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The standard formulation of quasideterministic (SFQD) approach and its connection with the nonlinear relaxation times (NLRT) to charac-
terize the decay of nonlinear unstable systems in the presence of constant external force. has only been developed in terms of two physical
variables and applied for detection of weak optical signals in a laser [1]. The purpose of this work is to improve the above formalism, by
proposing a more general nonlinear Langevin equation with constant external force, and apply such a formalism to the study of nonlinear
unstable systems of one, two and three variables. Only for the case of one variable, we study the effect of Gaussian stochastic fluctuations of
time-dependent external forces. on the dynamical relaxation of such systems.

Keywords: Standard formulation of quasideterministic (SFQD) approach: nonlinear relaxation times

La formulacion estandard de la teoria cuasideterminista (SFQD: standard formulation of quasideterministic approach) y su conexidn con los
tiempos de relajacion no lineales (NLRT: nonlinear relaxation times) para caracterizar el decaimiento de sistemas inestables no lineales en
presencia de fuerza externa constante, ha sido desarrollado solamente en términos de dos variables fisicas y aplicado para la deteccion de
senales dpticas débiles en un laser [1]. El propésito de este trabajo es mejorar el formalismo anterior, al proponer una ecuacion de Langevin
no lincal mds general con fuerza externa constante, y aplicar dicho formalismo al estudio de sistemas inestables no lineales de una, dos
y tres variables. Solamente para el caso de una variable, estudiamos el efecto de fluctuaciones estocisticas gaussianas de fuerzas externas
dependientes del tiempo. en la relajacién dindmica de tales sistemas.

Descriptores: Formulacion estandard de la teorfa cuasideterminista; tiempos de relajacion no lineales

PACS: 05.40.4j

1. Introduction

The standard formulation of quasideterministic (SFQD) ap-
proach has been developed in the context of Langevin equa-
tion and has also been connected basically with two time
scales: One is the so called passage time (PT) distribution and
the other is the nonlinear relaxation time (NLRT), to charac-
terize the dynamical relaxation of unstable systems. We adopt
the terminology of standard formulation for those situations
in which the description of the transient stochastic dynam-
ics is made in terms of the Langevin equation whose asso-
ciated systematic force is necessary derived from a poten-
tial function, such as it can be corroborated in an amount
of works [1-7]. The study of the decay of unstable states
through other descriptions has also been proposed by other
autors [8, 9].

Recently a generalized matricial method of SFQD ap-
proach and its corresponding connection with the NLRT,
has been proposed to characterize the transient stochastic
dyanamics of multivariate unstable systems [10,11]. It is
shown, in this matricial scheme, that the associated system-
atic force of the Langevin equation is not already derived
from a potential function.

On the other hand, the inmediate application of the study
of transient stochastic dynamics in the context of SFQD ap-
proach, has been found in laser systems in which some of
their statistical properties such as, the switch-on time and the
detection of weak optical signals have been well character-
ized via NLRT [1] and PT distribution [2, 12]. This stochastic
description is essentially formulated in terms of two physical
variables.

In this work and also in the context of SFQD approach,
we improve the formalism proposed in Ref. 1 and character-
ize the dynamical relaxation of nonlinear unstable systems
of one, two and three variables under the action of constant
external forces. We compare the results for the case of two
variables with that of Refs. | and 2. We also study the pres-
ence of Gaussian time-dependent stochastic fluctuations of
external forces in the dynamical relaxation of one variable
unstable systems. In this case, we assume a time-dependent
phase diffusion model as that proposed in Refs. 13 and 14,
and analyze the effect of small intensity of the fluctuating
phase.

In Sect. 2 of this work, we exhibit the connection between
SFQD approach and NLRT through a more general nonlinear
Lagevin equation with constant external force. In Sect. 3, we
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show the analytical results of NLRT for those cases of one,
two and three variables. We know that the results in the case
of two variables have already been reported in Ref. 1, how-
ever the results for the cases of one and three variables are
new. In Sect. 4, we characterize the decay of unstable states
of nonlinear systems, in the case of one variable with time-
dependent external force. Concluding remarks are given in
Seet. 5.

2. Standard formulation of QD approach and
NLRT

The nonlinear Langevin equation for the i-th component of
vectorx = (x1,r2,r3), submited to a constant external force
fei can be written as

ri=az; + n(r)z; + fe + &(t); = 1,23, (1)

where @ > () is the control parameter, n(r) is a scalar func-
tion of nonlinear contributions, and f; is the ¢-th component
of the constant external force F,. The fluctuating force or
noise (1) is a Gaussian white noise with zero mean value
and correlation function

(G(1E (') = 2€ 6;50(t — t); =123, (@

and e is the intensity of noise.
The usual definition of NLRT associated with the moment

(r'(t)) of order [ reads as [1]
1 o0

T=—

) = o
My Jo [<?° () — ¢ ),gf](ff. (3)

where 7 is the square modulus of vector x, that is r = x7 +
w2+ 2. The quantity My is defined as My = (r'(0)) — (r') 5.
The quantity (r/(0)) is the initial value of (r'(t)) at time
t = 0, and the quantity (r') its value in the steady state.
In this work we will suppose that (r!(0)) = 0 which physi-
cally means to consider fixed initial conditions.

The connection between the time scale (3) and the QD
approach is achieved through the solution of the linear de-
terministic equation for the variable r [1]. Then, this linear
equation reads

7 = 2ar, (4)
and its solution is
r(t) = 7(0) e***. (5)

Deterministically at time ¢t = 0, the process r(t) has the
value 7(0) and the system is located in the origin of coor-
dinates (0,0, 0) corresponding to the instability point of the
potential U(r) = —ar?/2. We know from the deterministic
point of view that the system will stay on that point, unless
we assume the hypothesis of statistical fluctuations of the ini-
tial conditions around the instability point, this is 7(0) = h?,

where £ 1s a set of random variables. So, because of fluc-
tuations of the initial conditions the process (5) becomes a
cuasiterministic process of the form

r(t) = h%e®t (6)

where h? accounts for fluctuantions of the initial conditions
responsible for the dynamical relaxation of the system around
the unstable state. For ¢ > (), as it is shown in (6), the system
grows as the time goes to infinty, unless it is stoped at some
reference value r,; such that ry; = r(t;) where ¢, is a random
variable. Therefore, the whole process (6) including the order
of moment can be written as

rt(t) = h¥eg(t; — ) +rl6(t - t.), (7)

with #(z) the step function.
With the substitution of the process (7) into Eq. (3) we
obtain

T =)=t (8)

where the constant ' = [1 — (h*") /rl,]/2al. The first term
is known as mean [irst passage time (MFPT) distribution in
the decay of unstable states. The constant C' is the contribu-
tion of the NLRT and accounts for the time scale close to the
potential barrier ry;.

The justification of the hypothesis of fluctuations of ini-
tial conditions, as well as the statistics of the random variable
h is essentially obtained from QD approach. This approach
starts basically with the linear Langevin equation associated
with (1) given by

& = axp+ for +E(E); e [ (9)
and the formal solution reads
zi(t) = hy(t)e™, (10)

where

hi(t) = /” e~ foi + &i(s)]ds . (1

The basic ideas of QD approach is to show that in the
limit of long times, such that at > 1 the process (11) be-
comes a Gaussian random variable. This is so, because for
small value of &(t) we can guarantee that

ilt . . i
lim (t) = lim e ”![fm +&(t)] =0, (12)

t—oo (i t—o00

and therefore /i;(00) becomes a constant that we can call fi;.
Under these circumstances the process (11) can be replaced,
in the limit of long times, by a quasideterministic process
x;(t) = h;e™, orin terms of variable r

r(t) =hfe (13)

which is similar to (6) where the variable h =
v hi + h3 + hi plays the role of an effective initial condi-
tion.
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On the other hand, since h; is a Gaussian random vari-
able, the probability density P(h;) is determined only with
the first two moments (h;) and (h?). It is clear from (11) that
(hi) = fei/a and the second moment (h?) = f%/a® + ¢/a.
Therefore the variance of the Gaussian random variable h;, is
equals to

o2 = (h2) — (h;)? = i (14)

The joint probability density for the space of variables
h = (hy, ho, ha) is the Gaussian distribution

3
P(hy, ha, hs)=cteexp [ —a? Z(h'l - (hi))j] 5 (15)

g=]1

where a? = 1/(20?%) and o is given by (14). The marginal
probability density P?(h) can be constructed with the help of
a new space of variables defined as u = (u;, u2, u3) and us-
ing the transformation

P(hl 3 h.g, hg)(ﬂl]dhzdhg = P(U] Uz, I.Lg)dV 5 (|6)

with dV' = J(u)du is the volume element in the space u and
J(w) is the Jacobian of the transformation given by

o oy ohy
duy  Oua  dug
ah.z 8]12 ()iig
. = |5 17
JT(U) aul 8“2 Oug ( )
duy  Ous  Oug

If we take the variable u; = h, then the joint probability
density in the space (h, ug, ug) will be written in the formal
way as

P(h,us,u3)dV =cteexp |—a®(h*+b*—2b-h)|dV, (18)

where we define b as the modulus of vector b =
({h1), (h2), (hg)) and the dot means the scalar product. Fi-
nally the marginal probability density (/) can be obtained
by calculating the Jacobian and integrating over the rest the
variables (us, ug).

2.1. The nonlinearities in NLRT

The time scale (8) characterizes the dynamical relaxation in
the linear regimé of the nonlinear systems (1). However, the
effect of nonlinear contributions present in the determinis-
tic force of the Langevin equation (1), is taken into account
through the general definition of unstable states in terms of
the variable r which is given by [1]

r(rsg —r)

e i e <

(19)

with Cy = 14 /2a, and g(r) > 0 is a ponlynomial of the
form g(r) = 3" g,r". In the case of (1) the nonlinear
deterministic equation is
Pyi= wiwg Fonlr)ss. (20)
For the r variable we have
7 = 2ar + 2rn(r) . (21)
This equation is compatible with (19), according to the
explicit form of the function n(r). So that, for nonlinear sys-
tems of the form (1) the NLRT associated with the quantity

(r(t)") can be written in terms of a quadrature, by substituting
Eq. (19) into Eq. (3), that is

7S .
T= }</ wdr>, (22)
iy h2 v(r)

T:T[l+(-'+INL, (23)

or

with the definition

: < / : [[1 + S(r)]g(r) + Cqo @}dr> . (24
J h2

st

Ing =

where S(r) is a polynomial function given by S(r) =
5;_:]1 (r/rsi)*. Clearly this time scale characterizes the com-
plete relaxation of the nonlinear system towards its corre-

sponding steady state, characterized by the value r',.

3. Description in one, two and three variables

The linear characterization of those nonlinear systems of one,
two and three variables, by meas of NLRT associated with
(r'), in absence of external force is a known result [1]. Here
we define this time scale as Tf, and it is given for each vari-
able, in the limit of small noise, as

1 y 7 1
0 _ 2. & _afmy 1] B .
= % { In(a’re) — 4 (9) ,}. =128, (25

with ¢() is the digamma function and o* = 1/20% = a/2e.

The complete dynamical characterization of nonlinear
systems (1), is obtained through the time scale (23). In the
absence of external force it is also known and given for each
variable, in the limit of small noise intensity as

 2a

1 B
Ty —{ln(n‘r,,)LJ({;)}%—I,\-L; n=1,2.3. (26)

where Iy, is the corresponding integral term of (24), which
is clearly the nonlinear contribution of NLRT and type de-
pendent model.
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3.1. The NLRT for the case of one variable, in presence
of external force

For this case the probability density P(h) reads

2 2 Dpp 0| 12
1’([!) _ 0 {_2u‘hh(\—(\"(h‘+b‘) ! (27)

'

with b = F, /a, being F, = f.1. The corresponding time
scale in the linear regime, defined as T, and in the limit of
small noise intensity, is

; i —1)ym oy
T}A s T;j i ﬁ ( ) ((Elbl)m,

2a =1 T1 (m —_ 1/2)!

+ Ofe) + O*) + O(eb?) (28)
where the series power is convergent for values of a®b? < 1,
and 77 is the same as (25) if n = 1.

The complete dynamical relaxation in the presence of ex-
ternal force, according to (23) is then

P e —1)ym
=y =

«d ,,,Z_l m('m = 1/2).’

and T} 1s the same as (26) il n = 1.

(Q.Ebg }-m ) (29)

3.2. The NLRT for the case of two variables, in presence
of external force

For this case, we obtain the following result for the marginal
probability [1]

P(h) = 2a2hIp(2a2bh)e=" (B +6%) (30)
where now b = F,/a, with F. = /f2 + f%. The NLRT

associated with (') in the linear regime, for small noise in-
tensity, is

)’Hl

1 oo
DI
m=1

+ O(e) + O(b?) + O(eb?) . (31)

4
II
-.H

mm'

In this case the sum can explicitty be reduced to
Sox_(=)™z™/mm! = —[Ei(z) + v + In(z)], being
Ey(x) is the integral exponential functlon and 7 is the Eu-
ler constant [15, 16]. The time scale T} is given by (25) if
=2

The corresponding NLRT for the complete process, ac-
cording to (23) will be

L =1, 5.2
T, =T 4 — Z (-1) (a®b®)™ (32)

2a min!
m=

taking into account that Ty is the same as (26) if n = 2.

The result (31) reduces to that of Ref. 2
tem, if we take into 7} the order of moment [ = 1 and the
modulus r = E”, being E? the intensity of the laser. On
the other hand, the result (32) reduces to that of Ref. 1 for
the corresponding laser model, if we take the scalar function

) = F/[1 + (F/A)r], where A and F are the parameters
of the laser. In this case the integral term reads, for very weak
optical signal, as In, = (F/k — 1)/2a, wherea = F — k
and & is other parameter of the system.

for a laser sys-

3.3. The NLRT for the case of three variables, in presence
of external force

For this system, we obtain after some algebra, the marginal
probability density

i

Plh)= \/”f hsinh(2a”bh)e 7“'}”lz+b2), (33)

Th

withb = F, /a,and F, = f2 + f%4 + f%4. Inthis case the
linear time scale, for small noise intensity, is now given by

- (=L 2,2
lr — I“ 2p2 m
& LT 2a Z: 2m(m + 1/))|(n ")

+ O(e) + O(b%) + O(eb?) , (34)

being 77} the same as (25) with n = 3.
The nonlinear characterization of the process (1) is again
obtained from (23). This result reduces to

Te —7[>+£Z =1y

212 \m
——(a”b")™. as
2a  2m(m + +1/2)! le?) (33

Here T}, is obtained from (26) with n = 3.

In the three cases, the term a?b? = F? /2ae, which is pro-
portional to F* /. The condition of convergence a*b* < 1
means that the intensity of the external force must be less
or of the same order as internal noise e. This was precisely
shown in Refs. 2 and 3, in which very weak optical signals
of the same order as the intrinsic noise level but 10® times
smaller than the steady-state intensity of the laser, can be de-
tected using the laser as a supergenerative receiver.

4. Description in one variable with time-
dependent extei aal force

Here, we assume an oscilating external force fi (t) with time-
dependent fluctuating phase of the form f.; = Fp cos[®(t)].
In this case, the Langevin equation is the same as (1) excepl
it now reads

a=ax + n(r)r + F.cos ®(t) + £(1), (36)
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where £(f) is again Gaussian with the same properties given
in Sect. 2. The phase fluctuating is taken as a Gaussian time-
dependent phase diffusion model with zero mean value and
correlation function [13]

(®(t)®(t')) = 2Dmin(t — t'), (37)

and D is the intensity of the fluctuating phase.

In the case of time-dependent external force, the formal-
ism of QD approach is similar to that case of constant force,
given in Sect. 2. Here we just summarize the results obtained
for the ramdom variable /. These are

I,

- ) 38
(A a+ D (38)

2

2 € FE
oy = e 39
) a + ala+2D) el

So that, the variance reads
9 € F(.Z Ff

== ' — . 40
= et aariD) (ot DP L

and the probability density P(h) will be the same as (27),
except that the parameter b is given by b = F, /(e + D) and
a’ = 1/(20?) with a? given by (40). The expected result
is that if D = 0, we restore the results in the constant case,
thatis 0° = ¢/a and a®b® = F?/(2a¢). However, if we take
the limit of small intensity of the fluctuating phase, such that
D < a, it can be shown that (40) reduces to 0% = ¢ Ja and

1 -
bt =_= __ED (41)
2ae  a’e

Therefore, in this limit of approximation, the intensity of ini-
tial fluctuations o2 has the same expression as that of the con-
stant case, whereas the term a2b?, according to (41), has a
very small correction with respect to the constant case.

Finally, in the limits ol approximation e < a and D < a,
togheter with the condition F2 /(2ae) < 1, the time scales in
the linear and nonlinear regimes have the similar structure as
that of (28) and (29) respectively.

5. Concluding remarks

The influence of internal fluctuations and external forces on
the dynamical relaxation of nonlinear unstable systems, by
mean of NLRT, is essentially given at early times of the dy-
namical evolution, or well, in the linear region of the unstable
potential. However, the complete dynamical relaxation has
also been well characterized.

Here we have done an effort by improving the formal-
ism of Ref. | and at the same time to characterize the de-
cay dynamics of nonlinear unstable systems of one and three
variables, under the action of external forces, since the calcu-
lation of both series power in the time scales (28), and (34)
are not inmediate results.

The nonlinear contribution I depends on the analyt-
ical structure of the scalar function n(r), and therefore the
time scales (29), (32) and (35) are quite general results. In
the case of laser system of Refs. 1 and 2, the term In; =
(F/k - 1)/2a.

In the case of one variable systems, we have shown that
the effect of small intensity of the fluctuating phase on the de-
cay dynamics of those systems, takes place not in the inten-
sity of the initial fluctuations o2, but only in the the parameter
a’h?, according to (41).

Finally, the application of the results in the cases of one
and three variables, to certain physical systems is subject of
investigation.
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