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We analyze the contribution of the excited states of the Higgs field to the solution of the localization problem of quantum theory. This has been
done without introducing additional fundamental constants or extra hypotheses, as happens in some previous attempts already made in this
direction. We find, for the electron and Higgs field, solutions that show solitonic behavior. This last feature renders, in the one-dimensional

case, a solution to the localization problem.

Keywords: Localization problem

Se analiza la contribucion de los estados excitados del campo de Higgs para la solucién del problema de localizacion de la teorfa cudntica,
Esto se ha hecho sin introducir constantes fundamentales adicionales o hipétesis extras. como sucede en trabajos previos. Se encuentra que,
para el electrén y el campo de Higgs, existen soluciones que muestran comportamiento soliténico. Esta iltima caracteristica proporciona, en

el caso uni—dimensional, una solucién al problema de localizacion.

Descriptores: Problema de localizacién

PACS: 03.65.w

1. Introduction

Although quantum mechanics (QM) is one of the most suc-
cessful predictive theories in science, it had since its very in-
ception profound conceptual problems [1]. QM is in perfect
agreement with all definite experiments of Physics, but it con-
tradicts our general macroscopic world view [2-4]. The quest
of a more general QM theory is an old one [5], but recently
the interest in this search has waxed [6] and has propelled a
new momentumn to the search of a non-linear QM.

One of the old conundrums of QM is related to the fact
that Schrodinger equation leads to the unlimited coherent ex-
pansion of the center of mass wave function of any isolated
system [4]. At the root of this problem can be found the clash
between the principle of superposition and the experimental
evidence which supports the existence of states with far away
coherent components only in the case of micro-objects [7].

Let us explain this a little bit better. It is already known
that quantum physics predicts for a free non-relativistic wave
packet, which at certain time is localized in a bounded re-
gion, its spreading with the evolution of time. If we think of
wave packet solutions as possibly the best representation for
the free motion of a macroscopic body, then the wave packet
corresponding to its center of mass continually widens with

time. neverwithstanding, at the same time, experience shows
that a macroscopic object has a well defined position. This is
the so called localization problem [4].

Concerning the localization problem, the efforts, that up
to now have been carried out, might be grouped in two op-
posite approaches [8]: In the first group are those models
that assert that macroscopic bodies possess classical proper-
ties even if they are perfectly isolated, in other words, clas-
sical behavior is intrinsic to macroscopic bodies. In this set
we may find the model proposed by Karolyhdzy [9], which
affirms that there is a “coherence cell”, the spatial domain in-
side which the superposition principle still holds for the cen-
ter of mass wave function of an isolated solid body. When
this “coherence cell” expands to a certain size, then a sponta-
neous, stochastic reduction on the wave function takes place.
The origin of these reductions is ascribable to the uncertainty
structure of empty-space, in other words, there are no exter-
nal agents involved in these reductions, i.e. it is postulated
that these reductions are a fundamental behavior of quan-
tum systems. In the same line of thought lie some other at-
tempts [10-14], in which the main feature is that the state
vector undergoes a continuous stochastic and nonlinear evo-
lution, i.e. the evolution of a physical system is described as
a Markov process in a Hilbert space. Nevertheless, in con-
nection with these stochastic reduction theories it has already
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been claimed: “if the state vector that precedes reduction
is precisely reproducible, then superluminal communication
can occur in certain circumstances” [11].

In these approaches, the reduction of the wave function
is caused by the influence of a specific environment, and
in consequence, contrary to the usual thought, the classical
properties are not intrinsic to macroscopic bodies. It is note-
worthy to mention that in these works the main idea is, as
Zeh has pointed out [15], macroscopic quantum systems are
never isolated from their environments, and as a result quan-
tum coherence “leaks out” into the environment [16].

The possible relevance of a cosmic influence on the
generation of this classical behavior was considered by
Wigner [17]. The role of gravity as a possible trigger of
the needed dynamical supression of linear superpositions of
macroscopically distinguishable states has already been an-
alyzed [18-21] but, in order to avoid some inconsistencies
that appear in some of these models [19], a new fundamen-
tal length [20] has to be introduced. The non-existence of a
quantum theory of gravity could pose an additional difficulty
to the study of gravity as a feasible candidate.

There are some results [22] in which the interaction be-
tween classical and quantum degrees of freedom renders, un-
der the appropriate circumstances, the collapse of the wave
function. The problem here is, there are, beforehand, classi-
cal properties, but these works show, once again, that the non-
linear effect needed in Schrodinger equation emerges from an
interaction between the quantum degrees of freedom and an
environment conformed, in this case, by the classical degrees
of freedom. Even the collapse of the wave function caused by
the interaction between wormholes and a microscopic system
has been analyzed [23].

The introduction of terms in the usual Hamiltonian,
where these terms emerge from a classical white noise has
also produced some progress [24, 25] in the search of such
dynamical process. Notwithstanding, the random fluctuating
functions included are introduced by hand and no explana-
tion for their origin has been advanced, this dearth might be
considered as a drawback. It is also important in connection
with the introduction of new terms in Schrodinger equation
to consider the possibility that non-linear terms might lead
to the violation of the second law of thermodynamics [26],
though at this point it is noteworthy to mention that the con-
cept of entropy in QM is not soundly founded [27].

We may see in these approaches many possible “environ-
ments’” that render a feasible answer to this problem.

In this work we show that the Higgs field ol elementary
particle physics, which is responsible for the mass of the par-
ticles, could represent an environment leading to a feasible
localization of the center of mass. We will not need to intro-
duce new fundamental constants, and the environment, the
Higgs field, responsible for the emergence of solitonic solu-
tions, is not introduced by hand, at least at this level. In other
words. in this context, Higgs field plays a two-fold role, on
one hand, elementary particles are endowed by this field with

mass, and on the other one, these particles show some clas-
sical properties as consequence of their interaction with this
ficld.

The new term in Schrodinger equation, responsible for
the emergence of some interesting properties in the solutions
here obtained, might be interpreted as a self gravitational
interaction and has the form of Choquard equation, already
known from plasma physics.

We will find solitonic solutions, for the electron as well
as for the excited states of the Higgs field, for the three and
one dimensional cases. Nevertheless, in the latter case the
localization property will be restricted to the direction of mo-
tion of the electron’s wave packet. For the former case the
localization problem disappears completely and the solitonic
velocities of the electron and Higgs field are equal and fixed
by the normalization of the electron’s wave packet.

2. Motion equations

We begin with Dirac equation for an electron and the equa-
tion for the excited states of the Higgs field that appear in the
standard model [28]. After symmetry breaking, where it has
been set ¢ = 1 and h = 1, it is valid:

iv"d,ep — M(1 + d)e,. =0, (1)
iv"Ope, — M(1+ ¢)ep =0, (2)
e N 5 M
(’_\ - J?) G—m-p— ﬁ(e}et +é&e.) =0, (3)

where ¢, ¢, are the left and right parts of the electron’s wave
function, M and m the electron and Higgs masses, respec-
tively, and ¢ the real valued excited Higgs field, v? the ex-
pectation value of the vacuum state of the Higgs field; fur-
thermore, Eq. (3) has been linearized with respect to ¢. This
means, for instance, that those terms appearing in the Higgs
potential [28] [V(®) = — 120t @ 4+ A(@T®)?] that are of
second or higher order in ¢ must be neglected. Upon the
excited states of the Higgs field the imposed condition is
||+ < |@|™, for any natural number 7.

Let us now proceed to take the non-relativistic limit
of (1). This is done through the introduction of the condi-
tion [29] e,; = e *M!E,;, being E,; a function that changes
slowly with time, meaning this condition that the energy of
the particle is concentrated mainly in its rest mass. We may
understand this approximation from another point of view,
namely we expand the electron field in a series, where the
parameter used in this expansion is V /c. being V, the group
velocity of the particle. The employed cut off in this series
implies that the group velocity of the electron field must be
much smaller than the velocity of light. At this point it is
noteworthy to mention that in order to carry out the nonrela-

tivistic limit we introduce no condition on @.
We may write [29] E = E, + E;and E = i . In the

nonrelativistic limit, the term Yy is much smaller than ¢, the
order of magnitude between these two terms goes like Volc.
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The nonvanishing term ¥ has two components, each one
of them associated 1o one of the two possibles values of the
clectron’s spin.

Let us denote these components with . . P =

Y(1/2) - Therefore, the last defintion entitles us to write

Y(i—1/2)
the motion cquations, not considering spin, as
N ) 1 ;
Ia + E—ﬂ}A’U’ s fqu')'ﬂz" =0, (4)
i 2, 2M
(A = (_')ﬁ) @ —mcp — ‘?)T'U' t=. (5)

From (4) it follows a continuity equation for the Schrodinger
field v, which therefore can be normalized, if the functions
and ¢ go to zero sufficiently fast, in the Space-like infinity.

Assuming in (5) that ¢ does not present time-dependence,
namely that it is a statjc field, we obtain

)= M [ oo e gy
#(r) = 4m;2/ It —r, ]

X 'Lf'*(rg)ﬂ)(rg) d:i?"'_g‘ (())

) i M?
JE EA?AU’ * 471y 2

xfww(rz)‘w(rz)d3rz =0. (7)
lr—rs ]

The integral term can be reinterpreted as a self inter-
action of gravitationa) type, and this fact confirms an a]-
ready known resulq [30], the excited Higgs field mediates
a scalar gravilational-type interaction of short range. Com-
monly, such nonlinear termsg are added in an artificial way

2
b(t, ) = 3m2y 1 m ( Jt

1,3 7————sech? T = Ly
4M = /1 u? el B
M2 M2

N

M

‘ 3 m? 5 m 1
ob(f.r)—‘zmbech ‘__—ﬁz—('r*ﬁf) s (”)
2 /1- H
1 M2

where we now have the relation a? = M+ 72 + €2,

Both sets of solutions represent waves traveling along the
r-axis, which for the particular Case v = ¢ = 0 can be nor-
malized with Tespect to the z-axis. It js readily seen that they
present no time spreading amplitude, ; ¢ they are solitons,

g 2
e o Bl T R | i

Meystre and M. Sally, (Plenum Press, 1983) or G. Gilburn
and C. Holmes. Phys. Rev, Letr 56 (1986) 2237, in which
the importance of Some cosmic influence s analyzed]. In our
case they arise dutomatically from an interaction with a very
important field, namely, the Higgs field, which is responsible
for the mass of (he electron. They do not have to be intro-
duced by hand. We also do not need hew extra fundamenta]
constants, as in some previous attempts [20]. Equation (7)
is the so called Choquard equation, and it hasg been proved
that this equation has stationary normalized solutions in one
dimension and in three dimensjons for the spherically sym-
metric case [31], even though, for the three-dimensional case
no solution hag been found. Ay this respect, it is noteworthy
L0 mention that concerning the eigenvalye problem nothing is
known,

However, with respect to the localization problem, we

mua
W(t,r) = m sech [a(z — t)]

X exp [i(wt + Mz 4 W tez)], (8)

‘ a? .
ol r) = ~ 773 Sech *la(z - t)], 9

where we have the relation o® = 207, 4 ar2 + 9% 4+ €2 pe-
tween the constang parameters o, w, A7, 7, and ¢, Certainly,
it must be mentioned that for he case in which the soliton
velocity reaches the speed of light the validity region of the
nonrelativistic aproximation may be abandoned, I relation
with the localization length, 1, of this solution it is readily
seenthat/ ~ 1/q and that it is not fixed.

A second solution Is given by

I

2 2
m= {9 oo

t+ ux + TY ez 5, (10)

fgs) *

even though, the localization Property appears only in the dj-
rection of motjon. In the first case Eqs, (8) and (9), the soliton
velocity is the Speed of light, in the Second one, Egs. (10) and
(L1), itis pu/M which implies that n< M,

Notewor[hy Lo mention is the facy that the solution given
by Egs. (10) and (11) is the best one, physically speaking, of
the two obtained, because it entitles us to choice any soliton
velocity in the interya [0,1], and in consequence it sets, be-
forehand no kingd of condition to the value for the velocity of
the center of mass of a nonrelativistic macroscopic body.
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It is not surprising at all that we obtain also solutions
that have. in our nonrelativistic limit, no physical meaning.
Even in the case of the three dimensional Schrodinger equa-
tion of a one point-like object of mass M that includes a
nonlinear term comprising a non-local self-interacting grav-
itative term [18], the appearence of nonphysical solutions is
unavoidable.

An important point regarding solutions Eqs. (10) and (11)
concerns the length of the obtained localization. From the
aforementioned equations it is clear that the length of the lo-
calization is | ~ (1/m)y/1 — p?/M?, with other words, it
is the Compton length of the Higgs field, [y = 1/m, times
the factor \/Al — 112 /M?, where p is a constant and we may
choose it such that this localization length becomes [ < [y,
which yields a very small localization region and in conse-
quence a physically reasonable one.

Let us for a moment consider the case of a one-
dimensional system. Here we need to comment that the
phrase one-dimensional case means not only that we con-
sider just one space-like dimension in Egs. (4) and (5). but
also that the normalization of the wave function is given by
the integral ’;: [:(:x)|* dz = 1. This last expression has an
important consequence, namely v is dimensionless, as can be
seen from (3).

We have, once again, two solutions, in both of them the
electron’s wave function can be normalized.

The first set is given by

_‘-[3/2 ;\'jq
() = secl z—t
U (t, @) ¥ ech LTH'D)E(I )]
o MY = (mo)*
exp [LM( Slme)d f.+.1)} (12)
fl-:{d M3
bt 2) = ———sech | ——=(z — . 13
wbe) (mu)? P [(11‘1-1))2 o f)] 22)

It can be seen that in this case the solitonc velocity
is 1. we are once again outside of the nonrelativistic re-
gion, and the phase velocity becomes Vo = [-M* +
(?m!)’)]/[(B(rn.'.“)‘j)].

The second solution has the form

; N 3/2 9 J“L{"j 4
Wit ) = 2muv i [W(t - I/St)]
([ 2M® M, .
X eXP VL { [W - 71’;] t+ z"vﬂ-_s..r} . (14

1/ MN\* o[ M3
tr)=—=| — sech * | —— i -Vt - LSy
o(t, ) = (nu') sec [30”_”)3(! . )] (15)

The solitonic velocity is, Vs = /1 — (9/4)(m3v? /M3)2,

and in order to remain in the non-relativistic region we must
have (9/4)(m3v?/M?3)? ~ 1. The phase velocity is in the
case of solutions (14)—(15) V,, = —(2/9)(M /muv)*(1/V;) +
V. /2. It is clear that Vy, > V).

The expression just derived for the solitonic velocity sets
the following bound (2/3)M* > m’v? = 0.447 Mev

973
RO,

Clearly, the localization length is [ ~ [,m? /M?*v*, where
I, represents the Compton length of the electron. Obviously,
m?/M? = 1, but v is in the one-dimensional case not fixed
and therefore it may be chosen such that (m? /M?*)v* < 1.

As a matter of fact, if we demand V; € %, and we
must set this condition otherwise we can not identify Vi
with a velocity, then the following condition must be ful-
filled 1 > (3/2) (P02 /M?) = m**IM? €« 1= 1< L,
and therefore we obtain through this model a reasonable lo-
calization length for the electron. With other words, every
physically meaningful solitonic velocity implies a very small
localization region.

3. Conclusions

We began with the equations for the electron and excited
states of the Higgs-field, this last one linearized, that stem
from the standard theory. We have also shown that the elec-
tron’s Schrodinger equation contains a new term that might
be reinterpreted as a self interaction of gravitational type.
The form that this equation acquires is already known from
plasma physics, the so called Choguard equation. In this work
the Higgs field can be held responsible not only for the emer-
gence of mass terms in some elementary particles, but also
for the appearence of some classical properties, i.e. the wave
function shows no spreading with time.

We found, in the three dimensional case. solutions for
the electron and excited states of the Higgs field that in the
direction of motion show no spreading with time evolution,
but unfortunately, the localization property is restricted to the
aforementiond direction. The involved localization length is
of the order of magnitude of the Compton length of the Higgs
field, a very small one.

For the one dimensional case the localization problem
disappears. In this case, every electronic physically meaning-
ful solitonic velocity implies that its localization region has to
have an order of magnitude similar to the electron’s Comp-
ton length, once again the obtained length is small enough
and endowes the model with physical meaning. Tt is readily
seen that our solution has the character of a particular solu-
tion of the corresponding motion equations, and therefore it
can not describe all kind of electron waves.

The issue of stability and the possible destruction of the
soliton solutions by a dissipative environment (structural sta-
hility) must be also addressed.

In the case of the Sine-Gordon equation [32], that in the
case of one-space-like dimension has the form 8°¢/dx* —
924/0t* = sin (¢) and shows a certain “similitude” with the
one-dimensional case of (5). it is known that the perturbation
of a collision with another soliton is by no means guaranteed
to be small.

The possibility of annihilation of two colliding pulses,
for this Sine-Gordon equation, and the existence of different
types of inestabilities [33]., i.e. convective and nonconvec-
tive which depend on the algebraic properties of the involved
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dispersion relation w(k), show that even for a simpler equa-
tion than ours the problem of stability is a very complicated
one and that the role played by the environment has to be
carefully investigated, this dissipative environment will have
an important part in the appearence of a possible dispersion
relation w(k).

In connection with this problem we must add that the sta-
bility theory for solitons has many aspects depending upon
the particular definition of the term “stability” and upon the
mathematical methods been employed [34].

One approach in the investigation of stability is to as-
sume a “small perturbation™ from our solution and consider
whether this perturbation grows with time. If the perturba-
tion is small enough, the nonlinear equation that it obeys
may be approximated by a linear equation. More powerful
methods can then be used to decide whether the approximate

linear equation implies growth or decay with time. Neverthe-
less. one must be very careful, because the drawn conclusions
from a study of the lincar equation may differ from the impli-
cations of the exact nonlinear equation that it approximates.

A second appoach is to employ the nonlinear stability the-
ory. that was developed by Benjamin [35] in connection with
the Korteweg-deVries equation. In this case the question of
stability is answered, but the problem of “asymptotic stabili-
Ly” remains open.

The issue of stability for our model will be addressed in
a further paper.
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