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We present a classical method for the calculation of the total power radiated by a dipole between two perfect mirrors. We use the modal
theory developed by Glauber and Lewenstein [1] and extend the calculations of Dowling and Bowden [2], to take into account radiation in
all directions. This approach simulates spontaneous power emission by an atom. The method is suitable for understanding how the dipole
couples to the allowed medium modes and how environment affects the power emission. Results are presented for the power radiated by
a dipole placed between two plane-parallel mirrors and in front of a single mirror for all dipole orientations. We also calculate the power
radiated by a gas of noninteracting excited atoms in the cavity formed by the mirrors.

Kevwords: Electromagnetic modal theory; inhomogeneous media; metallic cavity

Presentamos un método cldsico para el cdlculo de la potencia total radiada por un dipolo oscilante entre dos espejos metilicos perfectos.
Usamos el método modal desarrollado por Glauber y Lewenstein [1] y extendemos los cdlculos de Dowling y Bowden [2], tomando ¢n
cuenta radiacion en todas direcciones. Esta aproximacion simula la emisién espontdnea de potencia de un dtomo excitado. El método es
también 1til en el entendimiento de cémo el dipolo acopla los modos permitidos en el medio y ¢como el ambiente afecta la emision de
potencia. Presentamos resultados para la potencia radiada por un dipolo puesto entre dos espejos paralelos planos y enfrente de un solo
espejo, lomando en cuenta todas las posibles orientaciones del dipolo. También calculamos la potencia radiada por un gas de dtomos que no

interactian entre ellos dentro de la cavidad formada por los espejos.

Descriptores: Teorfa electronica modal; medios inhomogeneos; cavidades metilicas

PACS: 42.25.B; 42.55.8

1. Introduccion

Since Purcell [3] showed that spontaneous emission can be
enhanced or suppressed. there has been a lot of interest in
this topic. Some of these works solve the problem using the
image charge method [4.5] and calculate the power emit-
ted by a dipole inside a cavity, considering the interaction of
the dipole with the fields reflected by the walls of the cavity.
Meschede [H] reviews the main results of spontaneous emis-
sion in metallic cavities until 1992. Kleppner [6] and Rip-
pin and Knight [7] present results on the decay of two-level
atoms (TLA) in cylindrical metallic cavities. Other works [8]
use the method of self energies to calculate de radiation de-
cay rate of an atom taking into account the energy shift of
the levels due to the presence of the medium. A recently pub-
lished work [9] deals with spontaneous emission in cavitics
with a so-called photonic-well which is a small dent in one of
the cavity mirrors. Experiments on spontaneous emission in
microcavities have been done by DeMartini et al. [10,11],
whose measurements of the radiated power demonstrate a
significant decay reduction of up to 25 percent with respect
to the power emitled in free space. In those experiments, the

spontaneous emission was measured by means of the Eu-
dibenzoyvlmethane emission linewidth in a tunable microcav-

iy.

Glauber and Lewenstein [1] develop a theory for the cal-
culation of the decay constant for an initially excited TLA
when it is placed in a medium with inhomogeneities. This
calculation basically solves the problem by finding the cou-
pling of a TLA with one vacuum ficld mode and by per-
forming the summation over all the allowed modes present
in the medium. They employ two quantization schemes, and
they calculate the decay of the upper level population using
the Wigner-Weisskopf approximation. Although spontaneous
emission enhancement and reduction seem more likely to be
explained in quantum mechanical terms, Dowling and Bow-
den [2] proved that such modifications are a purely classical
effect. In their work they solve the wave equation with the
radiated fields expressed as a superposition of the allowed
modes given by the Helmholtz equation. They calculate the
power radiated by the dipole from the work done on it by the
fields present in the medium. The power result is essentially
the same as that derived from the Wigner-Weisskopf approx-
imation. The paper of Dowling and Bowden artificially re-
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stricts the wave propagation to the direction perpendicular to
the mirrors, thus ignoring the fact that the radiation can cou-
ple into off-axial modes. It also fails to take into account the
independent TE, TM, and TEM modes of the system. Never-
theless, the importance of this work lies in the semiclassical
description of the spontaneous emission in inhomogeneous
media. The authors also consider radiation in periodic dielec-
tric media. The latter is a very interesting subject these days
because of the diverse applications based on photonic crys-
tals [12].

In this paper we complete the calculation ol radiation
by Dowling and Bowden [2] by considering all the possi-
ble directions of propagation for the radiated power. That is,
we take into account not only the on-axis propagation, but
also the off axis propagation of the electromagnetic waves.
The method described shows how the radiation of a point
source couples into the normal (or allowed) TE, TM, and
TEM modes in a very simple inhomogeneous system. The
total power radiated depends directly on how many of these
modes are being excited.

In Sect. 2 we summarize the derivation of the expression
for the radiated power given in Ref. 2. This result is used
in Sect. 3 to calculate the power radiated by a point dipole
between two parallel metallic plates. We consider separately
the power radiated into the independent mode polarizations
of the field namely TE, TM, and TEM. The density of states
calculation within the cavity in Sect. 4 is useful for the expla-
nation of the discontinuities presented by the emitted power
found in Sect. 5. Plots of the radiated power and its analy-
sis are presented in Sect. 5. The power radiated by the dipole
can be handled in terms of two limiting configurations: the
dipole placed parallel or perpendicular to plates. We also an-
alyze two dipole positions between the plates: =, = d/2
and 2, = 3d/5 where d is the plates’ separation. Section 6
presents the case of a dipole in front of a single mirror; here
the power is obtained as a limiting case of the results given in
Sect. 5. The power emitted by a gas of noninteracting excited
atoms is calculated in Sect. 7, also on the basis of the results
of Sect. 5. In the last section we present the conclusions of
this work.

2. Power emission in an inhomogeneous
medium

We define an inhomogeneous medium as one whose dielec-
tric constant depends on the position. In particular, a dielec-
tric body characterized by a position-independent diclectric
constant, however bounded by vacuum or by a perfect con-
ductor, also gives rise to inhomogeneity. There are several
ways to explain why the power emission is altered by the
medium inhomogeneities. One is that, in the presence of in-
homogeneity, the allowed normal modes, into which the ra-
diation can couple, are different than the ubiquitous plane-
waves that propagate in an unlimited, homogeneous medium.
Another explanation is that reflections are present duc to the

inhomogeneities, so that the dipole actually interacts with its
own redirected field.

To start with, we have lo solve the Maxwell wave
equation for an inhomogeneous medium. In the absence of
sources, the wave equation for such a medium is

=) 92
Vx (VxA)+ o F_g (1)
o= Jt-
where (7. 1) is the vector potential of the field and the di-
clectric constant €(¢7) is a function of the position due to the
inhomogeneity. The ficld fulfills the Coulomb or transverse
vauge [1, 2]

v A =0 )
rather than ¥V - 4 = 0 as in an unbounded, homoge-

ncous medium. For a given material geometry, we can de-
scribe the field therein as a linear superposition of normal
mades or eigenmodes. Each mode may be labeled according
to its wavevector & and polarization index p. So, the total
monochromatic field present in the medium is given by

]Il = Z Z rT;\-.P(F’} exp (.fl;,‘,'ﬁpf) ()-(UJA;P —w). (3)
P

Here W and c?l;‘;r)(-F) are the eigenfrequency and eigenvector
of the k., p mode. The Dirac delta function ensures that the
fields oscillate only at frequencies w that the inhomogeneous
medium can admit, namely the eigenfrequencies wyg . These
normal modes are monochromatic solutions of the Helmholtz
equation, that is

b [v < i, (F)] = —Le(F)ag, () =0. @)

They also have to fulfill the normalization and closure condi-
tions given by Egs. (5) and (6). respectively:

3, | ek T I N o -
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¥, / & hat (P, (F) =0 (F-7"). ()
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Note that both sides of the last equation are dyadics. Equa-
tions (5) and (6) ensure that the d: are a complete set of
orthonormal functions. Dowling and Bowden [2] simplified
the modal theory of Glauber and Lewenstein [1] in order to
find an expression for the power emission in terms of classi-
cal quantities. Basically, they solve the inhomogeneous wave
equation for a source localized in space, that is
e(F) 0% - dr -

W % (T P I) - A=—J, (7)

e? 2 &

where J(7. 1) is a current density corresponding to a point
like dipole, namely,

—

J (1) = waficos (wot) § (F—7,) O(t). (8)
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The dipole has a moment /7, is located at the point 75, is oscil-
lating with frequency w,, and is turned on at the time t = 0,
as evident from the step function ©(¢). Equation (7) can be
solved in terms of the normal modes as given in Eq. (3), and
then ene can calculate the work done by the dipole current
against the ambient electric field to find the radiated power.
Following the procedure in Ref. 2, the power radiated by the
point dipole in steady state is

P wlalp? Z / 2 ‘aﬁp(m : ;,f 5 (% 2 pr) .9

p=1

where /i is a unit vector parallel to /. Equation (9) implies
that the power emitted by the point radiator depends on the
normal modes being excited. The Dirac delta function selects
the modes that have the frequency of the radiator and there-
fore contribute to the radiated power. The total power can be
decomposed into independent contributions from each polar-
ization mode. In the following section we study the radiation
of a point dipole inside a cavity formed by two plane-parallel
MIrrors.

3. Power emission in a metallic cavity

Consider a pair of perfectly conducting, plane-parallel and
infinite metallic plates and a dipole between them, as shown
in the inset in Fig. 1. By the modal theory of the previous sec-
tion, the emitted radiation must couple to the allowed modes.
Indeed, the radiated power can be decomposed into a super-
position over all the allowed and independent modes. In order
to calculate these modes we distinguish between three inde-
pendent polarizations, TE, TM and TEM!. In these polariza-
tion modes, the electric (magnetic) field E (E) is parallel to
the mirror planes for TE (TM, TEM) modes. The independent
polarization modes are defined in the following subsections.
Now we can suppress, without ambiguity, the mode index p.

3.1. TE modes

For the TE mode, the parallel components of E must vanish
at the surfaces of the perfectly conducting mirrors, and hence
this polarization field fulfills the following boundary condi-
tion:

E(x=0,y,z)=E(x=d.y,z) =0. (10)

Our power calculation in Eq. (9) requires the vector po-
tential; we relate it to the electric field using the gauge that
the scalar potential vanishes. Then

= LW
EE:i(—:(IE. (11)
Inside the cavity there is vacuum so we can take the sinu-
soidal solution of the Helmholtz equation and adjust it to the
boundary conditions. Then the solutions for the TE modes
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FIGURE 1. The inset depicts the general case of a dipole between
two perfect mirrors. In the body of the figure we plot the cav-
ity density of states (DOS) for the TE, TM, TEM modes, and for
one polarization mode in free-space. The normalized frequency is
defined as w/(mc/d) = 2d/A, that is, it is the number of half-
wavelengths that fit between the mirrors. The discontinuities are
caused by successive, resonant excitation of standing waves for
an integer (n = 1,2,...) number of half-wavelengths between
the mirrors. For the DOS function normalization we divide it by
A/2cd.

are given by
5 .. (nm _ } )
dg(z,y,z) = Cy8in (TI) exp (ikyy +ik.z) ég, (12)

where ¢ is any vector lying in the y= plane (see Fig. 1), n is
a positive integer, and C'; is a normalization constant. Equa-
tion (12) represents the allowed eigenvectors in the case of an
electric field parallel to the plates. The field is perpendicular
to the wavevector, so the polarization unit vector is related to
the wavevector as

=
&

§— 23 (13)

'p p

3]

é
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E

o

where k2 = k2 + k2.
3.2. TM modes

For the TM modes, the parallel components of the first
derivative of the magnetic field must vanish at the surfaces,
so the boundary conditions are given by

? Hle=tpdl=—rBia=i =

B2 (@@= .y..,)—EB(.r—r,y,z)—O. (14)
To calculate the TM power contribution, we also assume

a harmonic solution for the magnetic field and modify it to

fulfill de boundary conditions (14). Then the magnetic field

is given by

By = C, cos (%1) exp (ikyy +1k:2) €, (15)
which is related to the vector potential by
B; =V x d;. (16)
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Using Egs. (16) and (4) we find that (fore = 1)

9

— c i ]

Hence, the TM normal mode expression results in

(17

iy = —C; [—zk cos (T:r ) T+ % sin (%1:)

X (kyg}+izé)]exp(ikyy+ikzz). (1)

P

3.3. TEM modes

The TEM modes are just the special case n = 0 of the TM
modes. Then, using Eq. (18) with n = 0 we get

—tc : ; 3
dg = :C‘; exp (ikyy + ik.z) T. (19)
i

The reason to consider the TEM modes separately is because
they differ from the TM modes by the normalization constant.
For this mode, the electric field is perpendicular to the plates
and the magnetic field (as for the TM modes) is parallel to
the plates.

3.4. Power radiation contributions

The boundary conditions of the TE, TM, and TEM modes
lead to the discreteness of the z-component of the wavevec-
tor, so because now k = (nm/d, ky, k) the dispersion rela-
tion is

27

Considering the discreteness of k,, the normalization
condition Eq. (5) has to be rewritten as

/ d.’;r(—}j‘%’(;ﬁ) LA (7) =

O 8 (ky — ki )6 (k. — kL)

y

21

Using this normalization condition, we get the normal-
ization constants C'y, (', and C’; stated in the previous sec-
tions as

2 1
d2r’

€1 =

? 1
BN Ty
S \‘A)E .

Arevd

According to Eq. (9), we separate the power due to the
independent field polarizations and add them up to find the
total power emitted. In order to calculate the power contri-
butions of each polarization mode, it is important to note that
Eq. (9) is intended for a wavevector with the three continuous
components. This is not the case in our problem in which the
x-component is discrete. To take this into account, Eq. (9) is
rewritten as

e :E: /

o=

(22)

o) fﬂz

x 8 (u, ~wgp) & (ke - 14

(23)

Without limitation of the generality, we assume that the
dipole lies on the 2y plane and that it forms an angle v
with the y axis. Then, using the mode expressions given in

kp 2 2
= 2 3 ky + K (20) Eqgs. (12), (18), and (19), the normalization constants (22),
and the power expression in Eq. (23), we have that the power
| contributions of each mode are
B mwip? i nm

PTE (u“]a ?~ N(u"ﬂ)) = 22 cos "ff) Z ql“ (T-ru) 3 (24)

) - n=l1

. N(w, ;
B p. To a7 N L L B e g nm
™ (h’, F, (“’o)) = if sty E == pp cos (7 rn)
n=|]
Wo ft“m , plicid n*r? ., /nw
7 cos” i “ZI = sin” (T.ro) (25)
rwau® o

Prem (¢, N(w,)) = 7" Bk o (26)
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Here N(w,) = [dwe/mc] = [2d/X]. The square brackets
imply that we take the integer part of the number therein.
The number N corresponds to radiation with &k, = k. = 0,
and thus to the maximum possible value of the component,
which is (k) max = wo/e = Nw/d. In other words, when-
ever ke, = k. = 0, an integer number of half-wavelengths
N = 2d/ A fits between the mirrors.

4. Density of states

We calculate the photon density of states (DOS) in the space
between the mirrors. It is important to distinguish between
the polarization modes because the TEM mode has a con-
tinuous dispersion relation while for the TE and TM modes
(n # 0) the dispersion relation is discontinuous. In the casc
ol the TEM mode the wavevector is restricted to the yz plane
[see Eq. (19)] and hence the dispersion relation is given by
Eq. (20) with n = 0. We assume periodic boundary condi-
tions for the vector potential, Eq. (19). This means that the
area in k space occupied by one mode will be (27)%/A for
an area A in the yz plane. To calculate the DOS, we take
the area in the ky, k- plane of the i space corresponding
to the frequency interval (w,w + dw), and divide it by the
area occupied by one mode. This gives the number of modes
in the interval (w,w + dw), or, alternatively, in the interval
(k,. k, + dk,) between two concentric circles,

A Aw

9

dw = D(w)dw. (27)

The cases of TE and TM polarizations both lead to_the
same DOS. By Egs. (12) and (15) the wavevector is k =
(n7/d)i+Fk, i+ k- Z and the dispersion relation is as given in
[iq. (20). Then the dispersion relation depends on the quan-

il .—lw‘/Qm'z = Afek,
AwN (w)/2we® = (AfeA) [2d/A],

We plot the Egs. (30) and the free-space DOS (for one
polarization) in Fig. 1. Notice the discontinuities for any in-
teeral value of the normalized frequency for the TE and the
T™M modes.

These discontinuities further arise as the frequency in-
creases, for every integer number value of 2d/A (= n) a new
cavity mode is excited which starts contributing abruptly to
the DOS. It is interesting to note that both slopes and the dis-
continuities of the normalized TE and TM densities of states
are given by [2d/A]. Also, for 2d/\ = [2d /)] (just after the
jumps). the DOS’s of the TE and TM modes are equal to the
DOS in free space (corresponding to one polarization modc).
The free-space DOS (Ad)w? /72¢* can be recovered from
Eq. (30) in the limit d — oo by replacing N (w) by dw/wec

[2d/X] < 2d/X < [2d/X] + 1,

tum number n (= 1.2,...). In order to calculate the DOS,
we have to realize that, for a given frequency « only the
quantum numbers 7 = 1,2, ... 1 (w) can be excited. By
Eq. (20) 11,4y is Obtained for £, = 0: it is the largest inte-
ger that is smaller than wd/me, namely nyax = [wd/me] =
B’{/’\] = N{w). Then the total area in the k. k. plane of
k space corresponding to the frequency interval (w.w + dw)
will be composed of all the contributions n < N(w). Ap-
parently, it A/2 > d then [2d/\] = 0 and no TE and TM
modes can be excited: for these modes the DOS vanishes in
this low-frequency range. If 1 < 2d/A < 2 then only the
n = 1 mode can be excited; clearly, in this frequency range
the DOS’s of the TE and TM modes are the same as that of
the TEM mode—Eq. (29). Next, let’s assume that for a given
Irequency w only the states n = 1 and = 2 are excited
(N = 2). Then, the total arca covered divided by the area of
one mode will be given by

A

(2m)*

P

('_"ﬁnl-'f,l l”l",,| = 2771[\",2 f!!fp'_’:

= '__" !Eu.‘ = D(»‘)f’uz'. (28)

valid for the frequency range 27e/d < w < 3me/d. [Here the
lower (upper) limit is determined by substituting in Eq. (20)
ky =0andn = 2 (n = 3). | For the general case, we

just sum over the k,, ok, arca elements covered by the fre-

quency interval (w,w + dw). Then the DOS is given by

4 e

N kpndhyy = 5 N(w)do = Dw)dw;  (29)
LT Zme*s
f=1

now the frequency interval is Nmc/d < w < (N + 1)we/d.
To summarize, the DOS for the photons inside the cavity is

TEM polarization 30)
TE and TM polarizations 7

{ .

and multiplying it by two, to consider the TE and TM propa-
gations. In this limit the contribution of the TEM mode to the
DOS is negligible.

5. Analysis of the emitted power

As we mentioned before. the total radiated power is the sum
ol all the polarization contributions. That is
Pror = Priy + Pry + Prem, (31)

where the formulas for each power contribution are given by
the Eqs. (24), (25), and (26). In terms of the dipole’s inclina-
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FIGURE 2. Normalized power emitted by a dipole parallel to the mirrors (1 = 0) at a position (a) x, = d/2 and (b) =, = 3d/5. The

frequency has been normalized as in Fig. 1, and the power is normalized by the free-space expression ji*w, /3¢” . The radiation is composed
of the TE and TM components. The discontinuities arising for an odd number of half-wavelenghts within the mirrors (and their absence for

an even number) are explained in the text.

tion, this may be expressed as

Pror = Py cos® ¥ + Py sin® ¢, (32)
where ) and P, are the power expressions for a dipole
placed parallel and perpendicular to mirrors, respectively. So,
no matter what direction the dipole moment may have, we
can express the total radiated power in terms of these two ba-

sic configurations. It is convenient to normalize by means of

the power emitted by the same dipole in free space, i.e. di-
viding by wi;? /3¢*. Then the normalized powers radiated
by the parallel and perpendicular dipoles are

N(A) >
Lo AT = 3 A /\ -‘ 2
% sin’ ('mr%) . (33)
B o e Ty axE
Po(Z N0) =3 Z} (ﬁ) - (;w) n?

F T 3 A
X CO8° (mr:—i) - 3 (%) . (34)

Here, A is the wavelength of the dipole radiation and N =
(2d/A] is the maximum number of half-wavelengths that is
possible to fit between the mirrors for a given w,,. The power
radiated by the dipole depends strongly on N () as we see
from Egs. (33) and (34). These equations can be summed up
exactly, but it is simpler to present them this way. Neverthe-
less, we will have to use the exact summation in Sect. 6. The
same results were obtained in [4] and [8] using a semiclassi-
cal treatment.

In Figs. 2 and 3, we plot Eqgs. (33) and (34) as functions
of the normalized dipole frequency (2d/\) for two different

dipole positions, namely , = d/2 and x, = 3d/5. Graphic
results are also given in [5] for a dipole placed at x, = d/2.

For the parallel dipole (i = 0) the allowed radiation con-
sists of TE and TM modes; the TEM mode does not con-
tribute, as is obvious from Eq. (26). However, for Af2 > d,
N(w,) = 0. This is because the summation in Eq. (34) is
void of terms. Thus, there is a region of no power emission
for the parallel dipole that corresponds to frequencies below
the so-called waveguide cutoff. Indeed, in Fig. 2 the radiated
power vanishes for 2d/A < 1. A dipole radiating at the cor-
responding frequencies has no allowed mode to radiate into.

In case of the perpendicular dipole (¢v = 90°) we see
from Eq. (24) that the TE mode does not contribute. The ra-
diation consists of the TM and TEM modes. For \/2 > d,
again, N(w,) = 0: thus the right side of Eq. (25) is zero.
Therefore the dipole cannot radiate into TM modes below this
cutoff. Hence the radiated power excites only TEM modes
below the waveguide cutoff and is proportional to w3 (see
Fig. 3).

The discontinuities in Fig. 2 derive from the successive
excitation of modes n = 1,2, ... as the frequency increases.
Here it is interesting that for x, = d/2 there are no disconti-
nuities for even integral values of the normalized frequency.
Similarly, for x, = 3d/5 there are no discontinuities for inte-
gral multiples of five. This arises because the mode functions
(12) and (18) to be excited at these frequencies have zero
value at the position of the dipole. That is, we are placing the
dipole at the nodes of the normal mode, so that it will have
no interaction with the dipole.

Generally speaking, if the normalized position can be ex-
pressed as a fraction p/q, p and ¢ integers, then there won’t be
mode excitation if the mode index n is an integral multiple
of ¢. This property can also be verified from Eq. (33) in
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FIGURE 3. As in Fig. 2 for a dipole perpendicular to the mirrors () = 90°). The radiation is composed of TM and TEM components.

which the sine function vanishes if we substitute z,/d = p/q
and n/q is an integer.

For the case of the perpendicular dipole (Fig. 3) we have
a strong singularity for w — 0 as a consequence of the TEM
mode contribution given by the last term of Eq. (34). Here no
discontinuities in the function exist at all because the expres-
sion inside the curly brackets in Eq. (34) vanishes for the new
mode excited (2d/\ = n), leaving the summation unchanged
at the excitation frequency. There are only discontinuities in
the first derivative as a consequence of the new mode excita-
tion.

If A\ << d then the radiation does not “see” the mir-
rors, and P and P, both tend to the free space value as
2d/A — oc.

6. Dipole radiating in front of a mirror

In order to find the expressions for the power radiation of a
dipole in front of a single mirror. We shall show that the for-
mulas for P and P can be obtained from Egs. (33)and (34)
by taking carefully the limit d — cc. First it is convenient to
perform the summations in Egs. (33) and (34). The squared
sine summation can be expressed as [14]

i s N cos(N + 1)8sin N@ .
Z il = 5~ P ; (35)

n=1
By the use of trigonometric identities, it is easy to find a
similar expression for the squared cosine summation. Tak-
ing twice the derivative of Eq. (35) with respect to #, we find
that

N N

) 1 2
Z n”sin” nf = 3 Z n
=1 n=1
1 d* (N cos(N +1)fsin N¢ (36)
4d0% \ 2 2sinf bR
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FIGURE 4. Power radiated by a dipole in front of a single mirror.
The position is also normalized dividing by the emitted wavelength.
Here we can see that the powers for the parallel and perpendicular
dipole inclinations are equal whenever ¥, = nA/4(n=1,2,...),
a result which becomes exact in the limit z, /A — .

where [14]

N )

. ; N(N 2N 4

ZH" = il +1()__( 4-1). (37)
5

n=1

A similar procedure can be carried out for the squared co-
sine in Eq. (33). To obtain the power radiated by a dipole in
front of a mirror, we substitute the Eqs. (35)-(37) in Eqgs. (33)
and (34) and apply the limit ¢ — oc. Then we find that the
free-space normalized power expressions are

3sin(§)  3cos(§)

3sin(&)

Pii= 1= ‘ 38
I o 2?2
W Jcos(E)  3sin(f)

P g G )
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FIGURE 5. Power radiation due to an evenly distributed gas. The
frequency and power normalizations are as in Fig. 2. Here we have
discontinuities for all integer values of 2d/J, as for the DOS (Fig.
). however unlike the case of the parallel dipole, Fig. 2. The great-
est reduction of the power is 25 percent of the free space value, and
occurs for the fundamental waveguide resonance A/2 = d. In the
inset the radiated power has been normalized by dividing it by the
constant z*m*c/(2d*), so we can see the true dependence on the
frequency.

where { = 4mz,/A. We plot these equations in Fig. 4. We
can see that, for both polarizations, there are positions for
which the dipole radiates as if the mirror were absent, namely
the normalized power is equal to one. This occurs because of
the interference of the radiated fields with the fields reflected
from the mirror. The same result, using the image method,
can be found in references [13] and [5].

7. Radiation by a gas

Here we consider an experimentally realizable situation,
namely a gas of non-interacting, identical atoms occupying
the space between the mirrors. The positions z,, of the atoms
and the directions of their dipole moments, given by the an-
gle v, are both random. Thus we can average the total power
emitted by an atom, Eq. (32), over ¢ and z,,. Both variables
appear only in the arguments of squared sines and cosines:
these we now simply replace by 1/2. Then using Eqs. (32)-
(34) the power emitted per atom is
P =3 ((A) +(Py))

3/ A
=" [ = N
8(2d>(3 +2)

3 AV N(N+1)@2N +1)
8 \2d 6

where we have used Eq. (37). We plot the power per atom
in Fig. 5. The normalized power approaches the limit 1, as it

bI | =

(40)

should. The real power (apart from a trivial numerical factor)
is sketched in the inset so we can see that, as the frequency in-
creases, the power is also growing. We also observe that there
are discontinuities for all integer values of the normalized fre-
quency, as can be expected from the behavior of the density
of states in Fig. I. Because there are no preferences for the
dipoles to have a certain position, none of the discontinuities
is missing as in Fig. 2. No complete power suppression ex-
ists, and the greatest power reduction is 25 percent of the free
power emission for normalized frequencies nearly but less
than the unity. Experimental results [10] reveal that there is a
reduction of around 25 percent, indeed.

8. Conclusions

We have presented a classical method for calculating the
power radiated by a dipole in an inhomogeneous system. It
is important to note that Eq. (9) cannot be applied in the case
of a dipole immersed in a dielectric, for the radiated power
would be also modified by the local field. This method is
based on the dipole field excitation of the normal modes of
the medium, as described by the Helmholtz equation with a
position-dependent dielectric constant. Results on power ra-
diation for a dipole placed between two plane parallel mir-
rors, considering two dipole orientations were shown. We
also explored the cases of a dipole in front of a single mir-
ror and that of a gas of noninteracting excited atoms.

All the results exhibit both enhancement and reduction
of the power radiated with respect to the free space power,
depending on the emission frequency and the dipole-cavity
arrangement. There is only one case in which a complete in-
hibition of the power emission is achieved; this is the case of
a dipole parallel to the mirrors whose frequency of emission
is such that w, < c/d. This arises because, for a frequency
lower than the cavity cut-off, there are no normal mode solu-
tions of Maxwell’s equations for the given system.

The method presented in this paper can be applied to
other cavity geometries, provided that their normal mode so-
lutions are known. Moreover, it can also be used for the cal-
culation of the power radiated in the presence of a dielectric
medium, with the restriction that the dipole be placed in a
vacuum cavity. For example, we can think of a set of dielec-
tric layers with the same refractive index and separated by
vacuum spaces. In this case, our radiator should be placed in
one of those empty spaces, so that we may use Eq. (9) to cal-
culate the radiated power. Therefore, this method can also be
applied for power emission calculations in photonic crystals.

As previously mentioned, some of our results have al-
ready been demonstrated experimentally. However, several
experimental limitations and other effects involved, like su-
perradiance and collective phenomena, are always very diffi-
cult to eliminate.
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