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oscillator in classical mechanics

G.F. Torres del Castillo
Departamento de Fisica Matemdtica, Instituto de Ciencias, Universidad Auténoma de Puebla
72570 Puebla, Pue., Mexico

Recibido el 15 de enero de 1998; aceptado el | de junio de 1998

Using the relationship between the cartesian and the parabolic coordinates, it is shown that the Kepler problem in two dimensions can be
related with the isotropic harmonic oscillator in two dimensions in such a way that the Hermann-Bernoulli-Laplace-Runge-Lenz vector and
the angular momentum, as well as the dynamical symmetry group generated by them. are obtained from the constants of the motion of the
oscillator and its symmetry group. All possible values of the energy are considered and it is shown that the orbits in the Kepler problem are
easily obtained from those of the harmonic oscillator.
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Se muestra que, por medio de la relacion entre las coordenadas cartesianas y las parabdlicas, el problema de Kepler en dos dimensiones se
puede relacionar con el oscilador arménico istropo en dos dimensiones de tal manera que ¢l vector de Hermann-Bernoulli-Laplace-Runge-
Lenz y el momento angular, asi como el grupo de simetria dindmico que generan, se obtienen de las constantes de movimiento del oscilador y

su grupo de simetria. Se consideran todos los posibles valores de la energia y se muestra que las orbitas en el problema de Kepler se obtienen

facilmente de las del oscilador arménico.

Descriptores: Problema de Kepler: oscilador arménico isétropo

PACS: 03.20.+i; 02.20.-a; 02.20.Sv

1. Introduction

The Kepler problem for bounded motion and the isotropic
harmonic oscillator are related to each other in various ways.
They correspond to the only two central potentials whose or-
bits are all closed for bounded motion, in both cases the orbits
are ellipses and one can find constants of the motion that sat-
isfy the same Poisson bracket relations (see, e.g., Refs. 1 and
2 and the references cited therein). Furthermore, by means of
the Kustaanheimo-Stiefel transformation, the Kepler problem
can be related to a four-dimensional isotropic harmonic os-
cillator with a constraint (see, e.g., Ref. 2 and the references
cited therein).

In this paper we show that, by expressing the Hamil-
tonian of the two-dimensional Kepler problem in parabolic
coordinates, one can relate the Kepler problem with energy
E < 0 to a two-dimensional isotropic harmonic oscillator
(TTHO), whose frequency depends on E. This relationship
allows us to derive the usual constants of the motion of the
Kepler problem from those of the TIHO and to see how the
SU(2) symmetry of the TIHO leads to the SO(3) symmetry
of the two-dimensional Kepler problem for bounded motion
(see also Refs. 3 and 4). A similar analysis is given for the
two-dimensional Kepler problem with positive or zero en-
ergy, showing that, in the first case, there exists a relation-
ship with the analogue of the TIHO where the force is re-

pulsive instead of attractive and, in the second case, with a
TIHO with zero frequency, i.e., a free particle. We show ex-
plicitly that the Hamiltonian of a particle in two dimensions
with a repulsive central potential proportional to 7 possesses
a SU(L,1) hidden symmetry and that, therefore, the Kepler
problem with positive energy has a SO(2,1) dynamical sym-
metry. We also show that the orbits in the Kepler problem are
the images under tiie complex-variable function f(z) = z2/2
of the orbits corresponding to a central potential proportional
to r? (see also Refs. 3-5).

2. The two-dimensional isotropic harmonic os-
cillator revisited

The Hamiltonian of a two-dimensional isotropic harmonic
oscillator (TIHO) is given in cartesian coordinates by

1 5 5 Mw? . 5
H= ooy 7)) + —— (2% + %), (1)

where w is the angular frequency of the oscillator. Since the
potential depends only on z* + y? = 72, the angular momen-
tum

L.= TPy — YpPs (2)

is a constant of the motion.
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The Hamilton-Jacobi equation for the Hamiltonian (1) is
separable in cartesian coordinates; in fact, this equation reads

I (us LAY
2M |\ Oz dy
‘?lj“"z(].2+,2 +Q§
e HY)+ 5

and looking for a complete solution of Eq. (3) of the form
S = f(x) + g(y) — Et, one gets

f\? Mw?: , E
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=0 i3)
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where \ is a separation constant whose meaning can be ob-
tained by subtracting Eqs. (4)

1 df \* dg\’ M, s s
oy =t [ FEY _ (22 .
2 IM [(d.r) (d-y) * 2 (x y*)

or, taking into account that df /dz = 0S/0x = p, and
dg/dy = 0S8y = py.

.*1!1’.4)2 . 9
+ T(J'z - ). (5)

1 2 2
A= m(ﬁ}- - )
Thus, Eq. (5) gives a second constant of the motion and, by
virtue of Poisson’s theorem, the Poisson bracket of L. and A
is also a constant of the motion. By means of a straightfor-
ward computation one finds that

1 2
{L,,X} = ﬁ}pa,;ny + Mw~zy. (6)

The use of Poisson’s theorem does not lead to further con-
stants of the motion. In fact, denoting the functions L, A and
{L., A} by 253, —wS; and —wSs, respectively, i.e.,

1 " 5 Mw, , 2
S1 = ——(p3 —p3) — — (" = =),
V= e ) - )
l Mfw
Sy = ———PaPy + ——2Y, 7
2= “onr Py T 0
1
S3 = 5(-7‘1);, — YPz),
one finds that
!
{5:,8;) =) _ €Sk (8)
k=1

(the definitions (7) differ slightly from those employed in
Refs. 1 and 6).

Equations (8) imply that the S; are generating functions
of a group of transformations in phase space isomorphic to
SU(2) (the group of 2 x 2 unitary matrices with unit determi-
nant) or SO(3) (the group of 3 x 3 real orthogonal matrices

with determinant + 1, which represents the rotations in three
dimensions). As is well known, the groups SU(2) and SO(3)
are locally isomorphic: there is a two-to-one homomorphism
of SU(2) onto SO(3) such that if " € SU(2), then {7 and —U
correspond to the same element of SO(3). It turns out that the
group generated by the functions (7) is isomorphic to SU(2)
(see, e.g., Ref. 6), which is related to the fact that if in the
transformation generated by S;. the parameter is set equal to
27, one obtains minus the identity transformation.

From Egs. (7) and (8) it follows that { L, 51 } = 25, and

{L.,S>} = —25;, which means that
(5 5
(11]): (Sl S])
and
Sa '—Si
Bii) = Z " (9
Q H) (_5‘1 "“JB) )

transform under rotations in the plane as the cartesian com-
ponents of a symmetric tensor. The eigenvectors of (A;;) co-
incide with the axes of the orbit of the oscillator (which is
an ellipse centered at the origin), whereas the eigenvectors of
(B;;) bisect the axes of the orbit.

3. Equivalence of the Kepler problem with neg-
ative energy and the TIHO

The Hamiltonian for the Kepler problem in two dimensions,
written in cartesian coordinates, is

1 s 3 ke
—(p> +py) — —FV/—>
PP T
where k is a positive constant. In order to show a connection
between the Kepler problem and the TIHO, we express the

Hamiltonian (10) in terms of the parabolic coordinates u. v,
defined by r = L(u? —v?), y = uv,

=

(10)

1 5 5
H=———(p,+0)— 5= 11
IM u? + v? Py + 1) u? 4 v? L

where p,, and p, are the canonical momenta conjugate to u
and v, respectively. Hence, the hypersurface in phase space
defined by H = E corresponds to

1

m(p; +p2) — E(u® +v°) = 2k, (12)

In other words, H = E is equivalent to the condition hg =
2k, where
o 1 2 2 2 2
h;.; = m(‘]}“ +pu) - E(?l +v ]
is an auxiliary Hamiltonian (conjugate to a fictitious time)
that depends parametrically on £ and is of the form of Eq. (1)
it E < 0, with w and v in place of  and y, and Mw?*/2 re-
placed by — F (see also Refs. 3-5). Therefore, making these
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substitutions in Eqs. (7) one obtains three generating func-
tions of canonical transformations that leave the hypersurface
I = 2k or, equivalently, the hypersurface H = E. invari-
ant. This means that we have at once three constants of the
motion for the Kepler problem with negative energy, which
satisfy the Poisson bracket relations (8), by simply replacing
T, Y. Pe» Py and w in Eqs. (7) by u, v, p,,, p, and v—2E/M,
respectively. This gives

SI _ _1_ [l(sz 71)2) B :UE(‘I‘B o “‘l)] .
-2ME [47" ™" 2
— **1—,—__. |:lp1.'[33- = AJ{E«"“'J s (I3)
?~ T /=2ME |2

Sy = (upy — t‘p,,),

B =

(It may be noticed that, in order to obtain the equations
for a four-dimensional isotropic harmonic oscillator from
the Kepler problem in three dimensions by means of the
Kustaanheimo-Stiefel transformation, it is also necessary to
introduce a fictitious time. A similar change of the indepen-
dent variable was introduced in Ref. 7.)

The constants of the motion (13) can now be written in
terms of the cartesian coordinates using the fact that

dL  dLox  OL 3y
Pe= 94 = i ou " By oa
dr Ay
= f’:l'm - Py E;
= upy + vpy
and, similarly, p, = —vp, +up,. Substituting these relations

into Egs. (13) we get, for instance, S3 = 1[u(-vp, +up,) —
vlup, +upy)] = %(H.E —v?)p, —uvp, = Tpy — yp.. In this

manner we find that

1
V—ME {l’y(iri’)y — YPs) —

. 1 . My
S1= e (@ —upe} —— . (9

S3 = xpy — Ype,

S] =

M k:i"J

where we have used that E = (p2 + p2)/2M — k/r.

Even though the constants of the motion (14) have been
obtained from Egs. (7) by means of coordinate transforma-
tions, the group generated by the functions (14) is not SU(2)
but SO(3). Since & = %(u2 - v2), y = uv,

‘H,])“ + Uy
By = T{_,J (15)

UPy — VP

P = v v
u? 4+ v?

(1,0, pus po) and (—u, —v, —py, —py) correspond to the
same point (.4, p., p,) of the phase space, therefore, for

a given element of SO(3), the action of the two corre-
sponding SU(2) transformations, {7 and —{, on the vari-
ables (u.v.p,.p,) yields the same result on the variables
(.zr.y.p,.,p,,). In particular, the 27 rotation generated by
S;, being minus the identity transformation on the variables
(. v, py, po), corresponds to the identity transformation on
(€, ¥, Pz, py). [Note that the factor 1/2 connecting Sy and L.
in Egs. (7), which is necessary in order to obtain the relations
(8), is absent in Egs. (14); whereas in the latter case a 27
rotation generated by S; is the identity, in the former case it
takes a 47 rotation to obtain the identity transformation. |
From Egs. (8) and (14) we now have that {L.,S,} =
{53,851} = Sy and {L.,S>} = {S3,5,} = —8§,, which
means that (5, .5,) and (=S5, .S,) transform under rotations
in the plane as the cartesian components of a vector. In fact,

(81,52) = (A, A,)//—2M E, where

Mkr

r

A=pxL- (16)
is the Hermann-Bernoulli-Laplace-Runge-Lenz (HBLRI.)
vector, which points in the direction of the point of closest
approach of the orbit to the origin (see, e.g.. Refs. | and 2).
Clearly, the vector (- S5, Sy ) is orthogonal to (S1,54). Thus,
as in the case of the TIHO. S; and S, determine the orienta-
tion of the orbi.

The fact that the orbits in the Kepler problem with nega-
tive energy arecllipses with a focus at the origin follows from
the fact that the orbits of the TIHO are ellipses centered at the
origin. Indeed. by writing the complex variables u + iv and
x4+ iy inpolar formas u + iv = pe'® and x + iy = ret?, we
seethat r +iy = +(u? —0?) +iup = Liu+iv)? = Lptedit
therefore i . i

= ,_l,p‘:. 8 =2¢ (W ir)

(see also Refs. 4 and 5). From Eq. (12) it follows that the or-
bits in the Kepler problem expressed in terms of u and ¢ are
ellipses centered at the origin. Considering, for example, an
cllipse with semi-axes a. b (@ > b) such that the semimajor
axis coincides with the v axis. we have u*/b? + v? /a? = 1
or, equivalently, (p* cos® ¢)/b* + (p? sin® ¢) /a? = 1. Mak-
ing use of Eqs. (17) one finds that this last equation amounts
to 2r[cos® (8/2)/b? + sin® (A/2) /a?] = 1, hence

al?
2 2
o — L EHL (18)
a- — b*
| =t “T"'—,)('OHH
a? + b2

which is the equation of an ellipse with one focus at the ori-
gin and semi-axes (a”+0")/4 and ab/2. The second equation
in (17) implies that an ellipse in the variables v and v whose
major axis forms an angle v with the u axis, corresponds to
an ellipse in the variables & and y whose major axis forms an
angle 2+ with the r axis.
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4. Dynamical symmetry of the Kepler problem
with positive or zero energy

According to the preceding results, one can guess that the
Kepler problem in two dimensions with positive energy is re-
lated with a TIHO with imaginary frequency, whose Hamil-

tonian is obtained from Eq. (1) replacing w? by —w?:
: 1 .5, o Mo 5, 5
H= =i, +i) — (=* +y7), (19)

2M 2
where w is a real constant. Tt is convenient to introduce the
two-component complex vector

aly = Py + Lp'v
W= (A-fw(:c 4 iy)) (20)

(¢f Ref. 6), in terms of which the Hamiltonian (19) can be

written as

il
— —fhi‘ 3 1
H = o'y, 21

where ¢/ is the adjoint of 1 and

1 0
n= (O 1) ; (22)

Proceeding as in section 2, one can obtain the following three
constants of the motion [¢f. Egs. (7)]

1 = 5 Mw, 4

Ky=——p;, —P:) — —— -z,

O = (P —p2) — = (07— ),

— L Mw

Ro= ol ™ 2 (23)

o1
K3 = S (apy — ypa).

These functions satisfy the relations

{Kl, ]S:_)} = —Kj, {Iﬁxz, 1{3} = Ky,
{I{g, I‘:l} = K, (24)

which means that the group of canonical transformations gen-
erated by the K; is isomorphic to SU(1,1) (the group of
2 % 2 complex matrices with unit determinant, U, such that
Uty U = 1), SL(2,R) (the group of 2 x 2 real matrices with
unit determinant) or SO(2,1) (the group of 3 x 3 real matri-
ces with unit determinant, L = (L';), such that L°gL = g,
where g = diag(1,1,—1), and L*3 > 0, which represents
the “proper orthochronous Lorentz transformations’ in two
space dimensions).
Making use of the 2 x 2 complex matrices

(0 —i
T = i 0 5 T2
= O
Ty = ( D* l) , (25)

I

P N
IO

—

o |
j—

B

which satisfy the commutation relations

[r1,7] = =273, [r,7]=2n, [m,n]=2n (26)
(cf. Eqgs. (24)), the constants of the motion (23) can be ex-
pressed in the form

K = Im(y'eri)), 27

1
4Mw

where Im denotes the imaginary part and

(0 1 ,
r—:(l 0). (28)

The matrices 7; satisty the condition 'rj n +n7; = 0; there-
fore, they form a basis of the Lie algebra of SuU(1,1). Since
the only nonvanishing Poisson brackets between the compo-
nents of + and their conjugates are {11,902} = —2iMw =
— {42, 1 }, using Eq. (27), one can show that the Poisson
bracket relations (24) follow from Egs. (26).

The rate of change of any function f under the one-
parameter group of canonical transformations generated by
a function G is given by df /ds = {f, G}, hence, from Eq.
(27) it follows that under the transformations generated by
K, dyfds = %T,: i, therefore,

i(s) = exp (?)1"(0)~ (29)

which, taking into account that the 7; form a basis of the
Lic algebra of SU(1,1), means that the symmetry group of
the Hamiltonian (19) generated by the constants of motion
(23) is isomorphic to SU(L,1) (which, in turn, is isomor-
phic to SL(2,R)). Note that it can be directly verified that
if /' € SU(L, 1), then the transformation ¢ — Ut leaves the
Hamiltonian (21) invariant; the preceding computations show
that these transformations are generated by the functions K;
and that they are canonical transformations. [Note also that
the Hamiltonian (19) is actually invariant under the group
SO(2,2), but not all these transformations are canonical. The
groups SO(2,2) and SU(I,1) turn out to be related since
S0O(2,2) is locally isomorphic to SU(1,1) x SU(1, 1). Simi-
larly, the Hamiltonian (1) is invariant under the group SO(4),
but not all these transformations are canonical. The group
SO(4) is related with SU(2), which is a dynamical symmetry
group of (1), being locally isomorphic to SU(2) x SU(2).]

In the present case, the symmetry axes of the orbit, which
is a hyperbola centered at the origin, coincide with the eigen-
vectors of the symmetric matrix

I&’I ]—\—2
I&--_) _I\'J

[¢f Egs. (9)].
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We now turn to the Kepler problem with positive energy.
The hypersurface in phase space defined by H = E also cor-
1esp0nds to Eq. (12), which now is of the form (19) with z, y
and Mw? /2 replaced by u, v and E, respectively. Then, from
Egs. (23) we obtain the constants of the motion

. 1 1. 5 4 ME 5
K= —— [~ (p2 — - ;
1 21ME [4 (pv pu) 2 (U u” )
K : [ . MEHU:' (30)
(2 = ——— | =pupy — ! .
b SME |27"P°

i 1
K3 = E(“’pv — UPy).

and by comparison with Eqgs. (13) and (14) we find that, in
terms of the cartesian coordinates,

Ky = _1— [pu(‘rpy - Ypz) — ﬂ/{ka = A )
= 1 [pm(-fpy —ggis] ~ Jka:' = 4y )
K3 =ap, —uyp,, 31)

where A, and A, are the nonvanishing components of the
HBLRL vector (16). Among other things, Eqgs. (31) imply
that the HBLRL vector is conserved.

Owing to the fact that (u,v,p,,p,) and
(=1, =0, —pu,—p,) correspond to the same point
(.1, P, py). a transformation U € SU(1,1) and its nega-

tive, —U, produce the same effect on a point (z, y, PaPy), of

the phase space and since there exists a two-to-one homomor-
phism of SU(1,1) onto SO™(2,1) such that, for U € SU(1, 1),
U7 and —U correspond to the same SO'(2,1) transformation
(see, e.g., Ref. 8), it follows that the group generated by the
constants of the motion (31) is isomorphic to SOT(2,1).
When £ > 0, from Eq. (12) it follows that the orbits
expressed in terms of w and v are hyperbolas centcred at the
origin. Assummg that the Orb]tIS given by u? /b2 —v?/a® = 1
or (p? cos® ¢) /b? — (p*sin? ¢) /a® = 1, using Eqs. (17) one
finds that this equation amounts to
a’b?
a’ + b?
a? — b?
which means that the orbits in the Kepler problem with posi-
live energy are hyperbolas with one focus at the origin.
Finally, we shall consider the Hamiltonian (1) with w = ()

; (32)

1+ cosf

H——(pfﬂﬂ,) (33)
From Eqs. (5) and (6) it follows that in this case
= 1 9 9 1
Ny = —(p° — p=), ;’V-E—'—‘.’I«
L= gar Py P); 2= Topr PPy
1
Na= §(~'FPy = YPz), (34)

are constants of the motion and one finds that

{N1, N3} =0,
{‘-"\"rjg.. I\/rl} = ;'\"rg. (35)

{Na, N3} = Ny,

Therefore, the group of canonical transformations generated
by the N; is isomorphic to SE(2), the Euclidean group of the
plane, formed by the rigid motions of the Euclidean plane.
The orbits are straight lines and the orientation of the orbit is
determined by the eigenvectors of the matrix

i\“r| ."‘\"rg

;\"rg *J\’rl
(one eigenvector is parallel to the orbit and the other is or-
thogonal to it).

Turning now to the Kepler problem in two dimensions
with zero energy, using the parabolic coordinates one gets
Eq. (12) with E' = 0, which is of the form (33) with pu and
p. in place of p, and py- Hence, from Eqs. (34) it follows
that

1 .5
Ny = —(p2 = p2), | —— PPy
L = e — 1) PP

0

1 .
N3 = 3{1.'p1 — UDy), (36)

are constants of the motion for the Kepler problem with zero
energy. In terms of the cartesian coordinates, the functions
(36) take the form

) 1 fbfk:r 44_1‘
N; = 7 [[’u(fpu Ypx) = ] Y
| Mky A
J\rq =57 | —Pal\TPy — YPz) — l - 0 ' 3
)= 5 { Pe(apy = ype) = — } me ©O7

N3 = xpy — yps,

where we have made use of the fact that £ = 0. Thus,
again, we obtain the HBLRL vector starting from constants
of the motion for the TIHO (in the present case with zero
frequency).

According to the preceding results, in terms of % and v,
the orbits correspond to straight lines. Considering an orbit
given by it = aor pcosp = a, using Egs. (17) one obtains
r=a?/[2cos*(8/2)] or, equivalently

02
Y S 38
1+ cos# (38)
Thus, the orbits in the Kepler problem with zero energy are
parabolas with the focus at the origin.
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5. Concluding remarks

We have shown that the separability of the Hamilton-Jacobi
equation in an appropriate coordinate system allows us to find
constants of the motion associated with hidden symmetries.
Whereas it is easy to find constants of the motion for the
Kepler problem and to obtain the Poisson bracket relations
between them, it is a difficult task to identify the correspond-
ing symmetry group and to find the explicit expression for its
action on phase space; however, making use of the relation-

38 G.F. TORRES DEL CASTILLO

ship between the Kepler problem and the TIHO presented
here, one can give an explicit expression for the action of
SO(3) as a dynamical symmetry group of the Kepler problem
with negative energy.
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