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Some textbooks and reports claim that the Jacobian As[A] which arises in the discussion of the Faddeev-Popov method to quantize non-
Abelian gauge theories and which is given by the derivative of the gauge fixing conditions over the gauge group parameters, is gauge invariant,
Other references however prove the opposite. In this brief report we present a discussion about this matter.
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Algunos textos mencionan que el jacobiano A ;[A], el cual surge en la discusién del método de Faddeev-Popov para cuantizar teorias de
norma no abelianas y estd dado por la derivada de las condiciones que fijan la norma con respecto a los pardmetros del grupo de simetria, es
invariante de norma. Otras referencias muestran lo contrario. En este trabajo se presenta una discusién sobre este hecho.

Descriptores: Integral funcional; invariancia de norma; transformacién de norma

PACS: 11.10.-z; 02.20.Sv; 02.30.Cj

1. Introduction

Already thirty years ago L.D. Faddeev and V.N. Popov intro-
duced their prescription [1] to quantize non-Abelian gauge
theories, according to which the gauge fixing conditions give
rise o a system of anticommutating scalar ghost fields which
enter only as internal lines in Feynman loops.

In non-Abelian gauge theories, considering only
the gauge bosons, the vacuum-to-vacuum amplitude
{0, +00|0, —oc) = {0]0)_ is expressed by the functional
integration 2]

H(00)- ~ [ DAREIA, (1

where DA* =[], dA%(x) and the action § = fd";t‘ L are
invariant under the gauge transformation

Ay — A% = U4, U +iUN(B,U), (2)

with {7 = ¢’ and # = 6,T, (setting the coupling constant
equal to one). The generators T, of the simmetry group sat-
isfy the algebra

[Er‘ T!l] = ic‘uf;r‘Tr- (3)

An immediate problem arises because of the divergent
nature of the functional integration (1), which is due to
the gauge invariance of the action. Hence an infinity fac-
tor should be factorized and removed before implementing

the perturbative expansion. The trick designed by Faddeev-
Popov, lor this purpose, begins with the introduction of the
Jacobian

AfAL] = (./'ma [f{Aj’,]]) B : (4)

with D8 = []
sion (1) as

+(0]0)_ ~ /PAH c‘*?Sl/‘vlaf[A,,,]/Dea[f[Aj{]}. (5)

df,(x), so that we can write the expres-

a,r

fIA%(2)] = 0 s called the gauge fixing condition and it
should have a solution #(x) for a given A, [3]. If #,, is a zero
of f[A%], we obtain
of
a6 |y

Some textbooks and reports [5] claim that the Jacobian
A[A] is gauge invariant when they are explaining the quan-
tization ol non-Abelian gauge theories. Some other refer-
ences [6] state without proof that this determinant is gauge
invariant. The argument of Refs. 5 about the gauge invariance
of Af[A] goes as follows:

As[A] = (6)

A7 (4 = [ DY (FlAg)

I

/l D(g'g)d (F[Agg])

= / D(g")6 (F[Ap]) = AT AL ()
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Although the last three equalities are correct, the first one
is wrong since it assumes that the group measure Dy is equal
to the parameter measure [which enters in the definition given
in Eq. (4)],

Dy = [] dfalz) = D8.
a,r
In this note we show that this Jacobian is not gauge in-
variant, and we give an example. At the end we explain how
this result is in agreement with Ref. 7.

After the gauge transformation A — A~? the Jacobian
Af[A] defined in the Eq.(4) transforms as

A=) = /’Df)“d‘ RERSI
9” .
1 [
D() } an! f[ A, 1]
59”
= 1[4} ’ (8)
o8’ 0'=0,
where #, 8 and 8" are related by
cm“ = cmem‘ = Bm#ia"

and the exponent r#y is given by an infinite Baker-
Campbell-Hausdorff series of multiple commutators [4]

1
T#Hy=ax+y+ 3[.1‘. Y]
1

13([1 [+, y]] + [u,['y,-'t']])+--- 9)

Therefore the variation 66", with respect to 8’ is given by

+

i06" = i6#i(6' + 60") — i0Fi0’

1 7
68" — =[6,00'] — — [0, [0, 66’ 10
80" — 50,00 — 5 [6,16,08')) + (10)
so that in terms of the components of # we can write
o6
o,

X 1 1
= "5.';!1 & 3('111)(‘9(' + ‘]-T)C"R(‘E thf‘gfed = i § (l 1)
For example in SU(2) we have Cype = €ape.

O, | 14 (67 + 63 +62)
80, |, 114 S

x [0 +6;+65+12]+--- (12

and obviously the Jacobian A f[A] is not gauge invariant.

Note that to get Eq. (8) we have integrated over all pa-
rameters of the simmetry group instead of over all group el-
ements. We would like to stress that the references [5] get
Eq. (8) without the determinant |68" /8#'|. They have inte-
grated over all group elements.

Now we show that we can obtain the result (8) from
Eq. (37) of Zaidi's paper [T]. First, let us explain how he ob-
tains this equation.

Let us consider the functional integral [ F[q]Dq and sup-
pose that we want to change the function g(x) in the func-
tional integral by another function ¢'(x) given by

q(x) = /1\'(-r'~u)q’(y)dy-

with K (z,y) = K(y, z).

Now we wish to find out what happens in the functional
integral. For this aim we must seek the relationship between
the two measures Dg and Dg'. If we expand g(x) and ¢' () in
terms of an orthonormal set of functions {@(x) }, we obtain

; M A
Pi—= H dély = aq:— Dy,
1=1 J
hence
/Fr] dq] = /Fﬁq [dq] (13)

Equation (13)is Eq. (37) in Zaidi's paper. q; and q) are the
coefficients in the expansion of ¢(x) and ¢ ( ), respectively.

If we consider 8 () and 8 () instead of g(x) and ¢ (),
respectively, and expand them in terms of the set of genera-
tors {7}, } of the gauge transformation as

=30, ()T,
Zeb )T,

with Flg] = A[A], we obtain Eq. (8) from Eq. (13). In this
case @ (x) and 8 (z) are related by e = eifei®’ = gif#i0",
Also we can see that the equivalent expression to K (z,y) is
not symmetric,

We also can obtain the result (8) from Eq. (15.5.17) of
Weinberg’s book [7]. First, let us mention that Eq. (15.5.1) of
this reference,

1= [ DeglolB(f14] |Flal]

is equal to Eq. (5) with the following correspondence:

gl] = &4,
B[f[¢]] = 8[F[A4]],
|Flél| = AglA],
where the F-matrix is
6 faldr; 2]

Fr\.r‘;iy [‘t[)] = ( |4}

As(y) oo
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If we consider the gauge transformation with parame-
ters p”(x: A, A) in the ¢ fields as the product of the gauge
transformation with parameters A“ () followed by the gauge
transformation with parameters A (x), we obtain

Faslal = [ Jososlo B AN'z, (15)

with
Ofaltp: ]
Jp, Al = =2 — ’
[6.4] ap(z) p=A
Ap7(z; A, N)
Y el ARSI
BT TN o (16)
hence
|Flgal| = | (g, Al||RIA)|- (17)

Equation (17) is Eq. (15.5.17) in Weinberg’s book, and
it is equal to Eq. (8). Weinberg has introduced a weight-
function p(A) as

p(A) = | (18)

R[A]|’
thus, p(A) is |56" /66| .

Finally, if we use the gauge invariance of the action § and
the measure DA combined with (8), after the gauge trans-

formation A — A~Y, the integral (5) can be written as

{0[0)— ~ /"D 4 ¢iSlAu] d[f[-"-u}]ﬁf[A;J

i 6‘6”
x | DO |— , (19)
o'
- g.':gn
a7
so that removing the entire factor /PH}W‘ we

write (19) as
+(0]0)_ ~ / DA, o‘{f[A,,}] As[AuleSA (20

which is the Faddeev-Popov prescription.

We notice that the contribution of Af[A] is contained
in the infinity factor which is removed from the integra-
tion. Thus, the expression (20) is obtained independently
of whether A;[A] is gauge invariant or not. If Af[A] were
gauge invariant, then one would remove just | Dé.

In conclusion, we have showed that the Jacobian Ay [A]
is not gauge invariant and given an example. Also we have
explained how this result can be obtained from Refs. 7.
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