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The unbounded motion of a particle in a Coulomb field is analyzed from the point of view of velocity space using both the hodograph and
the properties of the Hamilton vector. Many features of the motion even the classical deflection function and the differential scattering cross
section in velocity space follow from simple geometrical considerations, the standard Rutherford scattering formula in configuration space
can then be simply obtained from them. We address the connection between initial conditions and the properties of the scattering orbits with
the help of the Hamilton vector. We also discuss an approximate method for calculating the effect of a central perturbation on the properties
of the hodograph and on the Rutherford’s differential scattering cross section.

Keywaords: Classical scattering; Hamilton vector; Keplerian's velocity space

Se analizan los movimientos no confinados de una particula en un campo coulombiano desde la perspectiva del espacio de las velocidades,
empleando para ello a la hodégrafa y algunas propiedades del vector de Hamilton. Muchas caracteristicas del movimiento, incluyendo tanto
a la funcion de deflexion como a la seccion eficaz diferencial en el espacio de velocidades, pueden calcularse de consideraciones geométricas
simples; la seccién usual de Rutherford en el espacio de configuraciones puede obtenerse también muy simplemente de lo anterior. Para
finalizar, estudiamos el efecto de un término radial de perturbacién sobre las propiedades de la hodégrafa y sobre la seccién eficaz de

dispersi6n, empleando para ello una técnica aproximada que aprovecha las propiedades del vector de Hamilton.

Descriptores: Dispersién cldsica; vector de Hamilton; espacio de velocidades Kepleriano

PACS: 03.20.+i

1. Introduction

Unbounded orbits of mechanical systems are very important
nowadays since they have the leading roles in scattering pro-
cesses and scattering has become the fundamental tool for the
study of many physical phenomena. Perhaps the most basic
scattering process of all is scattering in a Coulomb field [1, 2].
One has only to remember the crucial role played by it on
stablishing the existence of the atomic nucleus and, thus, in
shaping the current ideas on the structure of the atom. The
enormous interest in atomic, molecular and nuclear collisions
have also contributed to the importance of unbounded orbits
and to the study of scattering processes in central force fields,
which are often used as a first approximation to many inter-
actions.

For obvious reasons then, unbounded orbits in central po-
tentials have been widely studied from the standpoints of both
classical and quantum mechanics in the last 85 years or so.
Although the study of classical orbits always passes through
the study of those of the Coulomb problem, it is a curious

fact that they had been seldom discussed from the point of

view of velocity space, using the properties of the hodograph
which, at least for the Coulomb problem, is known to pro-
duce some simplifying features. As it was probably known
by Newton, by Bernoulli and by Laplace, and certainly by
Hamilton [3] and by Maxwell [4], the hodograph (i.e., the or-
bit in velocity space) of the classical Coulomb problem is a
circle [5, 6]. This fact might have been known even to Ruther-
ford and could have been used in deriving the famous scatter-
ing formula since it was sort of standard in textbooks of the
second half of the XIX century [4, 7]. It is a curious fact that
this very beautiful result is almost unknown nowadays.

Our point is that, apart from aesthetical considerations,
velocity (or momentum) space can be used with profit for de-
scribing some features of scattering procesess, at least if the
outgoing part of the orbits may be described using asymp-
totes (i.e., when the scattering angle have a simple relation-
ship with the direction of the asymptotic velocity) as is the
case of the Coulomb and other related problems. This is a
point we will try to make in this article. On the other hand,
this appropriateness of velocity space for the study of cen-
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tral problems has been well used by Fano and Fano [8] for
describing scattering, and by Feynman [9] for discussing the
Kepler problem including a derivation of the configuration
space Rutherford scattering formula. See also Gutzwiller’s
hook [10] for its relationship with other features of the mo-
tion.

The article is organized as follows. In Sect. 2 we derive
and discuss the fundamental properties of the Hamilton vec-
tor and establish the circularity of the hodograph, next we
use such constructs to describe some features of unbounded
orbits in the Coulomb problem. In Sect. 3 we employ geo-
metrical considerations on the hodograph to describe a scat-
tering trajectory and next to define and to obtain the difler-
ential scattering cross section in velocity space, we then ar-
aue how to get Rutherford formula from the differential cross
section in velocity space. In Sect. 4 we explore scattering in a
centrally perturbed Coulomb field using again the Hamilton
vector. Section 5 gives some concluding remarks.

2. The hodograph for the unbounded orbits of
the Coulomb problem

The classical Coulomb problem—which is just another name
for the Kepler problem when the interaction is regarded as
clectrostatic instead of gravitational—is a very interesling
problem that can be seen from many angles. For example, itis
known to be one of the rather limited class of superintegrable
problems. This means that there are more than the standard
conserved quantities in it; in addition to the energy and the
angular momentum, the Hamilton vector can be found as a
further constant of motion as it is shown in what follows. The
constancy of h is known to be closely related with the exis-
tence of hidden symmetries in the Coulomb problem [ 1 1-14].

The equation of motion of two particles with masses m,
and 115 interacting through an inverse squared interaction can
be, after separating the center of mass motion and introduc-
ing the relative coordinate r = ry — ra, cast in the form of
the equation of motion for a single particle interacting with a
centre of force located at the centre of mass of the two origi-
nal particles where we also assume is located the origin. The
mass in this equivalent problem equals the reduced mass of
the original particles m = mymsa/(my + ma):

d’r  «a
“LE — T—,_Je.,,, ()
where a, r and &, are, respectively, a characteristic constant
of the interaction, the position vector, and the unit vector in
the radial direction. The constant a can be positive, as in the
repulsive electrostatic case, or negative, as in the attractive
electrostatic or in the gravitational cases. In this work, we are
mainly interested in the repulsive case which corresponds to
a > 0 and hence the motion can be described as scattering.
In the problem described by Eq. (1), the energy E and the
angular momentum L = mr x v are conserved. The conser-
vation of L is a consequence of the central nature of

(b)

FIGURE 1. The coordinate systems used in the article, cartesian
and polar and their corresponding unit vectors, are shown in both
the configuration (a) and the velocity (b) spaces; the scattering or-
bits are also shown as continuous light curves. The centre of force
is located at the origin O in configuration space and coincides with
the external focus of the hyperbolic path. The incoming and outgo-
ing angles are, respectively, ¢ = arccos(1/¢) and — . see Eqs. (9)
and (10) in the text for the definition of ¢. The origin in velocity
space is labeled O.

the interaction which prevents it from exerting torques upon
the scattered particle. It 1s therefore very easy to see that the
motion is confined to the plane orthogonal to L: in this or-
bital plane we may choose a polar coordinate system with
unit vectors &, and &y as illustrated in Fig. 1, where we show
a scattering trajectory in both the velocity and the configu-
ration space. We can write the position vector as r = ré,,
hence the velocity v and the acceleration a become, respec-
tively,

dr . -
Vo= = = reé, + rféy,
and
v B — i s
a= T (F —rf7)e, + (rf + 2r6)ey, (2)
as follow from the polar identities & = fég, and & =
—Qé,.. The angular momentum can also be written as L =
mr2fé. = Lé.. These equations allow us to write the equa-

tion of motion (1) in the form [6. 7. 15]

Te.,‘ = = (.’.n. (3)
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providing us inmediately with a further conserved quantity,
the Hamilton vector

hEv+(I—YéU. (4)

The magnitude of the Hamilton vector, h, is easily seen
to be related with the energy £ and with the magnitude of the
angular momentum L or with the asymptotic speed at infinity

Yoo = /2E [ and L

4 2E  a? a?
h= —+—= v

(5
m L2 )

Z+ T
the last expression can be applied only to the £ > 0 case
since v~ has to be real and shows that when the orbits are
unbounded (which is the only possibility il o is assumed pos-
itive) /i is always greater than v..

It is also easy to see that h is parallel to the velocity at
pericentre v, [compare with Eq. (9) below], therefore, it can
he always written as v, = (h — a/L)éy or, in other words,
that hh points along the semilatus rectum in the configuration
space orbit [15]. Moreover, as can be seen directly in (4), h is
related with the hodograph of the problem, i.e., with its trajec-
tory in velocity space. Besides, the constancy of the Laplace
vector [1, 11, 16], also known as the Runge-Lenz vector, A,
follows as a simple consequence of that of h and of L

A=hxL=vxL+aé,, (6)

it should be clear that A is parallel to the position vector at
pericentre as a consequence of h being parallel to the velocity
there [12].

2.1. The scattering hodograph is a circular arc

Equation (4) shows also that, as the motion proceeds, the ve-
locity moves according to the following equation:

x
v=h- —é&, (7)
L
the hodograph of the classical Coulomb problem is thus a
circular arc of radius o/ L whose centre is at the tip of h, as
illustrated in Fig. 1b. To visualize why it cannot be the com-
plete circle think of the angular range allowed in scattering,

With the help of Eq. (7) the polar components of the ve-
locity are easily seen to be

v.(8) = hsind, (8)

and
8!

va(f) = hcosfl — z: (9)

we can also write down the speed as a function of # for the
scattering orbits

1+ €2 —2ecosb, (10)

where we defined ¢ = hL/o. Expressions (8) and (9) are
the parametric equations of a circle, but notice that according

to Eq. (9) & can only take values between — and o, where
the angle ¢ is defined through cos = 1/¢, that is, # must
be bounded between the points at which the angular velocity
vanishes; as it pertains to a scattering hodograph and since it
is just the angle the outgoing velocity makes with the x-axis,
the angle ¢ is called the outgoing angle (see Fig. 1). This
corroborates our previous claim that the hodograph is not the
complete circle but just an arc. As we will exhibit next, this
can only happen if the trajectory in configuration space is
unbounded and requires that ¢ > 1. The trajectory in config-
uration space follows trivially from (9) and the expression for
vg in Eq. (2),
P .

.'7”_”5_9_’. (L
where we introduced the definition p = L? /ma. This is the
focal equation of a hyperbola in polar coordinates, p is then
the semilatus rectum and ¢ plays the role of the eccentricity;
hence, the orbit in configuration space is unbounded. Ac-
cording to (11) the scattering trajectory is the branch of the
hyperbola whose external focus coincides with the centre of
force (Fig. la). Note also that the denominator in Eq. (11)
remains positive as long as # remains confined within the in-
terval mentioned above; hence, its asymptotes make angles
(outgoing asymptote) and —¢ (incoming asymptote) with the
r-axis. (See again Fig. 1).

As follows from the shadowed triangle depicted in Fig. 2
(see also Sect. 3 below) and from the definition of the eccen-
tricity, the energy can be rewritten in terms of € and h or of ¢
and L. as

HH]‘;) 2
= e = 1l (12)

the condition for unbounded orbits is thus explicitly seen to
be £ > 0ande > 1.

The previous analysis does not emcompass every possible
scattering motion, there exist a limiting case requiring a sep-
arate analysis: a head-on collision with the centre of force.
This is the case of degenerate trajectories with L = (0 where,
as follows from (9), the only angle permitted in such a case is
f} = 0 therefore, the hyperbolic trajectories degenerate into
straight lines. The hodograph also becomes a straight line in
this case [5,6]. As it must be obvious, the constant € can no
longer be interpreted as the eccentricity of a conic in the limit
of vanishing angular momentum.

2.2. Drawing the hodograph

To draw the hodograph if F and L are known, let us consider
a circle with radius v, centered at the origin and let us call
it the reference circle [10]. If the interaction is repulsive, for
a given £, and as h is always greater than v, every point
outside the reference circle determines a possible Hamilton
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FIGURE 2. The complete hodograph for a scattering orbit in a re-
pulsive Coulomb problem is the dark circular arc shown, the dashed
lighther arc is the scattering hodograph with the same values for the
energy and the angular momentum but in an attractive field. The
centre of the hodograph is at the tip of the Hamilton vector h, here
assumed as in Fig. 1, to point in the positive y-direction. The ref-
erence circle of radius vee = y/2E/m is shown as a dashed dark
arc; the centre of any scattering hodograph should lie outside this
reference circle. The vectors v, are tangent to the hodograph,
orthogonal to the reference circle and represent the asymptotic val-
ues of the velocity at t = +o0, besides h bisects the angle between
them. The vector v,, stands for the velocity at pericentre, £ is the
deflection angle. notice the relationship £/2 + ¢ = /2. The key
for many calculations in the text is either one of the similar right
triangles formed by the three vectors h, v, and —aé&, /L, or by
h,v_. and —aé_,/L; &, and &_,, being just & but evaluated
atd = ¢ and @ = —, respectively. One of these fundamental
triangles is shadowed for a better identification.

vector which could then be used as the centre of a particu-
lar hodograph. Let us select one of these points, i.e., select
a value for h, since this is equivalent to choosing the direc-
tion and magnitude of the velocity at pericentre, we are also
choosing the orientation of the orbit. From the chosen point
draw tangents to the reference circle, the lenght of any of
these tangent lines is the radius of the hodograph, i.e., has the
value a/ L. The lenght of the tangents together with their di-
rections give the limiting values of the velocity at t = 400,
that is, they give v, therefore the vector éga/ L is orthog-
onal to v, and the Hamilton vector always bisects the angle
between the asymptotic velocities. (See Fig. 2).

Since the reference circle intersects the hodograph, it nat-
urally gets divided into two complementary arcs. The arc in-
side the reference circle is the hodograph for scattering in a
repulsive potential at a certain F and L, this is so since the
lenght of every possible speed in the problem must be less
than that of v.,. This also makes clear that the point on the
hodograph closer to the origin in velocity space corresponds
to the pericentre of the orbit in configuration space (but no-

tice that, in the case of an attractive interaction, with o < 0,
it is the other way round, the pericentre is the point on the
hodograph farther from the origin). On the other hand, the
complementary arc, outside the reference circle, corresponds
to the hodograph for scattering in an attractive potential with
the same values of the cnergy and the angular momentum as
in the previous case. This is illustrated in Fig. 2, were we
have made h point along the y-axis. You may also easily see
in the figure, or from Eq. (8), that the speed at pericentre is
always given by

vp = h—=o/fL, (13)

compare this result with Eq. (23) below. It is important to
pinpoint that if we were dealing with an attractive interac-
tion, the speed at pericentre would have had to be given by
vp = h + a/L and not by Eq. (13).

3. The Rutherford scattering formula
3.1. The fundamental triangle in velocity space

In Fig. 2, note any one of the right triangles formed by v .,
h and the vector marked —«é, /L (&, is just & but eval-
uated at # = ), or, by v_, h and the vector marked
—aé_,/L; in the figure, the first triangle is shadowed. Any
one of these triangles together with the relations

L = mbuy and B = m.’L‘gO/Q, (14)

where b is the impact parameter (see Fig. la for an illustra-
tion), contains all the information needed to calculate the
properties of a scattering orbit. For example, the energy
Eq. (12) simply follows from Pythagoras theorem applied to
the shadowed triangle, and the outgoing angle, ¢, can be re-
lated to L and v, using simple trigonometry:

x

=

tan ¢, (15)
Voo

this is the well-known Rutherford relation [1]. On the other
hand, notice that such triangle also implies that ¢ can be al-
ternatively calculated as
2bE
@ = arctan [ — |. (16)

x

Furthermore, using again Fig. 2, we can see that £/2 is com-
plementary to ¢, thus we get £, the deflection angle, as

2bF 2LE
£ =7 — 2arctan = 7 — 2arctan :

Q TNV Y
(17

this is the classical deflection function for the Coulomb prob-
lem. From the energy Eq. (12) and the relation i = ea/L,
the eccentricity can be rewritten in the form

42 E2
e=14/1+ — (18)
P

this expression shows that a head-on collision (i.e., a collision
with b = 0) corresponds to e = 1.
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3.2. The differential cross section in velocity space

Now, if we are studying scattering in a realistic setting, we
have to deal not with a single particle moving in a scatter-
ing trajectory but with a whole beam of identical particles
following slightly different trajectories. The only assumption
usually made in this case is that all the particles in the beam
have the same energy and that they come from “infinity” (in
practical terms, they come from far away the scattering cen-
tre). That is, we have to consider that all the particles have a
common incoming velocity v_ ;. The particles differ by the
values of h and of L, trace different hodographs and there-
fore are scattered through different angles. Notice that all the
hodographs traced under these assumptions should be tan-
gentlo v_ ., and therefore that, as we pointed out before, the
égcr/ L vectors associated with them are always orthogonal to
the asymptotic velocity. This implies that the Hamilton vec-
tors of every scattering trajectory in the beam have their tips
on a line orthogonal —or on a plane, likewise orthogonal,
il we take into account the axial symmetry of the scattering
problem— to v_,. This line (or plane) can be considered
also orthogonal to v .— as can be seen in the fundamen-
tal triangles shown in Fig. 2 and in Fig. 3. But be aware that
in this last figure, the asymptotic velocity at v_ ., is not ori-
ented in the same direction as the one displayed in Fig. 2 and,
though there is no asymptotic velocity explicitly displayed in
Fig. 1, it neither corresponds to the case illustrated here.

As the whole scattering process can be assumed to have
axial symmetry around v_ o, it is rather easy to see that every
h associated with a particle in the beam, must lay on a plane
orthogonal to the asymptotic incoming velocity; we shall call
this plane the Hamilton plane. The axial symmetry also im-
plies that the reference circle with radius v, has to be con-
sidered, in the scattering problem under analysis, as a sphere
with that same radius and centered at the origin in velocity
space. Such sphere can be thought of as the locus of every
possible outgoing velocity; then, it is important for the cal-
culation we are trying to perform. One has to realize that the
Hamilton plane is necessarily tangent to the reference sphere
precisely at the tip of v_.,, as is illustrated in Fig. 4 and,
also, although just in a cross section, in Fig. 3.

Note that the whole bunch of scattering hodographs with
L fixed form, on turning the system around v_ .., a torus;
the only section of which actually traversed by the particles
is inside the reference sphere. If we take into account all pos-
sible values of L at fixed E, these tori can be seen to pile up
inside one another having always as a common point the tip
of v_ . See Figs. 3 and 4 for schematic illustrations.

To properly describe a scattering process with experimen-
tal situations in mind, one needs to evaluate the so-called ef-
fective cross section; let us remind the reader that the effec-
live cross section is basically the normalized particle number
flux in the beam [1]. We calculate this in the following but, at
difference with other treatments and in accordance with the
spirit of the article, we evaluate not the configuration space

B

A

FIGURE 3. Two of the (circular) hodographs in the incident beam
of particles are shown together with their common asymptotic in-
coming velocity v ., here assumed to point in the +x direction—
and not in the direction shown in Fig. 1. We show two different
Hamilton vectors h and outgoing velocities v 4~ associated with
two of the incoming particles in the beam. Of the whole circles
shown, the particles actually traverse just the darkened sections
which are inside the reference circle, here shown as a light con-
tinuous circle centered at (). The Hamilton plane is shown, just
in a section, as the continuous straight line A-B. Given the as-
sumed axial symmetry, on turning this drawing aroud the z-axis,
the hodographs span a nested set of tori (all having v_ ., as a com-
mon point), whereas the Hamilton vectors span a right circular cone
whose base lays on the Hamilton plane. See Fig. 4 for a schematic
3D view of this situation.

cross section do but the velocity space cross section d¥ and
then use the latter to get the former.

Keeping in mind the fundamental triangle referred to in
Fig. 3, which on taking into account the axial symmetry
becomes the right circular cone. making an angle £/2 be-
tween its generatrix (defined by h) and its axis (defined by
V_ ), this is shown in Fig. 4. Note that every incoming
hodograph (cach having the same incoming velocity v and
hence the same energy ) is characterized by a Hamilton vec-
torh = v_ +é_,a/L [where é_, = &g(—00)]. Next,
let us say that the particles which scatter through angles be-
tween £ and £ + £, have Hamilton vectors between h and
h + dh; all of these h's have their tips laying on the Hamil-
ton plane, but, as the process is axially symmetric around the
incoming velocity, the tips of such Hamilton vectors trace on
the Hamilton plane an annulus bounded by circles with radii
a/Land oo/ L+ d(ev/ L) —see Eq. (8) and Fig. 4. Thence, the
normalized flux of incoming particles or, as we are calling it
here, the velocity space cross section d¥, is just the area of

this annulus: .
2n (7) 4(Z)]

:‘_’,—.f_r!L: (19)

dx =
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FIGURE 4. The scattering problem seen in a 3D view from ve-
locity space. Of the features mentioned in Fig. 3 and for the sake
of clarity, we decided not to show the nested tori. The reference
sphere, L.e., the locus of the tips of any possible outgoing velocity
for the incoming particles whose Hamilton vectors all lay on the
Hamilton plane. This plane just touches (i.e., istangent to) the ref-
erence sphere at the tip of v_ . Particles incoming with slightly
different Hamilton vectors are represented in velocity space by the
gray annulus with radius /L (i.e, the radius of the hodograph)
and width d(a/L) on the Hamilton plane. In configuration space
this corresponds to the dark annulus with radius b (b is the impact
parameter) and width db shown in Fig. 5. The outgoing particles
associated with this section of the incoming beam, corresponds to
the annulus with radius ve sin € and width vod€ which lays on
the sphere.

the absolute value is necessary since the flux must be positive
and thus we need to avoid the minus sign coming from the
differential. For comparison with the standard configuration
space description take a look at Fig. 5.

As it was to be expected from the start, d¥ has the dimen-
sions of an area in velocity space, i.e., it has dimensions of
v?. If we further consider that all the particles coming in the
beam and having Hamilton vectors between h and h + dh
(that is, particles in the above mentioned annulus) are scat-
tered through the solid angle d2 = 2w sin £d§ in velocity
space (which corresponds to the shaded sector on the refer-
ence sphere shown in Fig. 4). Thus, the differential scattering
cross section in velocity space can be evaluated as just the
ratio of d¥ to d [1]. In this way we get

L dL
sin & d§

dt ao?

QLY

(20)

the absolute value is again necessary for assuring the positiv-
ity of the differential cross section. This is the explicit for-
mula for evaluating the differential scattering cross section
in velocity space. Notice the similarity of (20) with the stan-
dard expression for the differential scattering cross section in
configuration space

L dL
sin& d€

do 1

s m2vZ, @n

do = 2r:bdb
dﬂ 2Tsing dg

_‘v‘

FIGURE 5. The scattering situation from configuration space. We
can represent the incoming beam of particles in configuration space
as a solid cylinder whose width corresponds to the impact parame-
ter b (which must be regarded in the limit b — o0). Particles incom-
ing with slightly different impact parameters are represented by the
annulus with radius b and width db. A sphere of radius r is also
shown. This standard figure is just shown here for comparison with
Fig. 4. We also show two of th e scattering trajectories. A derivation
of Rutherford cross requires simply taking the ratio of the area of
the annulus shown do = 27b db to the area of the section on the
reference sphere df2 = 27 sin £ d€ to get the standard formula [1]
for the differential scattering cross section in configuration space
do [dS2 = (b/ sin &) |db/dE|.

the main difference being the factor

> - (L/muss)?
(a/L)2 (a/L)?

(22)

(here expressed in two alternative forms) which tranforms the
velocity space to the configuration space expression by sim-
ply dividing the velocity space cross section by the square
of a typical velocity: the radius of the hodograph (constant
for each scattering trajectory or hodograph and used in the
above derivation of the velocity space cross section) and mul-
tiplying it times the square of a typical distance: the impact
parameter (also constant for each trajectory or hodograph
and used in the corresponding derivation of the configura-
tion space cross section, see, for example Landau and Lif-
shitz [1] or the caption of Fig. 5). The drawbacks of (20)
are the explicit appearance of « and the (related) relation-
ship of its derivation to h; formula (20) thus appears to be
valid for Coulomb interaction only; though, using the pertur-
bative scheme described in Sect. 4, its range of validity can
be extended to centrally perturbed Coulomb interactions.
Using (15) and (17), (20) can be evaluated as
4

ds 1 n/.}L) ; 23)

A2 4 v sin? £/2
Although correct this expression is not yet totally evaluated
because part of the angular dependence is still *hidden” in-
side of L, it is nevertheless interesting because it expresses
the velocity space cross section as a factor which is basically
the ratio of two velocity space quantities and because it ex-
hibits the angular dependence of the well-known Rutherford
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scattering formula [1, 2]. On using again (17), we finally get

5
dx ( E ) 1 (24)

a2~ \2m COS4£/2;

this is Rutherford differential scattering cross section in ve-
locity space.

3.3. Differential cross section in configuration space

It is not simple to put the complete formula (24) to a direct
experimental test because scattering experiments are done in
configuration space—we just happen to inhabit this and not
velocity space and furthermore we are not used to think in
terms of it. Multiplying (23) times the dimensional factor
(22), we casily get the usual Rutherford expression for the
differential scattering cross section in a Coulomb field [1, 2]

do  (L/mus)? dE\ _ (a2 1
a1 (/L) (dﬂ) = (15) stz P

In the Rutherford scattering formula (25), or in (24), it does
not matter whether the interaction is repulsive (o > 0), as we
have been assuming, or attractive (o < ().

4. Scattering in a perturbed Coulomb field

Many scattering processes cannot be approximated as result-
ing from interactions with Coulomb-like forces even when
the forces are central; then it is of importance to be capable of
studying scattering in perturbed Coulomb fields. In this sec-
tion we exhibit that, even in such a case, the Hamilton vector
can still be useful for getting information on the process.

Let us consider then a Coulomb field perturbed by a ra-
dial term f(r) = f(r)é,. With a central perturbation of this
sort the equation of motion for the problem reads

d’r a ]
M- = 38 + £(r), (26)
which illustrates that h is no longer conserved, its equation
of motion becomes [6, 17]

a_ Jul, 27
dt m
The velocity, however, can still be expressed in the form
v(t) = h(t) - 7 &, (28)

in (28), as in (7), the coefficient of &; is a constant whereas
the Hamilton vector is now a quantity whose time evolution
is determined by (27) and (26). Although we cannot give ex-
plicitly the shape of the hodograph for the general case unless
we first give f(r) and then solve Eq. (27), we can, at least,
evaluate some of its geometrical properties. For example, let
us compute the hodograph’s curvature in velocity space [18],
using the definition of curvature and keeping in mind that the
hodograph’s arc-length is just the speed v, we easily get
_dv ldv L/a

i i B e = el 2
T dv T adt 1+-r2j(r)/aeg B

from here, the hodograph’s radius of curvature follows im-
mediately as

84

Ru= 3 (14 1(r)r?/a). (30)

This is as far as we want to get without an explicit expression
for f(r). But, it is easy to obtain further information if we
allow for approximations, as we show next.

Let us note that Eq. (27) can be at least formally solved
to obtain the change in h due to the perturbation

00

Ao, Fr(1))8, dt, 31)

. — 00
the only disadvantage of this equation is that the integration
must incorporate the solution to Eq. (26). It is usually more
useful to express the integration in (31) in terms of # using
angular momentum conservation, so

1

Ah = — / ") 168, a0, i
L‘ i

where ¢, and ; are, respectively, the incoming and the
ougoing angles in the perturbed problem. If we further as-
sume that the perturbation is small. it becomes valid to ap-
proximate (32) by evaluating it along the unperturbed trajec-
tory; then, noting the integrand’s parity, coming in part from
&, = &, cosf + &, sinf, we get

6h = ET / e B)2 £ (re(8)) cos 0.d6, (33)
G

where .. stands for the asymptotic angle in the unperturbed
Coulomb problem given in (16). In fact, we are using a sub-
script e in every quantity evaluated on the unperturbed trajec-
tory and we use 4, instead of A, to indicate the approximation
made (7.¢., the use of d means, for example, §h ~ Ah). Note
that Eq. (33) savs that, if the perturbation is small, the net
change in h occurs in the z-direction, i.e., it is orthogonal to
h and has very little effect on its magnitude. Hence, we can
visualize the effect of the perturbation &s a clockwise rotation
in the orbital plane (in the case of an attractive interaction the
rotation is counterclockwise) of the unperturbed hodograph
by the angle

ah 1

=T T hL

[ @)oo, oo

where we have made the approximation tan dp =~ dy (valid
since we are assuming dy¢ < 1) and where 7.(f) must be
taken from Eq. (11). Thus the hodograph in the pertubed
Coulomb problem can be imagined as an interpolating curve
between the circular arcs of two Coulomb-like hodographs
whose centers are displaced dh as is illustrated schematically
in Fig. 6.
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FIGURE 6. Schematic representation of the hodograph of a scat-
tering orbit in the perturbed Coulomb problem. To draw the hodo-
graph it is assumed that the perturbation is small, so the net effect is
similar to a small shift of the unperturbed hodograph centre by dh;
the original and the displaced hodographs are shown as thin dashed
lines. The perturbed hodograph is a sort of interpolating curve be-
tween them. The dark curve from B to B’ represents schematically
the trajectory of h during the motion. The magnitude of the change
in the outgoing angle is d.

With these results, it becomes easy to obtain the deflec-
tion function for the perturbed Coulomb problem. As we can
see in Fig. 6, the deflection angle changes by 6§ = dy (at
least if we assume that L and E do not change respect the un-
perturbed case) and thus the deflection angle in the perturbed
problem, £, can be written as

- (21)E>
E=§& +66 =n—2arctan | —
a
" e _
+ I re(0)% f(r.(8)) cosfdf. (35)
oL i,

With this result it is possible to correct the Rutherford
scattering cross section for the effect of the perturbing term;
to this end we can use as starting points any onc of the expres-
sions (20), (21), or even the more explicit Rutherford formu-
las (24) or (25). But, given the standard use of Rutherford
expression in configuration space, we have decided to derive
the correction starting from (25). So, using /2 + 4£/2 in-
stead of £/2 as argument of the sine in (25), expanding the
resulting expression in powers of 0&, and after a straightfor-
ward if a bit boring calculation, we obtain the approximate
scattering cross section (to first order in 6£) in the perturbed

problem as
do\ | (da 4§ do
sy ) |\d )/, dQ

which is the Rutherford cross section (do/df})., given in
Eq. (25), plus the correction term

do oh o a \2 do
5l 2 = —g®® .. QY3
(JQ) 4 (H 5 lanE) ) ((m)c o

g (36)
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FIGURE 7. Plots of the differential scattering cross sections of the
unperturbed Coulomb (solid line) together with the Coulomb per-
turbed by a 3/ term with 3 > 0 (dashed line, labeled perturbed+)
and 3 < 0 (finely dashed line, labeled perturbed—) against the de-
flection angle between 0 and 7. As you can see, under a small re-
pulsive perturbation the cross section diminishes respect the pure
Coulomb case and increases if the perturbation is attractive. In the
plotting, the values « = 1, 3 = £0.025, m = land E = 2, in
arbitrary units, were used.

We can, using Eq. (17), express the change in the differen-
tial cross section in terms of &, in this form we finally get the
rather general expression

do 5 da
T b el £/ \ 9
’S(rm> =48 (ese /2 deat () (ds'z)._' &5

for the differential scattering cross section. Thus, we only
need to evaluate (34) with the chosen perturbation to be able
to get the perturbed differential scattering cross section in this
approximation. Let us pinpoint that, starting from (20) or
from (24), an expression analogous to (38) for the differen-
tial scattering cross scction in velocity space can be obtained;
although perhaps the easiest way to do this is simply to mul-
tiply (38) times the dimensional factor (22).

For perturbing terms of the form f(r) = 3/r®, where
and s are constants, a general expression for & is rather easy
to obtain; however, such expression is cumbersome and of-
fers little insight. Thus we have decided that, as an example,
it is much better to write down explicitly 4¢ for the specific
perturbing field: 3/1*. With the perturbation just mentioned
the integral (34) is elementary and it is rather easy to get

(5{:E—‘H— (mr — & —siné)

: [§
a” cot?£/2 R
An analysis of Eqs. (38) and (39) exhibit that the scat-
tering cross section decreases if the perturbation is repulsive
(3 > 0) and increases if the perturbation is attractive (3 < 0)
as Fig. 7 illustrates. Equation (38) shows how the Hamilton
vector and the hodograph are useful even in this approximate
approach, since the change in the scattering cross section can
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be written in terms the relative change in &. The results ob-
tained in this section, can be shown to be rather succesful
on comparing with several known results, some details of the
discussion can be found in Gonzdlez-Villanueva et al.. [6]
and in Aguiar and Barroso [19].

Keep in mind though that the above results are just an ap-
proximation to the process valid if the perturbation f(r) is
reasonably small and if it makes sense describing the outgo-
ing motion as following asymptotes. Under such conditions,
and if the perturbation is repulsive, i.e., if f(r) > 0, it is easy
to see that the deflection angle of the scattered particle de-
creases; namely, the outgoing asymptote rotates by the angle
—a&&; if, on the other hand, the perturbation is attractive, the
deflection angle increases by €.

5. Concluding remarks

We have shown how the scattering orbits in the Coulomb
problem can be understood using the Hamilton vector h. This
constant of motion is rather important since, besides being re-
lated with the hidden symmetries and superintegrability prop-
erties of the problem [11, 12, 14], allows a very simple solu-
tion to it. On the other hand, we have exhibited that h not only
determines the spatial orientation but can easily convey other
geometric features of the orbit. The hodograph of the prob-
lem is closely related with h and, as we have exhibited in this
article, they both suffice to solve the problem and to get the
angular dependence of the differential scattering cross section
in a Coulomb field. We have shown also how the scattering
problem can be discussed from the point of view of veloc-
ity space and have obtained an expression for the differential
scattering cross section in that space.

Furthermore, we have shown that, taking advantage of
the properties of h, we can obtain some basic geometric in-
formation about the hodograph of even a perturbed Coulomb
problem. We have also discussed how the Hamilton vector
may offer a general framework for studying classical scatter-
ing in such perturbed case in an approximate fashion. The
complete analysis of specific examples is beyond the scope
of this paper, but you can consult, for example, [6] where the
deflection angle for the exactly solvable perturbation /3 /1% is
calculated and compared with the result obtained using the
approximate scheme described here. A related approach to
scattering in a perturbed Coulomb field with examples can
be found in the article of Aguiar and Barroso [19]. But they
use the Laplace vector instead of Hamilton’s in the discussion
and do not touch on the use of the hodograph for discussing
the problem nor on studying the scattering problem from the
point of view of velocity space.
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