 0

and 0 < v < 1,0f degreen = 0,1,2..... Their orthogonal-
ity relation is

3 M (m) M (ms B,7) Mi(m3 B,7) = dndpi - 37)
m=0

with respect to the weight function and square norm

(B)e

cl
S

Il

p(6)

n!

(Bl — )8 (38)

e =

Hence, the wavefunctions of the form
(€ B, )= (=1)" ;JM(“:)/(I.,I;UH(E: 3,7), (39)

satisfy the discrete orthogonality relations

oo
Z LIT!‘UH: A, mf) 1"‘:’:-1(”]_1 :".5~ Y) = ’)-n.k s

m=0

S (s B,7) U ('3 8,7) = B, (40)
=0

as a consequence of (37) and the self-duality of Meixner
polynomials (36). Henceforth we shall supress for brevity
the super-index M from all operators and functions of the
Meixner oscillator model.

The Meixner polynomials (36) satisfy the three-term re-
currence relation [7]
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[n+ (0 + B)y — (1 = 7)E]Mn(&;8,7)
= (n+ A yMps1(& 8,7) +nMy_1(€8,7), (41)

and the difference equation in the real argument

[v(& + B)e% + ge~% — (1 +7)(E+ B/7)
+ (1 +7)(n+ B/2)] Ma(&8,7) =0. (42)

Hence, the functions (39) are eigenfunctions of the difference
Meixner Hamiltonian operator

H(E) = 122 £+ 5/2)
\/,7

1= [1(€)e% + u(€ —1)e~%] | (43)

&) =VEFTDEFB). (44)
with eigenvalues

E,=n+p3/2, =02 e (45)

3.2. Dynamical symmetry algebra Sp(2, ®)

As in all previous cases, we can construct the dynamical sym-
metry algebra (see, for example, Refs. 9 and 10) by factoriz-
ing [11, 12] the difference Hamiltonian (43). Indeed, one can
verify that

H() =BB"+3/2-1, (46)

where B = B(£) and BT = B*(£) are the difference oper-
ators

1 ;. 5
= m[1/§+1(,7057 f’)’(f‘l‘ﬁ—‘l)ﬁ_fdf] ) (47)
\/117 [67%3‘ VE+T1-e2%\/4(€+8 - 1)] .48

It is essential to note that the factorization of the Hamilto-
nian (43), in contrast to the case of the harmonic oscillator (2)
and the difference model (15), does not lead immediately to a
closed algebra consisting of H (£), B and B*. To obtain such
an algebra, we compute the explicit form of the commutator
between the last two,

BT =

(B.B*) = H(e) - 122 [¢ + 58— )]
22 e Dl w

The right-hand side of (49) suggests that it is necessary to
introduce new operators

O = 17 = OE IE -

U‘ \/£+1("’ B*—

These new operators have the following commutation rela-
tions with the Hamiltonian operator

———e %pug), (50

~u(s) % (51)

(H,C] = —C + % (H+1-8/2),  (52)
[H,C*] = CF — \if (H+1-8/2).  (53)
!

We now build the difference operators

1
= Ot ——(H+1- f/2)
+ /
VI

) _ , g &
- Il?,u(f}e“e-f-1_79—6’6,,(,{)71*\:-{_%(54—8/2),
(54)

1
=C—— (H+1-8/2

ﬁ( B/2)

1 : 2

:1—3“(5}86”11“)‘#(5)—%(5%/2). (55)

Together with Ky = H, they now form the closed Lie algebra
sp(2,R),

[1‘;[], 1\-25:] = i}—(:t 4 [1\'ﬁ, I{+] = 2]\’(] 4 (56)
The raising and lowering operators K. and K_ are con-
nected by with the cartesian generators

m=*é(1{+-1f_)= (W™ —e=%u(@)],  (57)

2
; L. . 1 ,
K= _E(I\+ +K_)=— 2(1t f_y) [;1,(5)5'35 + e‘de'u(g}]
+ g({#ﬁ/%. (58)

The invariant Casimir operator in this case is
2 _ g2 -2 -2
o= Ky - K{— Kj

=K -Ko-K,K_

—(E . 1)1 (59)

272
The eigenvalue —3/2 of the Casimir operator K? deter-
mines that the model realizes the unitary irreducible repre-
sentation D (—/3/2) of the Sp(2,R) group. The eigenvalues
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of the compact generator Ko(&) in such representations are
bounded from below and equal to 3/2+n, n = 0,1,2,....
In other words, a purely algebraic approach enables one to
find the correct spectrum of the Hamiltonian H (§) = ho(§)
in (45).

The action of the raising and lowering difference opera-
tors \'y and A’ _ on the wavefunctions (39) is given by

N b "7‘;"11 (E- Ba HJ") = Kn+1 'tf"’n-f—l ('5.1 H ’7") s
K_ny (E» B, ’7’) = Kn "L'nfl (‘fx fju 7) ) (60)

where &, = n(n + 3 —1). Hence the functions
', (&5 3.7) can be obtained by n-fold application of the op-
erator [\ . to the ground state wavefunction, that is

1
0 -“(EZ f ,." } — — ]\'n L-. (1, d. A_) . (6])
n!l(8)x + Volg :
Yal€: B,%) = (1_«");‘1'0({). (62)

3.3. Unitary equivalence in the second parameter

Observe that the eigenvalues of the Casimir operator (59),
as well as the matrix elements (60) of the operators I\
and v, do not depend on the second parameter, v, ol the
Meixner wavetunctions. Therefore the basis functions (39),
corresponding to two distinct values of the parameter v, must
be intertwined by a unitary transformation. To find its explicit
form we may compare two sets of the generators K¢, /') and
N5 [see formulas (43) and (57,58)], corresponding to differ-
ent values v and +'.

Introducing angles # and &' such that 4 = tanh*(#/2),
~" = tanh®(#'/2) and § = @' — @, the relation between the
two sets of generators is written as

Ky = coshé K + sinh é K7} |
Ky =XK7, (63)
K, = sinh § K, + cosh é K} .

This shows they are related by a boost in the 0-2 plane by
the hyperbolic angle 6 € R. Consequently, the wavefunc-
tions (39) with different values of the parameter v are con-
nected by

GERIET AR N GERD
= ’
> MYIT (€:8,9') - (64)
k=0

I

The last expression is the matrix form, with elements

MY =S (€ 8,7) b6 8.7)
=0
- k (j)n(*ﬂk §yntk
= (—1) T (tanh 5)

X (rosh %) “ (k, 3, tanh? %) . (65)

In deriving (65) we have used the addition formula for the
Meixner polynomials (36) given in Ref. 13, Eq. (A.6).

4. Coherent states

The dynamical symmetry of the Meixner oscillator
model (43), allows us to construct two kinds of coherent
states [14, 15]. Recall that in the case of harmonic oscilla-
tor (2) coherent states are defined as eigenstates of the anni-
hilation operator a(£) [16]. Coherent states for the model (43)
can be defined either as eigenstates [14] of the lowering op-
erator ' (&), or by acting on the ground state (62) with the
operator exp[CNy(&)] [15]. This gives rise to two distinct
coherent states.

4.1. The Barut-Girardello coherent states

Characterizing the Barut-Girardello coherent states by the

complex number =z € (', which is the eigenvalue under the
lowering operator,

K_o:(&:08,7) = z¢:(&,8,7) , (66)

these coherent states can be expanded in terms of the wave-
functions (39),

3,7} (67)

(& 0,7) = Z ‘\/ﬁ V(&5

=0

Using the generating function [7] for the Meixner polynomi-
als (36)

o i [ g

5 — Ma(6:8.7) = e lF,(—a;J;*r.), (68)
. Y

n=0 4

their explicit form is found to be

= = v—1
@ (&8, Y)=e VT | F| (ffz 3; ’7_;:) ol(€;3.y): (69)

These coherent states are overcomplete and therefore
nonorthogonal,

Zf?)ﬁ(f:ﬁi”y‘) o= (6 8.7) =
£=0
(2*2 YRR (Vera®), (1)

where [,,(z) is the modified Bessel function.
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4.2. Perelomov coherent states

The second definition of generalized coherent states is due
to Perelomov [15]; it is built through the action of the group
operator exp(( /'y ) on the ground state 3y (¢; 4, 7v):

1 — |¢12)5 2exp(CK 4 ) o(E; B,7)
218/ (B)n
ey -

n=0

velEl =

={1 = " n(&8,7), (7D

where ¢ is a complex number such that |¢| < 1.
Using the generating function for the Meixner polynomi-
als [6, 7],

(]
ngﬂ n!

we find

Y ML (& 8,7) = (1— f—'r)é(l—i)'g'"ﬁ, (72)

CA Y (1 — |712Y8/2 0\
xc (& 8,7) =(1 = |¢|2)%/ (1+ ﬁ)
(L4 G

(€ 8,7). (73)
These coherent states satisfy the relation [¢f. (70)]

3 x2& B xer (& B,7) =
£=0
=B a-KrFPRa ey,

5. Reproducing transforms

Consider the task to find a reproducing kernel for the Meixner
functions (39), defined by the relation [17]

Y Ki(6,8) nl€, B7) = 7 ¥n(& B,7) (75)

£'=0

The quantum mechanical analogue of this expression is the
property of Hermite functions to reproduce under fractional
Fourier transforms of angle 7 for ¢ = e'"; the common
Fourier transform of kernel exp(7££") corresponds to 7 =
7/2 [18]. The Fourier-Kravchuk transform has the same
property on the Kravchuk functions, and has been shown re-
cently to apply to shallow multimodal waveguides with a fi-
nite number of sensors [3].

Using the dual orthogonality relation of the Meixner
functions (40), the explicit form of the kernel & (&, &) is
found for |t < 1,

Ke(6,€) =Y t"¢n(& BN Un(€:8,7).  (76)

n=0

Itis a bilinear generating function for the Meixner functions.
By the definition (76), the reproducing kernel K;(&,¢&') is

symmeltric with respect to exchange of £ and ¢’, and because
of the orthogonality relation (40) it has the property

Z,\

£'=0

alE &) = K [E,6") - (77)

Reproducing kernels for the Charlier (12) and Kravchuk (22)
functions have been discussed in [19], whereas the cases of
the g-Hermite and Askey-Wilson polynomials have been con-
sidered in [20] and [21, 22], respectively.

Substituting (39) in (76), we can write

plE) (&) (1= 9)"
DI LAMTIRCTR

Ki(€, &) =

Y) Mn(€'58,7) . (78)

The sum over n in (78) is the bilinear generating function
(Poisson kernel) for the Meixner polynomials [23],

> Ol (6 7) Ma(€'38,79) = (1 = )06
n=>0 .
(e 107
1-—--— <>F i ,[ji . 79

Thus the kernel A2y (£. €') is written as

(1= )21 —p)He
(l — '}t)g'l‘_f"ﬁ“j

Ki(&€) =vp(&) p(&)

x2 F) [51 85 '((1_ ;))] . (80)

For integer £ and &' we have the limit

phlln— Kr(g,ff) = (Séfr . (81)

In this limit, the relation (76) coincides with the dual orthog-
onality (40) of the Meixner functions.

The limit of (80) when t — i (7 — 7/2) corresponds to
a discrete analogue of the classical Fourier-Bessel transform;
whereas the latter integrates over the nonnegative half-axis,
the former sums over the integer points £ = 0,1,.... The
limit is

K€, &) = lim K (&, )

t—1

(_23;)(£+£’)/2(1 — )8

f o !
[}(S)IJ(E ) (1 _ i"'f)'£+£'+'8
1. 2
%27} [5 et g L - L0 PSS
It is easy to verily that for integer £ and £",
o0
N KB EYR (") = e (83)

£'=0
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6. Limit and special cases

The difference model of the Meixner linear harmonic oscil-
lator family (43) contains as limit and particular cases all the
models of Hermite (2), Charlier (10) and Kravchuk (20). We
make these limits explicit below. Here we discuss also the
corresponding relations with the radial part of the nonrela-
tivistic Coulomb system in quantum mechanics and a rela-
tivistic model of the linear oscillator, built in terms of the
continuous Meixner-Pollaczek polynomials.

6.1. Meixner — Hermite

From the recurrence relation for the Meixner polynomials
(41), it can be show that the following limit to the Hermite
polynomials holds:
; ++/2
lim (20)"/*M,, (”—17”5 5:}) =(1)"Ha (). (84)
=3O Sl ;

o
Furthermore, measures and normalization coefficients relate
as

V2 i 2
R e A
lim (21/)”/2 (1‘7)”/27(1” =+/2nn!. (86)
V=300

The wavefunctions (39) with argument (v +v/2v€) /(1 —
~)and [} = v/, coincide in the limit v — oo with the wave-
functions of the linear harmonic oscillator (6), i.e.,

(Bl . (vEV2E v
N 1y Y

The combination Ky(&) — v/2v reproduces, in the same
limit, the produd a® (&)a(£), whereas the matrix elements of
V/7/v K< (€) converge to the creation and annihilation op-
erators at (& ) and a(£), respectively. The Meixner oscillator
family (43) thus contains as a limit case the linear harmonic
oscillator (2) of quantum mechanics.

lim
»—00 (

)-u ©. @

6.2. Meixner — Charlier

It is known that the Meixner (36) and Charlier (9) polynomi-
als are connected by the limit relation [6, 7]

11111 My (& B, 1/8) = Cr(&, ). (88)
Hence in the limit when 3 — oo and v = p/3 — 0, from
(82) one obtains the reproducing kernel for the Charlier func-
tions [19]:

KS(6,&)y=_Em K€ ¢€)
B—o0, By=p
e S (=2ip)e+e
Ll

1
x 2Fp [—f, =£&; *2#] : (89)

Using the limit relation (88) it is easy to check that
Ji n(p+ &/ B,/ B) = PR(€) . (90)
B—oo

Hence the wavefunctions (39) with argument o + ¢/hy and
parameter v = /3 coincide, in the limit when J = oo,
with the wave funcitons of the difference (discrete) model
of the Charlier oscillator (10). In the same limit, the com-
bination H(s) + (1 — ) reproduces H(&)/hw, whereas
B~Y2K L (€) tend to the raising and lowering operators B+
and B, respectively.

6.3. Meixner — Kravchuk

The Kravchuk polynomials (19) are also a particular case of
the Meixner polynomials (36), with the parameters 3 = — N
and v = —p/(1 — p), that is,

I (& V) = My (& =N, pllp—1)) . 91)
In this case, from (82) one obtains the reproducing kernel for
the Kravchuk functions (22) [19],

, N—g—¢'
K (6.€) =y (~2ipg)e+€ €405 1~ (-]

X gF]

L= (92)

ﬁ]

As follows from the relation (91) for [
v = —p/(1 — p) and argument pN + /2p(1l — p)! f
the model (43) coincides with the difference model of the
Kravchuk oscillator (20).

6.4. Meixner — Laguerre

The limit relation |7, 24]

n!
Ml e B BY = BT
',1112'}]4\{[71(~?'/'rivf3:1 h) (.s.i)nL" (), (93)

where L% (x) are the Laguerre polynomials, enables us to
consider the nonrelativistic Coulomb system as another limit

case of the difference model (43). Indeed, from (39) and (93),
it follows that

Illn%] \/_t,'n(Qk?"/.’i,; 204 2,1 —h) = V2krR, (2kr), (94)
where

7!

Lo—2/2 [ 2141
mrasnr e @ 09

By (g)y= (—=1)"

is the radial wavefunction of the Coulomb system (see, for
example, Ref. 25), » is the radial variable, [ and n + 1 + 1
are orbital and principal quantum numbers respectively, and
k=me? /R (n+1+1).
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In the limit h — 0, the generators Ky (z) and K 4 (),

where = = 2kr/h, reproduce the well-known generators of

the dynamical symmetry algebra su(1,1) for the nonrelativis-
tic Coulomb model [9]

Jog = — L ,-a;—? s — M _ .I\'QJ‘ . (96)
2.’!‘ r
Jy == Jo + kr F (rd, +1/2). (97}

This connection between the Meixner polynomials and
radial wavefunctions for the nonrelativistic Coulomb system
can be used for constructing a g-analogue of the Coulomb
wavefunctions in terms of the g-Meixner polynomials (see
Refs. 26 and 27).

6.5. Meixner-Pollaczek (relativistic) oscillators

There is the family of Meixner-Pollaczek polynomials

(2/\)11

X e F(—n, \—iz; 2X; 1—e®), - (98)
i

Pf,\ ()=
which satisfy the orthogonality relation
P , . ['(2A +n
/ PX(E: ) P (£:6) p7(€) d€ = S ¥ B2
J - !

with respect to a continuous measure with the weight

pr(E) = %(2 sin )% [D(A +4€)|? exp[(26 — m)€]. (100)

The reason why we mention these polynomials here is
the following. In Ref. 28 it was shown that the Meixner poly-
nomials M, (&3, ) and the Meixner-Pollaczek polynomi-
als (98) are in fact interrelated by

—ing

BAE8) = ——— (2N ML GE = X 2X e ),

o (101)

The transition from the discrete orthogonality (37) for the
Meixner polynomials M, (&; 3, v) to the continuous one (99)
is analogous to the well-known Sommerfeld-Watson trans-
formation in optics and quantum theory of scattering.

In the relativistic model of the linear harmonic oscillator,
proposed in [29], the wavefunctions in configuration space
are expressed in terms of the Meixner-Pollaczek polynomials
(98) and their weight function (100) with the specific value
of the parameter ¢ = 2/7. The same model in the homo-
geneous external field g corresponds to the value of the pa-
rameter ¢ given by arccos (g/mcw), where m and w have the
same meaning as in the classical case, and ¢ is the velocity
of light [29, 30]. In other words, the relation (101) gives the
connection between the relativistic harmonic oscillator and
the Meixner oscillator, discussed in this paper.
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